离散数学1.1 命题与联结词
离散数学第一章 命题逻辑

令Q表示:张亮是跳远运动员。
于是命题,张亮可能是跳高或跳远运动员就可以用P∨Q来表示,因为这里的或是可 兼或。 逻辑联结词析取也是个二元运算符。
1.1 命题和联结词
逻辑联结词单条件—“→”
设P是一个命题,Q是一个命题,由联结词→把P、Q连接成P→Q,称P→Q为P、 Q的条件式复合命题,把P和Q分别称为P→Q的前件和后件,或者前提和结论。 P→Q读作“如果P则Q”或“如果P那么Q”。其中P被称为前件,Q被称为为后件。 很多时候联结词→也被称为蕴涵。 P→Q的真值是这样定义的,当且仅当P→Q的前件P的真值为T,后件Q的真值为F
1.1 命题和联结词
逻辑联结词否定—“┓”
设P是一个命题,则联结词┓和命题P构成┓P,┓P为命题P的否定式复合 命题,读作“非P”。联结词┓是自然语言中的“非”、“不”和“没有” 等的逻辑抽象。 其真值是这样定义的,若P的真值是T,那么┓P的真值是F;若P的真值 是F,则┓P的真值是T。命题P与其否定┓P的如表1.1所示。
1.2 合式公式与真值表
例1.4 令P表示:小明现在正在睡觉。
令Q表示:小明现在正在打球。 于是命题,小明现在正在睡觉或者正在打球不能用P∨Q来表示。因为这里自然语言陈述的或是 排斥或,这种意义的或我们用另一个逻辑联结词“异或”“”来表示,后面我们将给出它的 定义。
1.1 命题和联结词
逻辑联结词析取——“∨”
例1.5 将句子“他昨晚做了20或者30道作业题”表示为复合命题。 在此例中,该句子不能被表示成复合命题,因为这里的“或”表示的是近似或者猜 测的意思。 例1.6 令P表示:张亮是跳高运动员。
P F F T T Q F T F T P∧Q F F F T P 0 0 1 1 Q 0 1 0 1 P∧Q 0 0 0 1
离散数学课件第一章(第1讲)

3)区分“可兼或”与“不可兼或(异或,排斥或)” 析取联结词为可兼或 例如: 灯泡有故障或开关有故障。 今天下雨或打雷。 以上例句均为可兼或。
“不可兼或”表示为:▽ (异或),当P和Q均为“T”时, 则P异或Q为“F”。
P
Q
P▽Q
F
F
F
F
T
T
T
F
T
T
T
F
例: 他通过电视看杂技或到剧场看杂技。 他乘火车去北京或乘飞机去北京。
§1 命题与命题联结词
1 命题
《定义》: 具有唯一值的陈述句叫命题。 讨论定义:
(1)命题的值: 命题值可以是真的,也可以是假的,但不能同时 既为真又为假。
(2)命题的真假值表示: 命题中所有的“真”用“T ” 或“ 1”表示 命题中所有的“假”用“F ”或 “0 ”表示。
(3)命题分类: ⅰ)原子命题:一个命题,不能分解成为更简单的命题。
(2) 合取词(“合取”、 “与”运算) 1) 符号 “Λ” 设P,Q为两个命题,则PΛQ称P与Q的合取, 读作: “P与Q” “P与Q的合取” “P并且Q”
2) 合取运算真值表
P Q PΛ Q
FF
F
FT
F
TF
F
TT
T
QΛP F F F T
注: ①当且仅当P和Q的真值均为 T ,则PΛQ 的真值 为 T 。否则,其真值为 F 。
第一篇 数理逻辑
