Superplastic Deformation Behavior of Hot-rolled AZ31 Magnesium Alloy Sheet at Elevated Temperat

合集下载

TC18钛合金的超塑性行为与变形机制

TC18钛合金的超塑性行为与变形机制

TC18钛合金的超塑性行为与变形机制刁仲驰;姚泽坤;申景园;刘瑞;郭鸿镇【摘要】Superplastic tensile behavior and deformation mechanism ofTC18 titanium alloy were investigated by high temperature tensile test at 720-950 ℃ with initial strain rates of 6.7 × 10-5 s-1-3.3 ×10-1 s-1.The results show that under the optimal superplastic deformation condition (890 ℃ and 3.3 ×10-4 s 1),the maximum elongation is 470 %,the peak stress is 17.93MPa and with uniform grain size.Below the phase transusTβ,the elongation firstly increases and then decreases.A maximum elongation of 373 %is obtained at 830 ℃ and with initial strain rate of 3.3 × 10-4s-1 and the peak stress is 31.45MPa.The superplastic deformation mechanism of the TC18 titanium alloy in two-phase region is mainly grain rotation and boundary sliding,and the deformation coordination mechanism is dislocation slipping and climbing;the superplastic deformation mechanism in single phase region is intragranular dislocation motion and the deformation coordination mechanism is dynamic recovery and dynamic recrystallization.%通过高温拉伸实验研究TC18钛合金在温度为720~950℃,初始应变速率为6.7×10-5~3.3×10-1s-1时的超塑性拉伸行为和变形机制.结果表明:TC18钛合金在最佳超塑性变形条件下(890℃,3.3×10-4 s-1),最大伸长率为470%,峰值应力为17.93MPa,晶粒大小均匀.在相变点Tβ(872℃)以下拉伸,伸长率先升高后下降,在温度为830℃,初始应变速率为3.3×10-4s-1时取得极大值373%,峰值应力为31.45MPa.TC18钛合金在两相区的超塑性变形机制为晶粒转动与晶界滑移,变形协调机制为晶内位错滑移与攀移;在单相区的超塑性变形机制为晶内位错运动,变形协调机制为动态回复和动态再结晶.【期刊名称】《材料工程》【年(卷),期】2017(045)005【总页数】6页(P80-85)【关键词】TC18钛合金;超塑性;显微组织;变形机制【作者】刁仲驰;姚泽坤;申景园;刘瑞;郭鸿镇【作者单位】西北工业大学材料学院,西安710072;难变形材料锻造技术研究应用中心,西安710072;西北工业大学材料学院,西安710072;难变形材料锻造技术研究应用中心,西安710072;西北工业大学材料学院,西安710072;难变形材料锻造技术研究应用中心,西安710072;西北工业大学材料学院,西安710072;难变形材料锻造技术研究应用中心,西安710072;西北工业大学材料学院,西安710072;难变形材料锻造技术研究应用中心,西安710072【正文语种】中文【中图分类】TG146.2+3TC18钛合金是一种高合金化、高强度近β型钛合金,其名义成分为Ti-5Al-5Mo-5V-1Cr-1Fe,是退火状态下强度最高的钛合金[1],具有高强度、高塑性、淬透性好和焊接性好等优点,可用于制造高负载承力航空结构件[2]。

