2013年高考一轮复习教案数学(理)新课标 第一篇 集合与常用逻辑用语 2 命题及其关系、充分条件与必要条件
高考数学一轮复习 1.1 集合的概念与运算

2.如果集合 A 中含有 n 个元素,则集合 A 有 2n 个子集,2n-1 个真子集. 3.正确理解交、并、补集的含义是解决集合的运算问题的关键.数轴和 Venn 图是进行集合交、并、补运算的有力工具.
12
核心考点
(4)空集: 不含任何元素的集合
叫做空集,记作: ⌀
.
规定:空集是 任何集合的子集 .
4
知识梳理
双击自测
知识梳理
-5-
3.集合的基本运算
并集
符号 表示
A∪B
图形 表示
交集 A∩B
补集
设全集为 U,集合 A 的 补集∁UA
含义
A∪
B={x|x∈A,或 x∈B}
A∩B={x|x∈A,且 x∈B}
∁UA={x|x∈U,且 x∉ A}
-13-
考点一
考点二
考点三
考点一集合的基本概念
1.设集合 A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则 M 中元素的
个数为( )
A.3
B.4
C.5
D.6
关闭
由题意知 x=a+b,a∈A,b∈B,则 x 的可能取值为 5,6,7,8.因此,集合 M 共有 4 个元素.故选 B.
关闭
B
13 解析 答案
核心考点
-14-
考点一
考点二
考点三
2.若集合 A={x∈R|ax2+ax+1=0}中只有一个元素,则 a=( )
(6)设全集为 R,函数 y= 1-������2的定义域为 M,则∁RM={x|x>1,或 x<1}.( )
2013年高考数学(理)一轮复习复习讲义第一部分集合与简易逻辑1集合部分(人教A版)

集合部分一, 解决集合问题应注意的问题1,明确集合的三种表示方法,能够灵活的应用和转化; 2,明确集合的元素的意义,确定对象的类型,即元素是点、还是说、还是图形、还是向量等;如集合2A={x|y=x 1}-和2B={y|y=x 1}-不是同一个集合 3,弄清集合是由哪些元素组成的,善于对集合的三种语言(文字语言、符号语言、图形语言)之间进行相互转化;化简出集合的最简形式; 4,注意集合元素的互异性,在求值问题中不要忘记检验是否满足这一性质,这是集合题目的隐含条件; 5,注意空集的特殊性和特殊作用,注意空集性质的应用; 6,判断集合关系的方法和研究集合问题的方法是从元素下手; 7,注意运用数形结合思想、分类讨论思想、化归和转化思想来解决集合的问题; 8, 集合问题多与函数、方程、不等式等知识综合在一起,应注意各类知识之间的联系和融会贯通; 二, 常见的结论1,若集合A 中有n 个元素,则集合A 的子集有2n 个,真子集有21n -个,非空真子集有22n -个2,若集合A 中元素的个数用card(A)表示,则集合A 和集合B 的并集中元素的个数为()()()()card A B card A card B card A B =+-;则集合A 、B 、C 三个集合的并集中元素的个数为()()()()()()()()card A B C card A card B card C card A B card A C card C B card A B C =++---+ 3, 集合交集和并集的混合运算的两个公式:()()()u u u A B A B c c c =()()()u u u A B A B c c c =4, 空集的性质(1)A ∅⊆(2)()A A ∅⊂≠∅(3)A ∅=∅(4)A A ∅=5,A B A A B =⇔⊆,A B A B A =⇔⊆6,A B B A A B ⊆⊆⇔=且7,A B ⊂是A B ⊆的充分不必要条件三, 例题分析1、(12浙江理1)设集合{|14}A x x =<<,集合2{|230}B x x x =--≤, 则()R A C B =( ) A 、(1,4) B 、(3,4) C 、(1,3) D 、 (1,2)(3,4)【解析】此题考查集合的交集和补集的运算,考查一元二次不等式的解法2{|230}{|13}{|13}R B x x x x x C B xx x =--≤=-≤≤⇒=<->或, ()R A C B =}43|{<<x x 。
2013版高考数学人教A版一轮复习课件第1单元-集合与常用逻辑用语(理科)

第1讲 │ 问题思考
► 问题3 集合的运算 (1)A∩B=A∪B的充要条件是A=B.( (2)A∩B=∅的充要条件是A=B=∅.(
) )
第1讲 │ 问题思考
[答案] (1)对;(2)错.
[解析] (1)根据韦恩图分析可知. (2)A∩B=∅时,只要集合 A,B 没有公共元素即可,不一 定是 A=B=∅.
B∩A A ∅ (3)交集:A∩B=______,A∩A=____,A∩∅=____, ⊆ A∩B____A,A∩B=A⇔A⊆ B. ∅ U (4)补集:A∩(∁UA)=____,A∪(∁UA)=____.
(∁UA)∪(∁ (5)∁U(A∪B)=________,∁U(A∩B)=________. UB ) (∁UA)∩(∁UB)
集合 常用逻 辑用语 集合 常用逻 辑用语
集合的含义、运算、 基本关系 命题、充要条件、逻 辑联结词、量词
了解 理解 了解 理解 了解 理解 理解
2011江苏1 2011陕西12 2010北京20 2010安徽20
解 答 题
第一单元 │ 使用建议 使用建议
第1讲 │ 知识梳理
(4)几个常用集合的表示法 数集 自然数 正整数 集 集 整数集 有理数 集 实数集
N*或N Q R 表示法 ______ ______+ ______ ______ ______ N Z 列举法 描述法 (5)集合有三种表示法:________,________, Venn图法 ________.
第1讲 │ 问题思考
► 问题4 元素、集合的关系 (1)a {a}.( ) (2)∅∈{∅}.( ) (3){(1,2)}⊆ {1,2}.( )
第1讲 │ 问题思考
[答案] (1)错;(2)对;(3)错.