逻辑:通常指人们思考问题,从某些已知条件出发推出合 理的结论的规律。 数理逻辑:用数学方法来研究推理的规律。包括命题逻辑 和谓词逻辑。 数理逻辑研究方法:采用一套数学的符号系统来描述和处 理思维的形式和规律。
第一章 命题逻辑
§1.命题与命题联结词 §2.命题公式与真值表 §3.命题公式的翻译 §4. 等价式与蕴含式 §5.对偶与范 式 §6.命题逻辑的推理理论 §7.其他联结词
离散数学II

c):最外层括号可省。 如,(¬((P ∧ ¬Q) ∨R) →((R ∨P)∨Q))
¬(P ∧ ¬Q∨R) →R ∨P∨Q
21/73
1.1 命题与命题联结词
• 例1.3:符号化下列命题。
a):他既有理论知识又有实践经验 b):i. 如果明天不是雨夹雪则我去学校
26/73
1.2 公式的解释与真值表
• 原子命题在不指派真值时称为命题变元,而
复合命题由原子命题和联结词构成,可以看 作是命题变元的函数,且该函数的值仍为 “真”或“假”,可以称为真值函数(True Value Function)或命题公式。但不是说原 子命题和联结词的一个随便的组合都可以为 命题公式,我们用递归的方法来定义命题公 式。
• 例,(¬ P∧Q),(P→(¬P ∧Q)) ,(((P∧Q) ∧(R
∨Q)) ↔(P →R))是命题公式 (P →Q )∧¬ Q), (P →Q, (¬ P∨Q ∨(R, P∨Q ∨不是命题公式
28/73
1.2 公式的解释与真值表
• 注意:
– 如果G是含有n个命题变元 P1, P2, …,Pn的公式, 通常记为G(P1, …,Pn)或简记为G。
汇集起来的一门综合学科。离散数学的应用遍
及现代科学技术的诸多领域。
–离散数学是随着计算机科学的发展而逐步建立
起来的一门新兴的工具性学科,形成于上上个
世纪七十年代。
2/73
引言
• 课程意义
–离散数学是计算机科学的数学基础,其基本概念、 理论、方法大量地应用在数字电路、编译原理、数 据结构、操作系统、数据库系统、算法设计、人工 智能、计算机网络等专业课程中,是这些课程的基 础课程。
离散数学作业 第一章

第一章命题逻辑1.1命题与命题联结词P6.T2.判断下列语句是否为命题,为什么?若是命题判断是原子命题还是复合命题,并把复合命题符号化,要求符号化到原子命题。
(1)他们明天或后天去百货公司。
(2)你能告诉我,我什么时候一定会死吗?你不能!(3)如果这个语句是命题,那么它是一个假命题。
(4)李刚和李春是兄弟。
(5)王海和李春在学习。
(6)只要努力学习,就一定能取得优异成绩。
(7)李春对李刚说:“今天天气真好呀!”(8)你知道这是个真命题还是假命题就请告诉我!(9)王海不是女孩子。
答案解⑴是复合命题。
设p:他们明天去百货公司;q:他们后天去百货公司。
命p∨。
题符号化为q⑵是疑问句,所以不是命题。
⑶是悖论,所以不是命题。
⑷是原子命题。
⑸是复合命题。
设p:王海在学习;q:李春在学习。
命题符号化为p∧q。
⑹是复合命题。
设p:你努力学习;q:你一定能取得优异成绩。
p→q。
⑺不是命题。
⑻不是命题⑼。
是复合命题。
设p:王海是女孩子。
命题符号化为:⌝p。
P7.T4.设p表示命题“天下大雨”,q表示命题“他乘公共汽车上班”,r表示命题“他骑自行车上班”。
请将下列命题符号化。