超声微锻造辅助定向能量沉积316L_不锈钢微观组织与力学性能研究

超声微锻造辅助定向能量沉积316L_不锈钢微观组织与力学性能研究

第15卷第7期孟宝,等:镁锂合金微型热管电场辅助超塑挤压成形19and Superplastic Forming of Negative Angle Box-ShapedParts[D]. Harbin: Harbin Institute of Technology, 2017:3-14.[5] 李淼泉, 吴诗. LY12CZ铝合金在强电场中的超塑性变形[J]. 塑性工程学报, 1996, 3(3): 41-46.LI Miao-quan, WU Shi. Superlastic Deformation of LY12CZ Aluminum Alloy under an Electric Field[J].Journal of Plasticity Engineering, 1996, 3(3): 41-46. [6] 蔡春波, 高少伟, 高桂丽, 等. 脉冲电流对Al-Cu-Mn-Zr合金时效处理组织及性能的影响[J]. 金属热处理,2023, 48(4): 104-110.CAI Chun-bo, GAO Shao-wei, GAO Gui-li, et al. Effectof Pulse Current on Microstructure and Properties of Al-Cu-Mn-Zr Alloy after Aging Treatment[J]. Heat Treatment of Metals, 2023, 48(4): 104-110.[7] WANG Yao-li, WANG Guang-xin, ZHANG Ke-ke. Elec-tro-Superplastic Solid State Welding of 40Cr/QCr0.5[J].Materials, 2018, 11(7): 1153.[8] WANG Guo-feng, LI Xiao, LIU Si-yu, et al. ImprovedSuperplasticity and Microstructural Evolution of Ti2AlNbAlloy Sheet during Electrically Assisted Superplastic GasBulging[J]. The International Journal of Advanced Manufacturing Technology, 2018, 99(1): 773-787.[9] YOSHIDA H, SASAKI Y. Low Temperature and HighStrain Rate Superplastic Flow in Structural Ceramics In-duced by Strong Electric-Field[J]. Scripta Materialia, 2018, 146: 173-177.[10] 林赟, 唐国翌, 孙强, 等. Inconel690合金的电致塑性拉拔研究[J]. 热加工工艺, 2010, 39(24): 80-82.LIN Yun, TANG Guo-yi, SUN Qiang, et al. Investigationof Electro-Plastic Drawing on Inconel690 Alloy[J]. HotWorking Technology, 2010, 39(24): 80-82.[11] 刘建龙, 王效岗, 王皓悦. 微挤压模具设计[J]. 模具技术, 2016(5): 26-29.LIU Jian-long, WANG Xiao-gang, WANG Hao-yue. TheDesign of Micro Extrusion Die[J]. Die and Mould Tech-nology, 2016(5): 26-29.[12] 李细锋, 曹旭东, 王斌, 等. 钛合金电辅助塑性成形技术研究进展[J]. 航空制造技术, 2021, 64(17): 22-30.LI Xi-feng, CAO Xu-dong, WANG Bin, et al. ResearchProgress on Electrically-Assisted Plastic Forming Techn-ology of Titanium Alloy[J]. Aeronautical ManufacturingTechnology, 2021, 64(17): 22-30.[13] 蔡贇, 孙朝阳, 万李, 等. AZ80镁合金动态再结晶软化行为研究[J]. 金属学报, 2016, 52(9): 1123-1132.CAI Yun, SUN Zhao-yang, WAN Li, et al. Study on Dy-namic Recrystallization Softening Behavior of AZ80 Magnesium Alloy[J]. Acta Metallurgica Sinica, 2016, 52(9): 1123-1132.[14] ZHANG Cun-sheng, WANG Cui-xue, ZHANG Qing-you,et al. Influence of Extrusion Parameters on Microstruc-ture, Texture, and Second-Phase Particles in an Al-Mg-SiAlloy[J]. Journal of Materials Processing Technology, 2019, 270: 323-334. [15] XU Jie, ZHU Xiao-cheng, SHAN De-bin, et al. Effect ofGrain Size and Specimen Dimensions on Micro-Formingof High Purity Aluminum[J]. Materials Science and En-gineering: A, 2015, 646: 207-217.[16] CHEN Liang, ZHAO Guo-qun, YU Jun-quan, et al.Analysis and Porthole Die Design for a Multi-Hole Ex-trusion Process of a Hollow, Thin-Walled Aluminum Pro-file[J]. The International Journal of Advanced Manufac-turing Technology, 2014, 74(1): 383-392.[17] DEMIRCI H İ, EVLEN H. Effect of Extrusion Ratio onthe Wear Behaviour of Al-Si and Al-Mg Alloys[J]. Jour-nal of Alloys and Compounds, 2012, 510(1): 26-32. [18] GUAN Yan-jin, ZHANG Cun-sheng, ZHAO Guo-qun, etal. Design of a Multihole Porthole Die for AluminumTube Extrusion[J]. Materials and Manufacturing Proc-esses, 2012, 27(2): 147-153.[19] YU Zi-jian, XU Chao, MENG Jian, et al. Effects of Ex-trusion Ratio and Temperature on the Mechanical Proper-ties and Microstructure of As-Extruded Mg-Gd- Y-(Nd/Zn)-Zr Alloys[J]. Materials Science and Engineer-ing: A, 2019, 762: 138080.[20] 尹传龙, 齐凯华, 翟军, 等. 难以挤压成型的铝型材断面形状的局部优化[J]. 铝加工, 2022(5): 25-28.YIN Chuan-long, QI Kai-hua, ZHAI Jun, et al. AluminumProfile does not Apply to Local Optimization of Extru-sion[J]. Aluminium Fabrication, 2022(5): 25-28.[21] 王少华, 刘惠, 陈宗强, 等. 大型带筋薄壁圆管铝型材挤压成形数值模拟[J]. 锻压技术, 2022, 47(4): 181-189.WANG Shao-hua, LIU Hui, CHEN Zong-qiang, et al.Numerical Simulation on Extrusion Forming for LargeRibbed Thin-Walled Circular Tube Aluminum Profile[J].Forging & Stamping Technology, 2022, 47(4): 181-189. [22] PARK S Y, KIM W J. Difference in the Hot CompressiveBehavior and Processing Maps between the As-Cast andHomogenized Al-Zn-Mg-Cu (7075) Alloys[J]. Journal ofMaterials Science & Technology, 2016, 32(7): 660-670. [23] LIN Y C, XIA Yu-chi, CHEN Xiao-min, et al. Constitu-tive Descriptions for Hot Compressed 2124-T851 Aluminum Alloy over a Wide Range of Temperature andStrain Rate[J]. Computational Materials Science, 2010,50(1): 227-233.[24] LIU Yong-da, XU Jie, ZHANG Zheng-wu, et al. Mi-cro-Extrusion Process and Microstructure Evolution ofMiniature Heat Pipe in 6063 Aluminum Alloy[J]. The In-ternational Journal of Advanced Manufacturing Technol-ogy, 2022, 120(9/10): 6463-6480.[25] SELLARS C M, MCTEGART W J. On the Mechanism ofHot Deformation[J]. Acta Metallurgica, 1966, 14(9): 1136-1138.[26] DONATI L, TOMESANI L. The Effect of Die Design onthe Production and Seam Weld Quality of Extruded Alu-minum Profiles[J]. Journal of Materials Processing Technology, 2005, 164/165: 1025-1031.责任编辑:蒋红晨精 密 成 形 工 程第15卷 第7期20 JOURNAL OF NETSHAPE FORMING ENGINEERING2023年7月收稿日期:2023–05–29 Received :2023-05-29基金项目:山东省重点研发项目(2021CXGC010206)Fund :Key R&D Project of Shandong Province(2021CXGC010206) 作者简介:王硕(1997—),男,硕士生,主要研究方向为超声微锻造辅助增材制造。