高考数学一轮复习 集合与常用逻辑用语单元讲评教案 文 新人教版

单元讲评教案一集合与常用逻辑用语一、试卷分析:本试卷考查的主要内容包括集合的运算、四种命题之间的关系、“且”与“或”等逻辑联结词.为了突出能力还考查了分类讨论思想.二、教学目标:1.掌握用描述法表示集合的定义.会由信息给予题解决简单的集合运算.2.掌握四种命题之间的内在联系.3.会用数形结合思想解决集合的运算.三、教学重点和难点:1.重点:集合之间的运算,逻辑联结词的运用.2.难点:分类讨论思想的应用.四、教学过程:课题引入:复习回顾本章的重要结论1.集合的描述法的一般形式是什么?2.含有逻辑联结词的命题的真、假性怎样判断?3.分类讨论应注意什么问题?五、典题讲解:类型一集合之间的运算例题1(以本卷中第4题为例)由M={x|x2-3x+2≤0}={x|1≤x≤2},N={x|2x-3<0}=,∴M∩∁U N={x|1≤x≤2}∩,故选A.反思:在处理集合之间的运算关系时,关键是解对不等式,然后准确画出数轴来求交或并集即可.在本试卷中,能体现这一思路的题,还有第1,3,15题.类型二逻辑联结词的应用例题2(以本卷中第9题为例)由a·b<0,知|a||b|cos<a,b><0知cos<a,b><0,故a与b的夹角为钝角或平角,故命题p为假命题;举反例函数f(x)=可知不满足f(x)在R上为增函数,故q为假命题.故命题p或q为假命题,p且q为假命题, p为真命题, q为真命题.反思:考查函数的奇偶性要严格按照函数定义求解.“p∧q”的判断依据是同真时为真,其余情况均为假,“p∨q”的判断依据是同假时为假,其余情况均为真.要想做对此题,必须准确判断出p,q两个命题的真假.此类型的题目本试卷中还有第16题.类型三充分、必要、充要条件的判断例题3(以本卷中第6题为例)解答过程见本试卷中第6题反思:解决本题的关键是搞清楚如果p⇒q,那么p是q的充分条件,q是p的必要条件.即观察一下前⇒后,若能行,则前是后的充分条件;若不行,则不是充分条件.然后,再由后⇒前,看看行不行,若行,则前是后的必要条件;若不行,则不是必要条件.因此,判断关系时,前、后两个方向都要判断一下.本试卷中,还有第10,21题.类型四数形结合、分类讨论思想的应用例题4(以本卷中第22(3)题为例)解答过程见本试卷中第22题反思:系数带有字母时,应分等于0或不等于0两种情况进行分类讨论.在进行本题运算时,还用到不等式的解法,有移项通分,化为整式后再解不等式.但是学生在处理本问题时,往往大意,考虑不全面,易犯错误,因此,平时教师要加强这一方面的训练.小结:1.研究一个集合,首先要看集合中的代表元素,然后再看元素的限制条件,当集合用描述法表示时,尤其要弄清元素的表示意义是什么.2.判断四种命题的关系时,首先要弄清命题的条件与结论,再判断每个命题的条件与结论之间的关系.3.复合命题是由简单命题与逻辑联结词构成的,简单命题的真假决定复合命题的真假,“且”与“或”的命题应记扎实.。
高三数学第一轮复习教案(第一章集合与简易逻辑7课时)

第一章 集合与简易逻辑第1课时 集合的概念一.课题:集合的概念二.教学目标:理解集合、子集的概念,能利用集合中元素的性质解决问题,掌握集合问题的常规处理方法.三.教学重点:集合中元素的3个性质,集合的3种表示方法,集合语言、集合思想的运用. 四.教学过程: (一)主要知识:1.集合、子集、空集的概念;2.集合中元素的3个性质,集合的3种表示方法;3.若有限集A 有n 个元素,则A 的子集有2n个,真子集有21n-,非空子集有21n-个,非空真子集有22n-个. (二)主要方法:1.解决集合问题,首先要弄清楚集合中的元素是什么; 2.弄清集合中元素的本质属性,能化简的要化简; 3.抓住集合中元素的3个性质,对互异性要注意检验;4.正确进行“集合语言”和普通“数学语言”的相互转化. (三)例题分析:例1.已知集合2{1}P y x ==+,2{|1}Q y y x ==+,2{|1}E x y x ==+,2{(,)|1}F x y y x ==+,{|1}G x x =≥,则( D )()A P F =()B Q E = ()C E F =()D Q G =解法要点:弄清集合中的元素是什么,能化简的集合要化简.例2.设集合{},,P x y x y xy =-+,{}2222,,0Q x y x y =+-,若P Q =,求,x y 的值及集合P 、Q .解:∵P Q =且0Q ∈,∴0P ∈.(1)若0x y +=或0x y -=,则220x y -=,从而{}22,0,0Q x y =+,与集合中元素的互异性矛盾,∴0x y +≠且0x y -≠; (2)若0xy =,则0x =或0y =.当0y =时,{},,0P x x =,与集合中元素的互异性矛盾,∴0y ≠; 当0x =时,{,,0}P y y =-,22{,,0}Q y y =-,由P Q =得220y y y y y -=⎧⎪=-⎨≠⎪⎩ ① 或220y y y y y -=-⎧⎪=⎨≠⎪⎩ ②由①得1y =-,由②得1y =,∴{01x y ==-或{01x y ==,此时{1,1,0}P Q ==-.例3.设集合1{|,}24k M x x k Z ==+∈, 1{|,}42k N x x k Z ==+∈,则( B )()A M N = ()B M N ⊂≠ ()C M N ⊇ ()D MN φ=解法一:通分; 解法二:从14开始,在数轴上表示. 例4.若集合{}2|10,A x x ax x R =++=∈,集合{}1,2B =,且A B ⊆,求实数a 的取值范围.解:(1)若A φ=,则240a ∆=-<,解得22a -<<;(2)若1A ∈,则2110a ++=,解得2a =-,此时{1}A =,适合题意; (3)若2A ∈,则22210a ++=,解得52a =-,此时5{2,}2A =,不合题意; 综上所述,实数m 的取值范围为[2,2)-.例5.设2()f x x px q =++,{|()}A x x f x ==,{|[()]}B x f f x x ==, (1)求证:A B ⊆;(2)如果{1,3}A =-,求B .解答见《高考A 计划(教师用书)》第5页.(四)巩固练习:1.已知2{|2530}M x x x =--=,{|1}N x mx ==,若N M ⊆,则适合条件的实数m 的集合P 为1{0,2,}3-;P 的子集有 8 个;P 的非空真子集有 6 个.2.已知:2()f x x ax b =++,{}{}|()22A x f x x ===,则实数a 、b 的值分别为2,4-. 3.调查100名携带药品出国的旅游者,其中75人带有感冒药,80人带有胃药,那么既带感冒药又带胃药的人数的最大值为 75 ,最小值为 55 . 4.设数集3{|}4M x m x m =≤≤+,1{|}3N x n x n =-≤≤,且M 、N 都是集合{|01}x x ≤≤的子集,如果把b a -叫做集合{}|x a x b ≤≤的“长度”,那么集合M N 的长度的最小值是112.五.课后作业:《高考A 计划》考点1,智能训练4,5,6,7,8,9,11,12.第2课时 集合的运算一.课题:集合的运算二.教学目标:理解交集、并集、全集、补集的概念,掌握集合的运算性质,能利用数轴或文氏图进行集合的运算,进一步掌握集合问题的常规处理方法.三.教学重点:交集、并集、补集的求法,集合语言、集合思想的运用. 四.教学过程: (一)主要知识:1.交集、并集、全集、补集的概念;2.AB A A B =⇔⊆,A B A A B =⇔⊇;3.()U U U C A C B C A B =,()U U U C A C B C A B =.(二)主要方法:1.求交集、并集、补集,要充分发挥数轴或文氏图的作用;2.含参数的问题,要有讨论的意识,分类讨论时要防止在空集上出问题; 3.集合的化简是实施运算的前提,等价转化常是顺利解题的关键.(三)例题分析:例1.设全集{}|010,U x x x N *=<<∈,若{}3AB =,{}1,5,7U AC B =,{}9U U C A C B =,则A ={}1,3,5,7,B ={}2,3,4,6,8. 解法要点:利用文氏图.例2.已知集合{}32|320A x x x x =++>,{}2|0B x x ax b =++≤,若{}|02A B x x =<≤,{}|2A B x x =>-,求实数a 、b 的值.解:由32320x x x ++>得(1)(2)0x x x ++>,∴21x -<<-或0x >,∴(2,1)(0,)A =--+∞,又∵{}|02A B x x =<≤,且{}|2A B x x =>-,∴[1,2]B =-,∴1-和2是方程20x ax b ++=的根, 由韦达定理得:{1212a b -+=--⨯=,∴{12a b =-=-. 说明:区间的交、并、补问题,要重视数轴的运用.