(1)如果天不下大雨,他乘坐公共汽车或者骑自行车上班。
(2)只要天下大雨,他就乘公共汽车上班。
(3)只要天下大雨,他才乘公共汽车上班。
(4)除非天下大雨,否则他不乘公共汽车上班。
答案解⑴⌝p→(q∨r)。
⑵p→q。
⑶q→p。
⑷q → p。
1.2命题公式及其分类P10.T4.构造下列公式的真值表,并据此说明它是重言式、矛盾式或者仅为可满足式。
(1)p ∨⌝(p ∧q )。
(2)(p ∧q )∧⌝(p ∨q )。
(3)(p →q )↔(⌝p ↔q )。
(4)((p →q )∧(q →r ))→(p →r )。
答案解 ⑴设)(q p p A ∧⌝∨=,其真值表如表2-1所示:故)(q p p A ∧⌝∨=为重言式。
⑵设A =(p ∧q )∧⌝(p ∨q ),其真值表如表2-2所示:表2-2故∧∧⌝∨为矛盾式。
《离散数学》--随堂练习(2019)

第一章命题逻辑1.1 命题与联结词1、在下面句子中,是命题的是( A )A.明年“五一”是晴天。
B.这朵花多好看呀!。
C.这个男孩真勇敢啊! D.明天下午有会吗?2. 在下面句子中,是命题的是( B )A.1+101=110 B.中国人民是伟大的。
C.这朵花多好看呀! D.计算机机房有空位吗?3. 在下面句子中( A )是命题A.如果天气好,那么我去散步。
B.天气多好呀!C.x=3。
D.明天下午有会吗?4.下面的命题不是简单命题的是( A )A.3是素数或4是素数 B.2018年元旦下大雪C.刘宏与魏新是同学 D.圆的面积等于半径的平方与π之积5.下面的表述与众不一致的一个是( C )A.P:广州是一个大城市 B.⌝P:广州是一个不大的城市C.⌝P:广州是一个很不小的城市 D.⌝P:广州不是一个大城市6.设,P:他聪明;Q:他用功。
在命题逻辑中,命题:“他既聪明又用功。
”可符号化为:( A )A.P ∧Q B.P→QC.P∨⌝Q D.P∧⌝Q7.设:P :刘平聪明。
Q:刘平用功。
在命题逻辑中,命题:“刘平不但聪明,而且用功”可符号化为:( A )A.P ∧Q B.⌝P∨QC.P∨⌝Q D.P∧⌝Q8.设:P:他聪明;Q:他用功。
则命题“他虽聪明但不用功。
”在命题逻辑中可符号化为( D )A.P ∧Q B.P→QC.P∨⌝Q D.P∧⌝Q9.设:P:我们划船。
Q:我们跑步。
在命题逻辑中,命题:“我们不能既划船又跑步。
”可符号化为:( B )A.P→Q B.⌝(P ∧Q)C.P∨Q D.P∧⌝Q10.设:P:王强身体很好;Q:王强成绩很好。
命题“王强身体很好,成绩也很好。
”在命题逻辑中可符号化为( D )A.P ∨Q B.P→QC.P∧⌝Q D.P∧Q11.设:P:你努力;Q:你失败。
则命题“除非你努力,否则你将失败。
”在命题逻辑中可符号化为( C )A .Q →PB .P → QC .⌝ P →QD .Q ∨⌝P12.设:p :派小王去开会。
《离散数学》课件-第1章命题逻辑

例题 • 判断下列句子中那些是命题?若是命题的,判断其真值。
1. 北京是中国的首都。 2. 2+3=6。 3. 3-x=5。 4. 请关上门。 5. 几点了?
Y真 Y假 N 真值不确定 N 祈使句
6. 除地球外的星球有生物。
N 疑问句
7. 多漂亮的花啊!