高强度铝合金7075的温成形性能_英文_

高强度铝合金7075的温成形性能_英文_

2 Experimental
2.1 Materials The material tested was taken from a rolled sheet of 2 mm-gauge aluminum alloy AA7075 in the T6 temper supplied by Kaiser Aluminum Company. Composition specification of AA7075 is shown in Table 1.
Table 1 Chemical composition of AA7075 (mass fraction, %) Si Fe Cu Mn Mg Cr Zn Ti Other Other each total
A formability tool system capable of operating at elevated temperature was established for LDR and LDH tests, as shown in Fig. 2. The forming tool system was placed in a 100 t retro-fit MTS hydraulic double-action press. The tools were heated via sub-plates containing cartridge heaters, which allow for the use of multiple formability tools. High temperature insulation was installed around the forming tool to isolate it from the operators and keep the forming tool at the specified temperature. 2.3 Tensile test Sub-size dog bone tensile specimens were water-jet cut per ASTM Standard E8. Specimens were placed inside the environmental chamber and allowed to reach a pre-specified temperature before the test was started. Three tensile tests were completed at seven different temperatures of 20, 60, 100, 140, 180, 220 and 260 °C with a constant crosshead speed of 2 mm/s (initial strain rate of 0.058 s−1). Tensile tests were conducted in a second trial at 140, 180 and 220 °C for two additional crosshead speeds at 0.25 and 0.76 mm/s (initial strain rates of 0.008 and 0.025 s−1, respectively). 2.4 Limiting dome height (LDH) Schematic of the LDH tooling geometry used in the present work is shown in Fig. 2(b). A high temperature lubricant, AL278, provided by Fuchs, was brushed on both sides of specimens before experiments were performed. A pre-heater was used to heat specimens to the target forming temperature before forming. Specimens were then transferred into the warm die for forming. A very high blank-holder force of 100 kN with a draw-bead on both rings was used to prevent material from flowing into the die cavity. A punch load drop of