例3.已知集合{(,)|20}A x y x y =-=,1{(,)|0}2y B x y x -==-,则A B =φ; A B ={(,)|(2)(1)0}x y x y y --=;(参见《高考A 计划》考点2“智能训练”第6题).解法要点:作图.注意:化简{(,)|1,2}B x y y x ==≠,(2,1)A ∈.例4.(《高考A 计划》考点2“智能训练”第15题)已知集合222{|(1)(1)0}A y y a a y a a =-++++>,215{|,03}22B y y x x x ==-+≤≤,若A B φ=,求实数a 的取值范围. 解答见教师用书第9页.例5.(《高考A 计划》考点2“智能训练”第16题)已知集合{}2(,)|20,A x y x mx y x R =+-+=∈,{}(,)|10,02B x y x y x =-+=≤≤,若A B φ≠,求实数m 的取值范围.分析:本题的几何背景是:抛物线22y x mx =++与线段1(02)y x x =+≤≤有公共点,求实数m 的取值范围.解法一:由{22010x mx y x y +-+=-+=得2(1)10x m x +-+= ①∵A B φ≠,∴方程①在区间[0,2]上至少有一个实数解,首先,由2(1)40m ∆=--≥,解得:3m ≥或1m ≤-. 设方程①的两个根为1x 、2x ,(1)当3m ≥时,由12(1)0x x m +=--<及121x x ⋅=知1x 、2x 都是负数,不合题意; (2)当1m ≤-时,由12(1)0x x m +=-->及1210x x ⋅=>知1x 、2x 是互为倒数的两个正数, 故1x 、2x 必有一个在区间[0,1]内,从而知方程①在区间[0,2]上至少有一个实数解, 综上所述,实数m 的取值范围为(,1]-∞-.解法二:问题等价于方程组{221y x mx y x =++=+在[0,2]上有解,即2(1)10x m x +-+=在[0,2]上有解,令2()(1)1f x x m x =+-+,则由(0)1f =知抛物线()y f x =过点(0,1),∴抛物线()y f x =在[0,2]上与x 轴有交点等价于2(2)22(1)10f m =+-+≤ ①或22(1)401022(2)22(1)10m mf m ∆=--≥⎧-⎪<<⎨⎪=+-+>⎩ ② 由①得32m ≤-,由②得312m -<≤,∴实数m 的取值范围为(,1]-∞-.(四)巩固练习:1.设全集为U ,在下列条件中,是B A ⊆的充要条件的有 ( D )①A B A =,②U C A B φ=,③U U C A C B ⊆,④U A C B U =,()A 1个 ()B 2个 ()C 3个 ()D 4个2.集合{(,)|||}A x y y a x ==,{(,)|}B x y y x a ==+,若A B 为单元素集,实数a 的取值范围为[1,1]- .五.课后作业:《高考A 计划》考点2,智能训练3,7, 10,11,12,13.第3课时 含绝对值的不等式的解法一.课题:含绝对值的不等式的解法二.教学目标:掌握一些简单的含绝对值的不等式的解法.三.教学重点:解含绝对值不等式的基本思想是去掉绝对值符号,将其等价转化为一元一次(二次)不等式(组),难点是含绝对值不等式与其它内容的综合问题及求解过程中,集合间的交、并等各种运算.四.教学过程: (一)主要知识:1.绝对值的几何意义:||x 是指数轴上点x 到原点的距离;12||x x -是指数轴上12,x x 两点间的距离2.当0c >时,||ax b c ax b c +>⇔+>或ax b c +<-,||ax b c c ax b c +<⇔-<+<; 当0c <时,||ax b c x R +>⇔∈,||ax b c x φ+<⇔∈. (二)主要方法:1.解含绝对值的不等式的基本思想是去掉绝对值符号,将其等价转化为一元一次(二次)不等式(组)进行求解;2.去掉绝对值的主要方法有:(1)公式法:|| (0)x a a a x a <>⇔-<<,|| (0)x a a x a >>⇔>或x a <-. (2)定义法:零点分段法;(3)平方法:不等式两边都是非负时,两边同时平方.(三)例题分析:例1.解下列不等式: (1)4|23|7x <-≤;(2)|2||1|x x -<+;(3)|21||2|4x x ++->. 解:(1)原不等式可化为4237x <-≤或7234x -≤-<-,∴原不等式解集为17[2,)(,5]22--. (2)原不等式可化为22(2)(1)x x -<+,即12x >,∴原不等式解集为1[,)2+∞. (3)当12x ≤-时,原不等式可化为2124x x --+->,∴1x <-,此时1x <-; 当122x -<<时,原不等式可化为2124x x ++->,∴1x >,此时12x <<; 当2x ≥时,原不等式可化为2124x x ++->,∴53x >,此时2x ≥.综上可得:原不等式的解集为(,1)(1,)-∞-+∞.例2.(1)对任意实数x ,|1||2|x x a ++->恒成立,则a 的取值范围是(,3)-∞; (2)对任意实数x ,|1||3|x x a --+<恒成立,则a 的取值范围是(4,)+∞.解:(1)可由绝对值的几何意义或|1||2|y x x =++-的图象或者绝对值不等式的性质|1||2||1||2||12|x x x x x x ++-=++-≥++-=得|1||2|3x x ++-≥,∴3a <; (2)与(1)同理可得|1||3|4x x --+≤,∴4a >.例3.(《高考A 计划》考点3“智能训练第13题”)设0,0a b >>,解关于x 的不等式:|2|ax bx -≥.解:原不等式可化为2ax bx -≥或2ax bx -≤-,即()2a bx -≥①或2()2a b x x a b+≤⇒≤+②, 当0a b >>时,由①得2x a b ≥-,∴此时,原不等式解为:2x a b ≥-或2x a b≤+; 当0a b =>时,由①得x φ∈,∴此时,原不等式解为:2x a b≤+;当0a b <<时,由①得2x a b ≤-,∴此时,原不等式解为:2x a b≤+.综上可得,当0a b >>时,原不等式解集为22(,][,)a b a b-∞+∞+-,当0a b <≤时,原不等式解集为2(,]a b-∞+. 例4.已知{||23|}A x x a =-<,{|||10}B x x =≤,且A B ⊂≠,求实数a 的取值范围. 解:当0a ≤时,A φ=,此时满足题意;当0a >时,33|23|22a ax a x -+-<⇒<<,∵A B ⊂≠, ∴3102173102aa a -⎧≥-⎪⎪⇒≤⎨+⎪≤⎪⎩, 综上可得,a 的取值范围为(,17]-∞.例5.(《高考A 计划》考点3“智能训练第15题”)在一条公路上,每隔100km 有个仓库(如下图),共有5个仓库.一号仓库存有10t 货物,二号仓库存20t ,五号仓库存40t ,其余两个仓库是空的.现在想把所有的货物放在一个仓库里,如果每吨货物运输1km 需要0.5元运输费,那么最少要多少运费才行?解:以一号仓库为原点建立坐标轴,则五个点坐标分别为12345:0,:100,:200,:300,:400A A A A A , 设货物集中于点:B x ,则所花的运费5||10|100|20|200|y x x x =+-+-, 当0100x ≤≤时,259000y x =-+,此时,当100x =时,min 6500y =; 当100400x <<时,57000y x =-+,此时,50006500y <<; 当400x ≥时,359000y x =-,此时,当400x =时,min 5000y =.综上可得,当400x =时,min 5000y =,即将货物都运到五号仓库时,花费最少,为5000元.(四)巩固练习:1.||11x x x x >++的解集是(1,0)-;|23|3x x ->的解集是3(,)5-∞; 2.不等式||1||||a b a b +≥-成立的充要条件是||||a b >; 3.若关于x 的不等式|4||3|x x a -++<的解集不是空集,则a ∈(7,)+∞;4.不等式22|2log |2|log |x x x x -<+成立,则x ∈(1,)+∞ .五.课后作业:《高考A 计划》考点3,智能训练4,5,6,8,12,14.第4课时 一元二次不等式的解法一.课题:一元二次不等式的解法二.教学目标:掌握一元二次不等式的解法,能应用一元二次不等式、对应方程、函数三者之间的关系解决综合问题,会解简单的分式不等式及高次不等式.三.教学重点:利用二次函数图象研究对应不等式解集的方法. 四.教学过程:(一)主要知识:1.一元二次不等式、对应方程、函数之间的关系;2.分式不等式要注意大于等于或小于等于的情况中,分母要不为零; 3.