Y 真值确定, 但未知
8. 我只给所有不给自己理发的人理发。N 感叹句
p q pq
TT F TF T FT T FF T
23
其它联结词
• 定义1.1.10 设p、q是任意两个命题, p q可表示复合命题“p和q的或非”, 称为或非联结词。命题p q 称为p和q的或非式。当且仅当p和q的真值同时 为假时,p q的真值为真. Nhomakorabea•
p q的真值表
p q pq
TT F TF F FT F FF T
6
联结词
• (一)否定
• 定义1.1.4 设p是一个命题,p表示一个新命题“非p”。命题p 称为p的否定。当且仅当p的真值为假时,p的真值为真。
• p的真值表:
p p
T
F
F
T
• 例如:p:今天是晴天。则 p:今天不是晴天。 • “非”,“不”,“没有”,“无”,“并非”等都可用来表示。
7
联结词• (二)合取
•
p q :电灯不亮是灯泡或线路有问题所致。
•
p:派小王去开会,q:派小李去开会,
•
(p q)(p q): 派小王或小李中的一人去开会
10
联结词
• (四)蕴涵
• 定义1.1.7 设p、q表示任意两个命题, p q 可表示复合命
题“如果p,则q”。当且仅当p的真值为真,q的真值为假时,
离散数学课件 第一章

主讲教师 李红军 北京林业大学 理学院
BEIJING FOREST UNIVERSITY
教材及参考资料
教材:
1耿素云,屈婉玲,张立昂编著,离散数学,清华大学出版 社, 2008年3月(第4版) 2耿素云,屈婉玲编著.离散数学(修订版).高等教育出版社, 2004年
参考资料:
1 左孝凌编著,离散数学,上海科学技术出版社
1.1 命题与联结词 命题:能判断真假而不是可真可假的陈述句。 命题的真值:命题为真或者假的判断。 真命题:真值为真的命题。 假命题:真值为假的命题。 注:任何命题的真值都是惟一的;
用“1”表示真,用“0”表示假。
例 1.1 :判断下列句子哪些是命题.
(1)
3 是有理数。
(2) 2是素数。 (3) X+Y>10。
1 3
m z 1 r m 1
z m 1
1 2
1
3
比赛结束,三位观众各猜对了一半,并且没有并列名次.问:中 国、美国、日本的各排名第几? 设z1:中国第一;z2 :中国第三;r1:日本第一; m1:美国第一;m2:美国第二; m3:美国第三.
例1的参考答案 m1 z3 1 r1 m3 1 z1 m2 1
对偶原理
A和A*是互为对偶式,P1, P2 ,……Pn是出现在A和A*的原子变元,则 A(P1,…,Pn) A*( P1,…, Pn) A( P1,…, Pn) A*(P1,…,Pn)
即公式的否定等值于其变元否定的对偶式。 例:A为PQ,则A*为PQ, 则(PQ) PQ
真值表
将命题公式A在所有赋值下取值情况列成表
试考虑求公式A的真值表的步骤? 例1 求下列公式的真值表,并求出成真赋值和成假赋值. 1) p(¬ r∧q) 2) (p∨q)(¬ p q)
离散数学知识点总结(1)-命题逻辑

离散数学知识点总结(1)-命题逻辑⼀、命题命题:陈述句,有唯⼀真值/⾮真既假(不⼀定知道)简单命题/命题常元:真值确定。
命题变元p:常⽤来表⽰命题。
只有明确表⽰某个命题时才有具体的含意和确定的真值。
命题联结词/命题运算符:否定联结词┐、合取联结词∧、析取联结词∨、蕴含联结词→、与⾮联结词、或⾮联结词p→q:当且仅当p真q假时,p→q为假(因此它和┐p∨q等值)。