材料专业相关词汇

材料专业相关词汇

焊接专业相关词汇(热、冷加工工艺和设备) 热加工工艺和设备钎焊soldering and brazing工业炉砌体brickwork of industrial furnace工业炉排烟系统fume dischange system for industrial furnace工业炉预热器preheater for industrial furnace 工业炉燃烧装置combustion device for industrial furnace井式炉vertical pit furnace少无切削加工chipless forming手工电弧焊shielded metal arc welding水下切割underwater cutting水下焊underwater welding水压机hydraulic forging press火焰淬火flame hardening可控气氛controlled atmosphere可锻铸铁malleable cast iron台车式炉car-bottom type furnace平锻机horizontal forging and upsetting machine正火normalizing再生砂reclaimed sand回火tempering成形轧制forming rolling自由锻open die forging低压铸造low-pressure casting冷压焊cold pressure welding冷鐓cold upsetting形变热处理thermomechanical treatment冲天炉cupola拉深deep drawing拋丸机shot blasting machine泥型铸造clay mold casting芯砂core sand芯盒core box表面合金化surface alloying金属型铸造permanent mold casting金属清理metal cleaning金属喷涂metal spraying金属热处理加热方法heating method for metal heat treatment金属热处理质量控制quality control for metal heat treatment冒口riser型砂molding sand型砂黏结剂molding sand binder室式炉chamber furnace砂型乾燥炉mold dring oven砂型铸造sand mold casting负压铸造V-process埋弧焊submerged arc welding径向锻造radial forging时效处理aging气焊gas welding气割gas cutting气体保护电弧焊gas shielded arc welding真空热处理vacuum heat treatment真空炉vacuum furnace退火annealing高能率成形high energy-rate forming高速锤锻造high energy-rate forging高频焊high-frequency welding堆焊surfacing旋压spining旋转电弧焊rotating arc welding混砂机sand mixer淬冷介质quenching media焊接安全与卫生health and safety in welding 焊接性weldability焊接设备welding equipment焊接结构welded structure焊接质量welding quality焊接应力和变形welding stress and distortion 焊条covered electrode焊丝welding wire焊剂welding flux球墨铸铁nodular cast iron连续式炉continuous furnace连续铸造continuous casting造芯机core-making machine造型机molding machine陶瓷型铸造ceramic mold casting壳型铸造shell mold casting无机覆层inorganic coatings发蓝blueing等离子弧切割plasma arc cutting等离子弧焊plasma arc welding胀形bulging超塑成形superplastic forming超声波焊ultrasonic welding塑性变形plastic deformation涂装paint coating感应加热热处理induction heat treatment感应炉induction furnace落砂机shakeout machine电子束焊electron beam welding电化学保护electrochemical protection电弧切割arc cutting电弧炉arc furnace电阻焊resistance welding电阻炉resistance furnace电渣焊electroslag welding电镀electroplating实型铸造full mold casting渗金属diffusion metallizing渗氮nitriding渗碳carburizing熔模铸造investment casting摩擦焊friction welding暂时性防护temporary protection模具die and mould模样pattern浇注系统gating system冲裁blanking调质quenching and tempering辊锻rolling forging铝的阳极氧化anodizing of aluminium铝热焊thermit welding机械压力机mechanical press激光切割laser beam cutting激光焊laser beam welding钢铁显微组织microstructure of iron and steel 压力铸造high pressure die casting挤压extrusion磷化与铬酸盐化phosphating and chromating 螺旋压力机screw press辗扩ring rolling锻坯下料gropping of forging billet锻坯少无氧化加热scale-free heating for forging billet 锻造操作机forging manipulator锻锤hamme扩散焊diffusion welding离心铸造centrifugal casting爆炸焊explosion welding弯曲bending铸件后处理post-treatment of casting铸件清理cleaning of casting铸造有色合金cast non-ferrous alloy铸造砂foundry sand铸造焦炭foundry coke铸钢cast steel盐浴炉salt-bath furnace冷加工工艺和设备三坐标测量机three dimensional measuring machine千分尺micrometer工具磨床tool and cutter grinding machine工具显微镜tool maker's microscope工业机器人industrial robot内圆磨床internal grinding machine分度头dividing head切削用量machining data切削液cutting fluid孔径测量inside diameter measurement木工刀具wood cutting tool木工刨床wood planing machine木工车床wood working lathe木工砂光机wood