高次不等式要注重对重因式的处理. (二)主要方法:1.解一元二次不等式通常先将不等式化为20ax bx c ++>或20 (0)ax bx c a ++<>的形式,然后求出对应方程的根(若有根的话),再写出不等式的解:大于0时两根之外,小于0时两根之间; 2.分式不等式主要是转化为等价的一元一次、一元二次或者高次不等式来处理; 3.高次不等式主要利用“序轴标根法”解. (三)例题分析:例1.解下列不等式:(1)260x x --<;(2)23100x x -++<;(3)(1)(2)0(2)(1)x x x x x +-≥+-.解:(1)23x -<<;(2) 5 2x or x ><-; (3)原不等式可化为(1)(2)(2)(1)02 1 0 1 2(2)(1)0x x x x x x or x or x x x +-+-≥⎧⇒-<≤-≤<≥⎨+-≠⎩.例2.已知2{|320}A x x x =-+≤,2{|(1)0}B x x a x a =-++≤, (1)若A B ⊂≠,求a 的取值范围; (2)若B A ⊆,求a 的取值范围. 解:{|12}A x x =≤≤,当1a >时,{|1}B x x a =≤≤;当1a =时,{1}B =;当1a <时,{|1}B x a x =≤≤. (1)若A B ⊂≠,则122a a a >⎧⇒>⎨>⎩;(2)若B A ⊆,当1a =时,满足题意;当1a >时,2a ≤,此时12a <≤;当1a <时,不合题意. 所以,a 的取值范围为[1,2).例3.已知2()2(2)4f x x a x =+-+,(1)如果对一切x R ∈,()0f x >恒成立,求实数a 的取值范围; (2)如果对[3,1]x ∈-,()0f x >恒成立,求实数a 的取值范围. 解:(1)24(2)16004a a ∆=--<⇒<<;(2)(2)3(3)0a f --<-⎧⎨->⎩或3(2)10a -≤--≤⎧⎨∆<⎩或(2)1(1)0a f -->⎧⎨>⎩,解得a φ∈或14a ≤<或112a -<<,∴a 的取值范围为1(,4)2-.例4.已知不等式20ax bx c ++>的解集为{|24}x x <<,则不等式20cx bx a ++<的解集为 .解法一:∵(2)(4)0x x --<即2680x x -+->的解集为11{| }24x x or x ><,∴不妨假设1,6,8a b c =-==-,则20c x b x a ++<即为28610x x -+-<,解得11{|}42x x <<.解法二:由题意:00364188a cb b ac c a a c ⎧⎧<<⎪⎪⎪⎪⎪⎪-=⇒-=⎨⎨⎪⎪⎪⎪==⎪⎪⎩⎩,∴20cx bx a ++<可化为20b a x x c c ++>即231048x x -+>,解得11{| }24x x or x ><.例5.(《高考A 计划》考点4“智能训练第16题”)已知二次函数2()f x ax bx c =++的图象过点(1,0)-,问是否存在常数,,a b c ,使不等式21()(1)2x f x x ≤≤+对一切x R ∈都成立? 解:假设存在常数,,a b c 满足题意,∵()f x 的图象过点(1,0)-,∴(1)0f a b c -=-+= ①又∵不等式21()(1)2x f x x ≤≤+对一切x R ∈都成立, ∴当1x =时,211(1)(11)2f ≤≤+,即11a b c ≤++≤,∴1a b c ++= ②由①②可得:11,22a c b +==,∴211()()22f x ax x a =++-,由21()(1)2x f x x ≤≤+对一切x R ∈都成立得:22111()(1)222x ax x a x ≤++-≤+恒成立,∴2211()022(21)20ax x a a x x a ⎧-+-≥⎪⎨⎪-+-≤⎩的解集为R , ∴0114()042a a a >⎧⎪⎨--≤⎪⎩且21018(21)0a a a -<⎧⎨+-≤⎩,即20(14)0a a >⎧⎨-≤⎩且212(14)0a a ⎧<⎪⎨⎪-≤⎩, ∴14a =,∴14c =,∴存在常数111,,424a b c ===使不等式21()(1)2x f x x ≤≤+对一切x R ∈都成立.(四)巩固练习:1.若不等式2(2)2(2)40a x a x -+--<对一切x R ∈成立,则a 的取值范围是(2,2]-. 2.若关于x 的方程2210x ax a ++-=有一正根和一负根,则a ∈(1,1)-.3.关于x 的方程2(3)3m x m x -+=的解为不大于2的实数,则m 的取值范围为3(,](0,1)(1,)2-∞-+∞.4.不等式2(1)(2)0(4)x x x x +-≥+的解集为(,4)(0,2] 1or x -∞-=-.五.课后作业:《高考A 计划》考点4,智能训练3,4,5,9,13,14,15.第5课时 简易逻辑一.课题:简易逻辑二.教学目标:了解命题的概念和命题的构成;理解逻辑联结词“或”“且”“非”的含义;理解四种命题及其互相关系;反证法在证明过程中的应用.三.教学重点:复合命题的构成及其真假的判断,四种命题的关系. 四.教学过程: (一)主要知识: 1.理解由“或”“且”“非”将简单命题构成的复合命题; 2.由真值表判断复合命题的真假; 3.四种命题间的关系. (二)主要方法:1.逻辑联结词“或”“且”“非”与集合中的并集、交集、补集有着密切的关系,解题时注意类比; 2.通常复合命题“p 或q ”的否定为“p ⌝且q ⌝”、“p 且q ”的否定为“p ⌝或q ⌝”、“全为”的否定是“不全为”、“都是”的否定为“不都是”等等;3.有时一个命题的叙述方式比较的简略,此时应先分清条件和结论,该写成“若p ,则q ”的形式; 4.反证法中出现怎样的矛盾,要在解题的过程中随时审视推出的结论是否与题设、定义、定理、公理、公式、法则等矛盾,甚至自相矛盾. (三)例题分析:例1.指出下列命题的构成形式及构成它的简单命题,并判断复合命题的真假: (1)菱形对角线相互垂直平分. (2)“23≤”解:(1)这个命题是“p 且q ”形式,:p 菱形的对角线相互垂直;:q 菱形的对角线相互平分, ∵p 为真命题,q 也是真命题 ∴p 且q 为真命题. (2)这个命题是“p 或q ”形式,:p 23<;:q 23=, ∵p 为真命题,q 是假命题 ∴p 或q 为真命题.注:判断复合命题的真假首先应看清该复合命题的构成形式,然后判断构成它的简单命题的真假,再由真值表判断复合命题的真假.例2.分别写出命题“若220x y +=,则,x y 全为零”的逆命题、否命题和逆否命题. 解:否命题为:若220x y +≠,则,x y 不全为零逆命题:若,x y 全为零,则220x y +=逆否命题:若,x y 不全为零,则220x y +≠ 注:写四种命题时应先分清题设和结论.例3.命题“若0m >,则20x x m +-=有实根”的逆否命题是真命题吗?证明你的结论. 解:方法一:原命题是真命题, ∵0m >,∴140m ∆=+>,因而方程20x x m +-=有实根,故原命题“若0m >,则20x x m +-=有实根”是真命题; 又因原命题与它的逆否命题是等价的,故命题“若0m >,则20x x m +-=有实根”的逆否命题是真命题.方法二:原命题“若0m >,则20x x m +-=有实根”的逆否命题是“若20x x m +-=无实根,则0m ≤”.∵20x x m +-=无实根∴140m ∆=+<即104m <-≤,故原命题的逆否命题是真命题. 例4.(考点6智能训练14题)已知命题p :方程210x mx ++=有两个不相等的实负根,命题q :方程244(2)10x m x +-+=无实根;若p 或q 为真,p 且q 为假,求实数m 的取值范围. 分析:先分别求满足条件p 和q 的m 的取值范围,再利用复合命题的真假进行转化与讨论.解:由命题p 可以得到:240m m ⎧∆=->⎨>⎩ ∴2m >由命题q 可以得到:2[4(2)]160m ∆=--< ∴26m -<<∵p 或q 为真,p 且q 为假 ∴,p q 有且仅有一个为真当p 为真,q 为假时,262,6m m m orm >⎧⇒≥⎨≤-≥⎩当p 为假,q 为真时,22226m m m ≤⎧⇒-<≤⎨-<<⎩所以,m 的取值范围为{|6m m ≥或22}m -<≤.例5.(《高考A 计划》考点5智能训练第14题)已知函数()f x 对其定义域内的任意两个数,a b ,当a b <时,都有()()f a f b <,证明:()0f x =至多有一个实根. 解:假设()0f x =至少有两个不同的实数根12,x x ,不妨假设12x x <, 由方程的定义可知:12()0,()0f x f x == 即12()()f x f x =①由已知12x x <时,有12()()f x f x <这与式①矛盾 因此假设不能成立 故原命题成立.