即p为假时,p→q必定为真⟷:当且仅当、充要条件、反之亦然⼆、命题公式命题公式/命题形式/合式公式/公式:(1)可满⾜式:⾮重⾔的可满⾜式重⾔式/永真式(2)⽭盾式/永假式(不存在成真指派)命题公式不是命题,只有当公式中的每⼀个命题变项都被赋以确定的真值时,公式的真值才被确定,从⽽成为⼀个命题。
三、命题逻辑的等值演算A⟺B:A和B有等值关系。
对任意真值指派,A与B取值相同。
A⟷B为永真式。
等值关系⼀般通过真值表法或者等值演算法得到。
⽽不等值,只能通过真值表法,找到某个真值指派使得⼀个为真⼀个为假德摩根律:┐(A∨B)⟺┐A∧┐B、┐(A∧B)⟺┐A∨┐B蕴含等值式:A→B⟺┐A∨B吸收律:A∨(A∧B)⟺A、A∧(A∨B)⟺A归谬式:(A→B)∧(A→┐B)⟺┐A例题:p→(q→r)⟺┐p∨(┐q∨r)⟺(┐p∨┐q)∨r⟺┐(p∧q)∨r⟺(p∧q)→r四、范式由有限个⽂字的析取所组成的公式称为析取式;由有限个⽂字的合取所组成的公式称为合取式形如A1∨A2∨…∨A n的公式称为析取范式DNF(其中A i为合取式);形如A1∧A2∧…∧A n的公式称为合取范式CNF(其中A i为析取式)任⼀命题公式都存在着与之等值的析取范式和合取范式,但析取范式和合取范式可能不是惟⼀的。
极⼩项q1∧q2∧…∧q n:⼀共2n种解释,每个极⼩项只在⼀个解释下为真。
每个极⼩项对应⼀个⼆进制数,该⼆进制数正是该极⼩项真值为真的指派,即m0可表⽰┐q1∧┐q2∧…∧┐q n极⼤项q1∨q2∨…∨q n:⼀共2n种解释,每个极⼤项只在⼀个解释下为假。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 在命题逻辑中允许前件和后件间无必然的因果关系。
4. 条件联结词
• P:天下雨;Q:马路湿;
P
Q
P →Q
Q →P
P →Q:如果天下雨,则马路湿。 下面讨论P→Q 的真值: • 如果天下雨,则马路湿; • 如果天下雨,则马路不湿; • 如果天不下雨,则马路湿;(善意推断) • 如果天不下雨,则马路不湿; • • P:2+2=4;Q:雪是黑的; P →Q:如果2+2=4,则雪是黑的。
原子命题的符号表示:大小写英文字母:P、Q、R、 p 、q 、r、…… 带下标的大写字母:Pi,Qi,Ri,……
例如: P:北京是中国的首都。
• 命题常元:一个命题标识符P,如果表示一个确定的命题,则称 P为原子命题常元,简 称命题常元; • 命题变元:若P只表示任意命题的位置标志,或表示不确定的命题,或以原子命题为值 的变元P,称P为原子命题变元,简称命题变元。 命题变元是以命题的真值为值的变元。 命题变元不是命题。 • 命题指派:将一个命题变元 P 用一特定命题去代替,它才能确定真值,叫做对 P 的指派 或解释,记为 S(P) 或 I(P)。
是命题,真 不是命题
不是命题 是命题,真值不确定
• 请勿喧哗!
• 明天去哪里? • 有外星人
• 曹操是明朝人
• 6+8>14 • 今天下雨 • 今天我休息 • 11+1=100
是命题,假
是命题,假 是命题,真值不确定 是命题,真值不确定 是命题,真值不确定
1.1 命题与联结词
二、命题标识符
• 命题标识符:表示原子命题的符号称为命题标识符,简称命题符。
1.1 命题与联结词 总结
• • • 复合命题的真值只取决于构成它们的各原子命题的真值,与它们 的内容、含义无关。 ∧ 、∨ 、 具有对称性;而 ┐ 、→ 没有对称性; 联结词都有从已知命题得到新的命题的作用,它们具有操作或运 算的意义。联结词可以被看做是一、二元运算或一、二元函数。
•
• •
这真开心!
你听懂了吗? 请止步!