注:反证法时对结论进行的否定要正确,注意区别命题的否定与否命题.例6.(《高考A 计划》考点5智能训练第5题)用反证法证明命题:若整数系数一元二次方程:20(0)ax bx c a ++=≠有有理根,那么,,a b c 中至少有一个是偶数,下列假设中正确的是( ) A.假设,,a b c 都是偶数 B.假设,,a b c 都不是偶数 C.假设,,a b c 至多有一个是偶数 D.假设,,a b c 至多有两个是偶数(四)巩固练习:1.命题“若p 不正确,则q 不正确”的逆命题的等价命题是 ( ) A .若q 不正确,则p 不正确 B. 若q 不正确,则p 正确 C. 若p 正确,则q 不正确 D. 若p 正确,则q 正确2.“若240b ac -<,则20ax bx c ++=没有实根”,其否命题是 ( )A. 若240b ac ->,则20ax bx c ++=没有实根 B. 若240b ac ->,则20ax bx c ++=有实根C. 若240b ac -≥,则20ax bx c ++=有实根 D. 若240b ac -≥,则20ax bx c ++=没有实根五.课后作业:《高考A 计划》考点5,智能训练3,4,8,13,15,16.第6课时 充要条件一.课题:充要条件二.教学目标:掌握充分必要条件的意义,能够判定给定的两个命题的充要关系.三.教学重点:充要条件关系的判定.四.教学过程:(一)主要知识:1.充要条件的概念及关系的判定;2.充要条件关系的证明.(二)主要方法:1.判断充要关系的关键是分清条件和结论;2.判断p q ⇒是否正确的本质是判断命题“若p ,则q ”的真假;3.判断充要条件关系的三种方法:①定义法;②利用原命题和逆否命题的等价性;③用数形结合法(或图解法).4.说明不充分或不必要时,常构造反例.(三)例题分析:例1.指出下列各组命题中,p 是q 的什么条件(在“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”中选一种作答)(1)在ABC ∆中,:p A B >,:sin sin q A B >(2)对于实数,x y ,:8p x y +≠,:2q x ≠或6y ≠(3)在ABC ∆中,:sin sin p A B >,:tan tan q A B >(4)已知,x y R ∈,22:(1)(2)0p x y -+-=,:(1)(2)0q x y --=解:(1)在ABC ∆中,有正弦定理知道:sin sin a b A B= ∴sin sin A B a b >⇔> 又由a b A B >⇔>所以,sin sin A B A B >⇔> 即p 是q 的的充要条件.(2)因为命题“若2x =且6y =,则8x y +=”是真命题,故p q ⇒,命题“若8x y +=,则2x =且6y =”是假命题,故q 不能推出p ,所以p 是q 的充分不必要条件. (3)取120,30A B ==,p 不能推导出q ;取30,120A B ==,q 不能推导出p所以,p 是q 的既不充分也不必要条件.(4)因为{(1,2)}P =,{(,)|1Q x y x ==或2}y =,P Q ≠⊂, 所以,p 是q 的充分非必要条件.例2.设,x y R ∈,则222x y +<是||||x y +≤ )、是||||2x y +<的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 解:由图形可以知道选择B ,D .(图略)例3.若命题甲是命题乙的充分非必要条件,命题丙是命题乙的必要非充分条件,命题丁是命题丙的充要条件,则命题丁是命题甲的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 解:因为甲是乙的充分非必要条件,故甲能推出乙,乙不能推出甲,因为丙是乙的必要非充分条件,故乙能推出丙,丙不能推出乙,因为丁是丙的充要条件,故丁能推出丙,丙也能推出丁,由此可知,甲能推出丁,丁不能推出甲即丁是甲的必要不充分条件,选B .例4.设,x y R ∈,求证:||||||x y x y +=+成立的充要条件是0xy ≥.证明:充分性:如果0xy =,那么,①0,0x y =≠②0,0x y ≠= ③0,0x y ==于是||||||x y x y +=+ 如果0xy >即0,0x y >>或0,0x y <<,当0,0x y >>时,||||||x y x y x y +=+=+,当0,0x y <<时,||()()||||x y x y x y x y +=--=-+-=+,总之,当0xy ≥时,||||||x y x y +=+.必要性:由||||||x y x y +=+及,x y R ∈得22()(||||)x y x y +=+即222222||x xy y x xy y ++=++得||xy xy =所以0xy ≥故必要性成立,综上,原命题成立.例5.已知数列{}n a 的通项1113423n a n n n =++++++,为了使不等式22(1)11log (1)log 20n t t a t t ->--对任意*n N ∈恒成立的充要条件.解:∵11111111()()02425324262526n n a a n n n n n n n +-=+-=-+->+++++++, 则1221n n n a a a a a -->>>>>, 欲使得题设中的不等式对任意*n N ∈恒成立,只须{}n a 的最小项221(1)11log (1)log 20t t a t t ->--即可, 又因为11194520a =+=, 即只须11t -≠且22911log (1)log (1)02020t t t t ----<, 解得1log (1)(1)t t t t -<-<>,即101(2)t t t t<<-<≠,解得实数t 应满足的关系为t >2t ≠. 例6.(1)是否存在实数m ,使得20x m +<是2230x x -->的充分条件? (2)是否存在实数m ,使得20x m +<是2230x x -->的必要条件?解:欲使得20x m +<是2230x x -->的充分条件,则只要{|}{|12m x x x x <-⊆<-或3}x >,则只要12m -≤-即2m ≥, 故存在实数2m ≥时,使20x m +<是2230x x -->的充分条件. (2)欲使20x m +<是2230x x -->的必要条件,则只要{|}{|12m x x x x <-⊇<-或3}x >,则这是不可能的,故不存在实数m 时,使20x m +<是2230x x -->的必要条件.(四)巩固练习:1.若非空集合M N ≠⊂,则“a M ∈或a N ∈”是“a M N ∈”的 条件. 2.05x <<是|2|3x -<的 条件.3.直线,a b 和平面,αβ,//a b 的一个充分条件是( )A.//,//a b ααB.//,//,//a b αβαβC. ,,//a b αβαβ⊥⊥D. ,,a b αβαβ⊥⊥⊥五.课后作业:《高考A 计划》考点6,智能训练2,7,8,15,16.。
高考一轮复习教案数学(理)新课标 第一篇 集合与常用逻辑用语 1 集合的概念与运算

第1讲集合的概念与运算【2013年高考会这样考】1.考查集合中元素的互异性.2.求几个集合的交、并、补集.3.通过给的新材料考查阅读理解能力和创新解题的能力.【复习指导】1.主要掌握集合的含义、集合间的关系、集合的基本运算,立足基础,抓好双基.2.练习题的难度多数控制在低中档即可,适当增加一些情境新颖的实际应用问题或新定义题目,但数量不宜过多.基础梳理1.集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法、区间法.(4)常用数集:自然数集N;正整数集N*(或N+);整数集Z;有理数集Q;实数集R.(5)集合的分类:按集合中元素个数划分,集合可以分为有限集、无限集、空集.2.集合间的基本关系(1)子集:对任意的x∈A,都有x∈B,则A⊆B(或B⊇A).(2)真子集:若A⊆B,且A≠B,则A B(或B A).(3)空集:空集是任意一个集合的子集,是任何非空集合的真子集.即∅⊆A,∅B(B≠∅).(4)若A含有n个元素,则A的子集有2n个,A的非空子集有2n-1个.(5)集合相等:若A⊆B,且B⊆A,则A=B.3.集合的基本运算(1)并集:A∪B={x|x∈A,或x∈B}.(2)交集:A∩B={x|x∈A,且x∈B}.(3)补集:∁U A={x|x∈U,且x∉A}.(4)集合的运算性质①A∪B=A⇔B⊆A,A∩B=A⇔A⊆B;②A∩A=A,A∩∅=∅;③A∪A=A,A∪∅=A;④A∩∁U A=∅,A∪∁U A=U,∁U(∁U A)=A.一个性质要注意应用A⊆B、A∩B=A、A∪B=B、∁U A⊇∁U B、A∩(∁U B)=∅这五个关系式的等价性.