C : 1+1=1
• 现在是六点钟
一个陈述句能否分辨其真假与是否现 在能判断它是真是假是两件事。 • 张校长的头发有一万根
“自指谓”的陈述句 (结论是对自身而言) 不是命题 • 我所说的是假的
例:
判断下列语句哪些是命题。若是命题,指出真值。
• 巴黎在法国
P T T F F
Q T F T F
P∧Q T F F F
Q∧P T F F F
• P:今天下雨。
• Q:明天下雨。
• P∧Q:今天下雨而且明天下雨。 • P∧Q:今天与明天都下雨。
• P∧Q:这两天都下雨。
3. 析取联结词
• 设P 和Q是两个命题,由联结词∨把P,Q 连接成P∨Q,读做“P 或Q ”。 称 P ∨Q 为P,Q 的析取式复合命题。 析取联结词是“或”、“或者”的逻辑抽象。 • 析取联结词是表示可兼或,即二者可同时发生,不排斥二者发生的情况。 • 析取联结词不表示不可兼或排斥或,即非此即彼。
T
T F F
T
F T F
T
F T T
T
T F T
5. 双条件联结词
• 令P 和Q 是两个命题,由联结词把P,Q 连接成P Q,读做“P 当且仅当Q ”。称P Q 为 P 和Q 的双条件式复合命题。
• 双条件联结词又常称为同或,并用符号⊙表示。 • 双条件联结词是自然语言中的“充分必要条件”、“当且仅当”等的逻辑抽象。
第1章 命题逻辑
第1章 命题逻辑
1.1 命题与联结词 1.2 命题公式、翻译和真值表
1.3 公式分类与等价式
1.4 对偶式与蕴含式 1.5 联结词的扩充与功能完全组 1.6 公式标准型----范式 1.7 公式的主范式 1.8 命题逻辑的推理理论
1.1 命题与联结词
1.1 命题与联结词
一、命题的概念
• • • 命题:非真必假的陈述句。 具有真假意义的陈述句,且真或者假二者必居其一,也只居其一。 命题的真或假称为命题的真值。 真用T或1表示 假用F或0表示
命题的注意事项
自然语言中的感叹句、疑问句和祈使 句不是命题。 判定命题的真值会因人、因时、因地、 因标准而异。 • A : 1+1=2 B : 1+1=10
“P 条件Q ”。称P →Q 为P 和Q 的条件式复合命题, 把 P 和Q 分别称为P →Q 的前件 和后件, 或者前提和结论。
• 联结词→是自然语言中“如果…,则…”,“若…,才能…”等的逻辑抽象,是充分条
件。
• 在自然语言中,前件为假,不管结论真假,整个语句的意义往往无法判断。在命题逻
辑中,当P 为F,P →Q 为T,称为“善意推定”。
P T T F F
Q T F T F
PQ T F F T
QP T F F T
• 三角形是等边三角形当且仅当三角形的三
个内角相等。
• 2+2=4当且仅当太阳是恒星。
1.1 命题与联结词
四、命题分类 • • • 命题分两类:原子命题和复合命题 复合命题:由原子命题和联结词复合而成 判断一个命题是否为复合命题,其关键是联结词是否出现,出现联 结词则是复合命题,不出现联结词则是原子命题。
P
T T F
Q
T F T
P∨Q
T T T
Q∨P
T T T
• • •
今天晚上我在家看电视或去剧场看戏。 (排斥或)----不是命题联结词 他可能是100米或400米赛跑的冠军。 (可兼或)----是命题联结词 他昨天做了二十或三十道题。 (表示近似数)----不是联结词
F
F
F
F
4. 条件联结词
• 设P 和Q 是两个命题,由联结词→把P,Q 连接成P →Q,读做 “如果P,则Q ” 或者
1.1 命题与联结词
三、联结词 联结词是逻辑联结词或命题联结词的简称,它是自然语言中连词的逻辑抽象,用它 和原子命题构成复合命题。 否定联结词 合取联结词 析取联结词 条件联结词 双条件联结词 ┐ ∧ ∨ →
. 否定联结词
• 设P 是一个命题,由联结词 ┐和命题P 构成 ┐P, 读“非P ”。 ┐P 为命题P 的 否定式复合命题。 • 联结词 ┐是自然语言中的“非”、“不”和“没有”等的逻辑抽象。
P T F
┐P
•
• •
P :上海是一个大城市。
┐P:上海并不是一个大城市。 ┐P:上海是一个不大的城市。
F T
2. 合取联结词
• 令P 和Q 是两个命题,由联结词∧把P,Q 连接成P∧Q,读做“P 与Q ”, 或“P 合取Q ”。称P∧Q为P 和Q 的合取式复合命题。 • 联结词∧是自然语言中的“并且”,“既…又…”等的逻辑抽象。