两种方法韦恩图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法要特别注意端点是实心还是空心.三个防范(1)空集在解题时有特殊地位,它是任何集合的子集,是任何非空集合的真子集,时刻关注对空集的讨论,防止漏解.(2)认清集合元素的属性(是点集、数集或其他情形).(3)在解决含参数的集合问题时,要检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致结论错误.双基自测1.(人教A版教材习题改编)设集合A={x|2≤x<4},B={x|3x-7≥8-2x},则A∪B等于().A.{x|3≤x<4} B.{x|x≥3}C.{x|x>2} D.{x|x≥2}解析B={x|3x-7≥8-2x}={x|x≥3},∴结合数轴得:A∪B={x|x≥2}.答案 D2.(2011·浙江)若P ={x |x <1},Q ={x |x >-1},则( ).A .P ⊆QB .Q ⊆PC .∁R P ⊆QD .Q ⊆∁R P解析 ∵∁R P ={x |x ≥1}∴∁R P ⊆Q .答案 C3.(2011·福建)i 是虚数单位,若集合S ={-1,0,1},则( ).A .i ∈SB .i 2∈SC .i 3∈S D.2i ∈S解析 ∵i 2=-1,∴-1∈S ,故选B.答案 B4.(2011·北京)已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则a 的取值范围是( ).A .(-∞,-1]B. [1,+∞) C .[-1,1] D .(-∞,-1]∪[1,+∞)解析 因为P ∪M =P ,所以M ⊆P ,即a ∈P ,得a 2≤1,解得-1≤a ≤1,所以a 的取值范围是[-1,1].答案 C5.(人教A 版教材习题改编)已知集合A ={1,3,m },B ={3,4},A ∪B ={1,2,3,4},则m =________.解析 A ∪B ={1,3,m }∪{3,4}={1,2,3,4},∴2∈{1,3,m },∴m =2.答案 2考向一 集合的概念【例1】►已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________.[审题视点] 分m +2=3或2m 2+m =3两种情况讨论.解析 因为3∈A ,所以m +2=3或2m 2+m =3.当m +2=3,即m =1时,2m 2+m =3,此时集合A 中有重复元素3,所以m =1不合乎题意,舍去;当2m 2+m =3时,解得m =-32或m =1(舍去),此时当m =-32时,m +2=12≠3合乎题意.所以m =-32.答案 -32集合中元素的互异性,一可以作为解题的依据和突破口;二可以检验所求结果是否正确.【训练1】 设集合A ={-1,1,3},B ={a +2,a 2+2},A ∩B ={3},则实数a 的值为________.解析 若a +2=3,a =1,检验此时A ={-1,1,3},B ={3,5},A ∩B ={3},满足题意.若a 2+2=3,则a =±1.当a =-1时,B ={1,3}此时A ∩B ={1,3}不合题意,故a =1.答案 1考向二 集合的基本运算【例2】►(2011·天津)已知集合A ={x ∈R ||x +3|+|x -4|≤9},B =⎩⎨⎧⎭⎬⎫x ∈R |x =4t +1t -6,t ∈(0,+∞),则集合A ∩B =________.[审题视点] 先化简集合A ,B ,再求A ∩B .解析 不等式|x +3|+|x -4|≤9等价于⎩⎨⎧ x ≥4,x +3+x -4≤9或⎩⎨⎧ -3<x <4,x +3+4-x ≤9或⎩⎨⎧ x ≤-3,-x -3+4-x ≤9,解不等式组得A =[-4,5],又由基本不等式得B =[-2,+∞),所以A ∩B =[-2,5].答案 {x |-2≤x ≤5}集合运算时首先是等价转换集合的表示方法或化简集合,然后用数轴图示法求解.【训练2】 (2011·江西)若集合A ={x |-1≤2x +1≤3},B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x -2x ≤0,则A ∩B =( ).A .{x |-1≤x <0}B .{x |0<x ≤1}C .{x |0≤x ≤2}D .{x |0≤x ≤1}解析 ∵A ={x |-1≤x ≤1},B ={x |0<x ≤2},∴A ∩B ={x |0<x ≤1}.答案 B考向三 集合间的基本关系【例3】►已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,求实数m 的取值范围.[审题视点] 若B ⊆A ,则B =∅或B ≠∅,故分两种情况讨论.解 当B =∅时,有m +1≥2m -1,得m ≤2,当B ≠∅时,有⎩⎨⎧ m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上:m ≤4.已知两集合的关系求参数时,关键是将两集合的关系转化为元素间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、Venn 图帮助分析,而且经常要对参数进行讨论.【训练3】 (2011·江苏)设集合A =⎩⎪⎨⎪⎧ (x ,y )⎪⎪⎪ m 2≤(x -2)2+y 2≤m 2,⎭⎪⎬⎪⎫x ,y ∈R ,B ={(x ,y )|2m ≤x +y ≤2m +1,x ,y ∈R }.若A ∩B ≠∅,则实数m 的取值范围是________.解析 ①若m <0,则符合题的条件是:直线x +y =2m +1与圆(x -2)2+y 2=m 2有交点,从而|2-2m -1|2≤|m |,解得2-22≤m ≤2+22,与m <0矛盾; ②若m =0,代入验证,可知不符合题意;③若m >0,则当m 2≤m 2,即m ≥12时,集合A 表示一个环形区域,集合B 表示一个带形区域,从而当直线x +y =2m +1与x +y =2m 中至少有一条与圆(x -2)2+y 2=m 2有交点,即符合题意,从而有|2-2m |2≤|m |或|2-2m -1|2≤|m |,解得2-22≤m ≤2+2,由于12>2-22,所以12≤m ≤2+ 2.综上所述,m 的取值范围是12≤m ≤2+ 2. 答案 ⎣⎢⎡⎦⎥⎤12,2+2难点突破1——集合问题的命题及求解策略在新课标高考中,可以看出,集合成为高考的必考内容之一,考查的形式是一道选择题或填空题,考查的分值约占5分,难度不大.纵观近两年新课标高考,集合考题考查的主要特点是:一是注重基础知识的考查,如2011年安徽高考的第8题;二是与函数、方程、不等式、三角等知识相结合,在知识的交汇点处命题,如2011年山东高考的第1题,与不等式相结合;三是在集合的定义运算方面进行了新的命题,如2011年浙江高考的第10题.一、集合与排列组合【示例】► (2011·安徽)设集合A ={1,2,3,4,5,6},B ={4,5,6,7,8},则满足S ⊆A 且S ∩B ≠∅的集合S 的个数是( ).A .57B .56C .49D .8二、集合与不等式的解题策略【示例】► (2011·山东)设集合M ={x |x 2+x -6<0},N ={x |1≤x ≤3},则M ∩N 等于( ).A.[1,2) B.[1,2] C.(2,3] D.[2,3]三、集合问题中的创新问题【示例】►(2011·浙江)设a,b,c为实数,f(x)=(x+a)(x2+bx+c),g(x)=(ax+1)(cx2+bx+1).记集合S={x|f(x)=0,x∈R},T={x|g(x)=0,x∈R}.若|S|,|T|分别为集合S,T的元素个数,则下列结论不可能的是().A.|S|=1且|T|=0 B.|S|=1且|T|=1C.|S|=2且|T|=2 D.|S|=2且|T|=3。
高考数学第一轮复习精品教案:第一章 集合与常用逻辑用语
精品教案――集合与简易逻辑一、本章知识结构:二、考点回顾1、集合的含义及其表示法,子集,全集与补集,子集与并集的定义;2、集合与其它知识的联系,如一元二次不等式、函数的定义域、值域等;3、逻辑联结词的含义,四种命题之间的转化,了解反证法;4、含全称量词与存在量词的命题的转化,并会判断真假,能写出一个命题的否定;5、充分条件,必要条件及充要条件的意义,能判断两个命题的充要关系;6、学会用定义解题,理解数形结合,分类讨论及等价变换等思想方法。
三、经典例题剖析考点1、集合的概念1、集合的概念:(1)集合中元素特征,确定性,互异性,无序性;(2)集合的分类:①按元素个数分:有限集,无限集;②按元素特征分;数集,点集。
如数集{y|y=x 2},表示非负实数集,点集{(x ,y)|y=x 2}表示开口向上,以y 轴为对称轴的抛物线;(3)集合的表示法:①列举法:用来表示有限集或具有显著规律的无限集,如N +={0,1,2,3,…};②描述法。
2、两类关系:(1)元素与集合的关系,用∈或∉表示;(2)集合与集合的关系,用⊆,≠⊂,=表示,当A ⊆B 时,称A 是B 的子集;当A ≠⊂B 时,称A 是B 的真子集。
3、解答集合问题,首先要正确理解集合有关概念,特别是集合中元素的三要素;对于用描述法给出的集合{x |x ∈P },要紧紧抓住竖线前面的代表元素x 以及它所具有的性质P ;要重视发挥图示法的作用,通过数形结合直观地解决问题4、注意空集∅的特殊性,在解题中,若未能指明集合非空时,要考虑到空集的可能性,如A ⊆B ,则有A =∅或A ≠∅两种可能,此时应分类讨论例1、下面四个命题正确的是(A )10以内的质数集合是{1,3,5,7} (B )方程x 2-4x +4=0的解集是{2,2}(C )0与{0}表示同一个集合 (D )由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}解:选(D ),最小的质数是2,不是1,故(A )错;由集合的定义可知(B )(C )都错。
高考第一轮复习集合与常用逻辑用语
年级高三学科数学版本通用版课程标题高考第一轮复习——集合与常用逻辑用语编稿老师孙丕训一校林卉二校黄楠审核王百玲一、考点突破考纲解读:1. 集合的概念、集合间的关系及运算是高考重点考查的内容,正确理解概念是解决此类问题的关键。
2.对命题及充要条件这部分内容,重点关注两个方面内容:一是命题的四种形式及原命题与逆否命题的等价;二是充要条件的判定。
这些内容大多是以其他数学知识为载体,具有较强的综合性。
3. 常用逻辑用语高考以考查四种命题、逻辑联结词和全称命题、特称命题的否定为主。
命题预测:1. 根据考试大纲的要求,结合近几年高考的命题情况,可以预测集合这部分内容在选择、填空和解答题中都有可能涉及.高考命题热点有以下两个方面:一是对集合的运算、集合的有关陈述语和符号、集合的简单应用等作基础性的考查,题型常以选择、填空题的形式出现;二是以函数、方程、三角、不等式等知识为载体,以集合的语言和符号为表现形式,结合简易逻辑知识考查学生的数学思想、数学方法和数学能力,题型常以解答题的形式出现. 2. 作为高中数学的基础知识,命题、量词与逻辑联结词、四种命题及充要条件是每年高考的必考内容,题量一般为1~2道,多以选择题或填空题的形式出现,难度不大,重点考查命题真假的判断,全称命题与特称命题的否定, 与函数、直线与平面、圆锥曲线等知识联系很紧密,要求考生理解命题的四种形式、充分条件、必要条件、充要条件的意义,能够判断给定的两个命题的逻辑关系.题目内容和思想方法涉及或渗透到高中数学的各个章节,有一定的综合性.二、重难点提示重点:理解集合的表示,能准确进行集合间的交、并、补的运算;正确地对含有一个量词的命题进行否定。
难点:集合的表示及充分必要条件的判定。
一、知识脉络图二、知识点拨1. 集合与元素(1)集合元素具有三个特征:、、。
(2)元素与集合的关系是属于或不属于的关系,用符号∈或∉表示。
(3)集合的表示法:、、、。
(4)常用数集:自然数集N;正整数集N*(或N+);整数集Z;有理数集Q;实数集R;复数集C。
《创新设计·高考一轮总复习》数学 第一篇 集合与常用逻辑用语 第2讲
D.既不充分也不必要条件
抓住2个考点
突破3个考向
揭秘3年高考
解析
a1<a1q, (1) 2 a q < a q 1 1 ,
当a1>0时,q>1,数列{an}是递
增数列;当a1<0时,0<q<1,数列{an}也是递增数 列.反之,显然成立.
π π (2)当x=2kπ+4(k∈Z)时,tan x=tan2kπ+4=1;反之,
答案 ②③
抓住2个考点
突破3个考向
揭秘3年高考
考向一 四种命题的关系及真假判断 【例1】►(2012·宁波模拟)下列有关命题的说法正确的是
(
≠0”
).
A .命题“若 xy = 0 ,则 x = 0” 的否命题为“若 xy = 0 ,则 x B.“若x+y=0,则x,y互为相反数”的逆命题为真命题 C .命题“ ∃ x∈R ,使得 2x2 - 1<0” 的否定是“ ∀ x∈R ,
突破3个考向
揭秘3年高考
【训练1】 以下关于命题的说法正确的有________(填写所有 正确命题的序号).
①“若log2a>0 ,则函数 f(x) =logax(a>0 , a≠1) 在其定义域
内是减函数”是真命题; ②命题“若 a = 0 ,则 ab = 0”的否命题是“若 a≠0 ,则 ab≠0”; ③命题“若x,y都是偶数,则x+y也是偶数”的逆命题为
抓住2个考点
突破3个考向
揭秘3年高考
考向二 充分、必要、充要条件的概念与判断
【例2】►(2013·杭州模拟)给出下列命题:
①“数列 {an} 为等比数列”是“数列 {anan + 1} 为等比数 列”的充分不必要条件; ②“a=2”是“函数f(x)=|x-a|在区间[2,+∞)上为增函 数”的充要条件;
高中数学第一章集合与常用逻辑用语1.1集合的概念2教案第一册
第一章 集合与常用逻辑用语第1节 集合的概念本课是本节的第一课,也是同学们刚进入高中阶段的第一课。
常言道“良好的开端是成功的一半”。
本课主要是让学生从已有的集合知识和实际生活中的例子入手,体会集合的含义.集合作为一种基本的数学语言,学习并掌握它的最好方法是使用.因此,教学中要多引导学生使用集合语言描述对象,进行自然语言与集合语言间的转换. 养成良好的数学习惯。
集合语言是现代数学的基本语言,可以简洁、准确、规范的表达数学内容.本节学习集合的一些基本知识,用最基本的集合语言表示有关数学对象和数学问题等,并能在自然语言、图形语言、集合语言之间进行转换,初步运用集合的观点和思想来分析数学,解决简单的数学问题。
符号,并能够用其解决有关问题.C.会用集合语言表示有关数学对象:描述法,列举法。
1.教学重点:集合的含义与表示方法,元素与集合的关系;2。
教学难点:选择恰当的方法表示一些简单的集合。
多媒体注意:在不致混淆的情况下,描述法也可以简写成列举法的形式,只是去掉竖线和元素代表符号,例如:所有直角三角形的集合可以表示为{x|x是直角三角形},也可以写成{直角三角形}。
例2 试分别用列举法和描述法表示下列集合.(1)方程x2—2=0的所有实数根组成的集合。
(2)由大于10小于20的所有整数组成的集合.解:(1)设方程x2-2=0的实数根为x,并且满足条件x2—2=0,因此,用描述法表示为A={x∈R|x2-2=0}.方程x2-2=0有两个实数根为22-,,因此,用列举法表示为A={2,}。
2-(2)设大于10小于20的整数为x,它满足条件x∈Z,且10<x<20,因此,用描述法表示为B={x∈Z∣10〈x<20}.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2讲命题及其关系、充分条件与必要条件【2013年高考会这样考】1.考查四种命题的意义及相互关系.2.考查对充分条件、必要条件、充要条件等概念的理解.3.考查题型主要以选择题、填空题形式出现,常与集合、几何等知识结合命题.【复习指导】复习时一定要紧扣概念,联系具体数学实例,理清命题之间的相互关系,重点解决:(1)命题的概念及命题构成;(2)四种命题及四种命题间的相互关系;(3)充分条件、必要条件、充要条件的概念的理解及判定.基础梳理1.命题的概念在数学中用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.2.四种命题及其关系(1)四种命题命题表述形式原命题若p,则q逆命题若q,则p否命题若綈p,则綈q逆否命题若綈q,则綈p(2)四种命题间的逆否关系(3)四种命题的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题互为逆命题或互为否命题,它们的真假性没有关系.3.充分条件、必要条件与充要条件(1)如果p⇒q,则p是q的充分条件,q是p的必要条件;(2)如果p⇒q,q⇒p,则p是q的充要条件.一个区别否命题与命题的否定是两个不同的概念:①否命题是将原命题的条件否定作为条件,将原命题的结论否定作为结论构造的一个新的命题;②命题的否定只是否定命题的结论,常用于反证法.两条规律(1)逆命题与否命题互为逆否命题;(2)互为逆否命题的两个命题同真假.三种方法充分条件、必要条件的判断方法(1)定义法:直接判断“若p则q”、“若q则p”的真假.并注意和图示相结合,例如“p⇒q”为真,则p是q的充分条件.(2)等价法:利用p⇒q与綈q⇒綈p,q⇒p与綈p⇒綈q,p⇔q与綈q⇔綈p的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若A⊆B,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件.双基自测1.(人教A版教材习题改编)以下三个命题:①“a>b”是“a2>b2”的充分条件;②“|a|>|b|”是“a2>b2”的必要条件;③“a>b”是“a+c>b+c”的充要条件.其中真命题的序号是________.解析①由2>-3⇒/ 22>(-3)2知,该命题为假;②a2>b2⇒|a|2>|b|2⇒|a|>|b|,该命题为真;③a>b⇒a+c>b+c,又a+c>b+c⇒a>b;∴“a>b”是“a+c>b+c”的充要条件为真命题.答案②③2.(2011·陕西)设a,b是向量,命题“若a=-b,则|a|=|b|”的逆命题是().\A.若a≠-b,则|a|≠|b| B.若a=-b,则|a|≠|b|C.若|a|≠|b|,则a≠-b D.若|a|=|b|,则a=-b解析“若a=-b,则|a|=|b|”的逆命题是“若|a|=|b|,则a=-b”.答案 D3.(2011·山东)对于函数y=f(x),x∈R,“y=|f(x)|的图象关于y轴对称”是“y =f(x)是奇函数”的().A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析若y=f(x)是奇函数,则f(-x)=-f(x),∴|f(-x)|=|-f(x)|=|f(x)|,∴y=|f(x)|的图象关于y轴对称,但若y=|f(x)|的图象关于y轴对称,如y=f(x)=x2,而它不是奇函数,故选B.答案 B4.(2011·安徽)命题“所有能被2整除的整数都是偶数”的否定是().A.所有不能被2整除的整数都是偶数B.所有能被2整除的整数都不是偶数C.存在一个不能被2整除的整数是偶数D.存在一个能被2整除的整数不是偶数解析原命题是全称命题,则其否定是特称命题,故选D.答案 D5.命题“若a>b,则2a>2b-1”的否命题为.答案若a≤b,则有2a≤2b-1考向一命题正误的判断【例1】►(2011·海南三亚)设集合A、B,有下列四个命题:①A⃘B⇔对任意x∈A都有x∉B;②A⃘B⇔A∩B=∅;③A⃘B⇔B⃘A;④A⃘B⇔存在x∈A,使得x∉B.其中真命题的序号是______(把符合要求的命题序号都填上).[审题视点] 对于假命题,举出恰当的反例是一难点.解析①不正确,如A={1,2,3},B={2,3,4},有A⃘B但2∈A且2∈B.②不正确,如A={1,2},B={2,3},有A⃘B而A∩B={2}.③不正确,如A={1,2},B={2},有A⃘B但B⊆A.④正确.答案④正确的命题要有充分的依据,不一定正确的命题要举出反例,这是最基本的数学思维方式,也是两种不同的解题方向,有时举出反例可能比进行推理论证更困难,二者同样重要.【训练1】给出如下三个命题:①四个非零实数a,b,c,d依次成等比数列的充要条件是ad=bc;②设a,b∈R,且ab≠0,若ab<1,则ba>1;③若f(x)=log2x,则f(|x|)是偶函数.其中不正确命题的序号是().A.①②③B.①②C.②③D.①③解析对于①,可举反例:如a,b,c,d依次取值为1,4,2,8,故①错;对于②,可举反例:如a、b异号,虽然ab<1,但ba<0,故②错;对于③,y=f(|x|)=log2|x|,显然为偶函数,故选B.答案 B考向二四种命题的真假判断【例2】►已知命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是().A.否命题是“若函数f(x)=e x-mx在(0,+∞)上是减函数,则m>1”,是真命题B.逆命题是“若m≤1,则函数f(x)=e x-mx在(0,+∞)上是增函数”,是假命题C.逆否命题是“若m>1,则函数f(x)=e x-mx在(0,+∞)上是减函数”,是真命题D.逆否命题是“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”,是真命题[审题视点] 分清命题的条件和结论,理解四种命题间的关系是解题关键.解析f′(x)=e x-m≥0在(0,+∞)上恒成立,即m≤e x在(0,+∞)上恒成立,故m≤1,这说明原命题正确,反之若m≤1,则f′(x)>0在(0,+∞)上恒成立,故逆命题正确,但对增函数的否定不是减函数,而是“不是增函数”,故选D. 答案 D判断四种形式的命题真假的基本方法是先判断原命题的真假,再判断逆命题的真假,然后根据等价关系确定否命题和逆否命题的真假.如果原命题的真假不好判断,那就首先判断其逆否命题的真假.【训练2】已知命题“函数f(x)、g(x)定义在R上,h(x)=f(x)·g(x),如果f(x)、g(x)均为奇函数,则h(x)为偶函数”的原命题、逆命题、否命题、逆否命题中正确命题的个数是().A.0 B.1 C.2 D.3解析由f(x)、g(x)均为奇函数,可得h(x)=f(x)·g(x)为偶函数,反之则不成立,如h(x)=x2是偶函数,但函数f(x)=x2e x,g(x)=ex都不是奇函数,故逆命题不正确,故其否命题也不正确,即只有原命题和逆否命题正确.答案 C考向三充要条件的判断【例3】►指出下列命题中,p是q的什么条件(在“充分不必要条件”“必要不充分条件”“充要条件”“既不充分也不必要条件”中选出一种作答).(1)在△ABC中,p:∠A=∠B,q:sin A=sin B;(2)对于实数x、y,p:x+y≠8,q:x≠2或y≠6;(3)非空集合A、B中,p:x∈A∪B,q:x∈B;(4)已知x、y∈R,p:(x-1)2+(y-2)2=0,q:(x-1)(y-2)=0.[审题视点] 结合充分条件,必要条件的定义判断所给命题间的关系.解(1)在△ABC中,∠A=∠B⇒sin A=sin B,反之,若sin A=sin B,因为A与B不可能互补(因为三角形三个内角和为180°),所以只有A=B.故p是q的充要条件.(2)易知,綈p:x+y=8,綈q:x=2且y=6,显然綈q⇒綈p,但綈p⇒/ 綈q,即綈q是綈p的充分不必要条件,根据原命题和逆否命题的等价性知,p是q的充分不必要条件.(3)显然x∈A∪B不一定有x∈B,但x∈B一定有x∈A∪B,所以p是q的必要不充分条件.(4)条件p:x=1且y=2,条件q:x=1或y=2,所以p⇒q但q⇒/ p,故p是q的充分不必要条件.判断p是q的什么条件,需要从两方面分析:一是由条件p能否推得条件q,二是由条件q能否推得条件p.对于带有否定性的命题或比较难判断的命题,除借助集合思想把抽象、复杂问题形象化、直观化外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题.【训练3】(2010·山东)设{a n}是首项大于零的等比数列,则“a1<a2”是“数列{a n}是递增数列”的().A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析a1<a2且a1>0,则a1(1-q)<0,a1>0且q>1,则数列{a n}递增;反之亦然.答案:C难点突破2——高考中充要条件的求解从近几年课改区高考试题可以看出,高考主要以选择题或填空题的形式对充分条件、必要条件内容进行考查,一般难度不大,属中档题,常与不等式、数列、向量、三角函数、导数、立体几何等内容结合考查.考查形式主要有两种:一是判断指定的条件与结论之间的关系;二是探求某结论成立的充要条件、充分不必要条件或必要不充分条件.判断充分、必要条件要从两方面考虑:一是必须明确哪个是条件,哪个是结论;二是看由条件推出结论和由结论推出条件哪个成立,该类问题虽然属于容易题,但有时会因颠倒条件与结论或因忽视某些隐含条件等细节而失分.一、充要条件与不等式的解题策略【示例】►(2011·天津)设x,y∈R,则“x≥2且y≥2”是“x2+y2≥4”的().A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件二、充要条件与方程结合的解题策略【示例】►(2011·陕西)设n∈N*,一元二次方程x2-4x+n=0有整数根的充要条件是n=________.三、充要条件与数列结合的解题策略【示例】►(2010·山东)设{a n}是等比数列,则“a1<a2<a3”是“数列{a n}是递增数列”的().A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件四、充要条件与向量结合的解题策略【示例】►(2010·福建)若向量a =(x,3)(x ∈R ),则“x =4”是“|a |=5”的( ).A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件五、充要条件与三角函数结合的解题策略【示例】► (2010·上海)“x =2k π+π4(k ∈Z )”是“tan x =1”成立的(). A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件。