sanding machine木工铣床wood moulding machine木工锯机wood sawing machine木工钻床wood boring machine比长仪comparator水平仪level牛头刨床shaping machine主动测量in-process measurement加工中心machining center卡盘chuck可转位刀具cutting tool with indexable inserts 外圆磨床cylindrical grinding machine平尺straight edge平板surface plate平面度测量flatness measurement平面度测量仪flatness measuring instrument平面磨床surface grinding machine平晶optical flat正弦规sine bar立方氮化硼cubic boron nitride立式车床vertical turning and boring mill立式钻床vertical drilling machine交换齿轮change gears仿形机床copying machine光刻photoetching光栅optical grating光电显微镜photoelectric microscope多面棱体polygon多齿分度台multiteeth indexing table百分表和千分表dial indicator自动车床automatic lathe自动开合螺纹切头self-opening die head and self-collapsing tap刨刀shaping and planing tool刨削shaping and planing吸盘holding chuck坐标磨床jig grinder坐标鏜床jig boring machine扳手wrench投影仪measuring projector角度测量angle measurement角度量块angle gauge block车刀turning tool车削turning刻线机graduating machine刮削scraping弧齿锥齿轮铣齿机spiral bevel and hypoid gear generator拉刀broach拉床broaching machine拉削broaching拋光polishing升降台铣床knee and column milling machine 板牙threading die油石oilstone直尺knife edge直线度测量straightness measurement直齿锥齿轮刨齿机straight bevel gear generator卧式鏜床horizontal boring machine 花键加工spline processing花键加工机床spline making and finishing machine虎钳vice表面粗糙度测量surface roughness measurement金刚石diamond金刚镗床fine boring machine金属切削原理theory of metal cutting长度计量的量值传递dissemination of quantity in length measurement长度计量基准standard of length measurement 长度传感器linear transducer阿贝原则Abbe's principle剃齿刀gear shaving cutter剃齿机gear shaving machine柔性制造系统flexible manufacturing system 柯氏干涉仪Kosters interferometer砂布(纸) abrasive cloth or paper砂瓦abrasive segment砂带abrasive belt砂带磨床abrasive belt grinding machine砂带磨削abrasive belt grinding砂轮grinding wheel砂轮修整grinding wheel truing and dressing研磨lapping研磨剂lapping compound研磨机lapping machine刚玉aluminium oxide套料钻trepanning tool振动料斗vibrating feeder气动量仪air gauge迴转工作台rotary table珩齿机gear honing machine珩磨honing珩磨机honing machine旋风切削thread whirling深孔钻deep hole drill组合刀具combined cutting tool组合夹具系统universal jig and fixture system 组合机床transfer and unit machine莫尔条纹moire fringe插床slotting machine插削slotting插齿刀gear shaper cutter插齿机gear shaping machine普通车床engine lathe测长机length measuring machine测微仪micrometer无心磨床centerless grinding machine等离子弧加工plasma arc processing丝锥tap超精加工superfinishing超精密加工ultraprecision machining超声加工ultrasonic machining量块gauge block开榫机tenoning machine阳极机械切割anode mechanical cutting圆度测量roundness measurement圆度仪roundness measuring instrument圆柱度测量cylindricity measurement塞尺feeler gauge感应同步器inductosyn摇臂钻床radial drilling machine照相制版photomechanical process群钻masses drill落地镗铣床floor type boring and milling machine游标卡尺vernier caliper电子束加工electron beam machining电火花加工机床electric discharge machine电火花共軛迴转加工electrical discharge conjugate revolution machining电火花线切割加工electrical discharge wire-cutting电火花磨削electrical discharge grinding电解去毛刺electrochemical deburring电解刻印electrochemical marking电解拋光electrochemical polishing电解磨削electrochemical grinding电铸electroforming划线layout榫槽机mortising machine滚刀hob滚齿机gear hobbing machine渐开线测量仪involute measuring instrument 磁栅magnetic scale碳化硅silicon carbide 碳化硼boron carbide铰刀reamer铰削reaming铣刀milling cutter铣削milling喷射加工jet machining弹簧夹头spring collet数字控制机床程序编制programming for numerically controlled machine tool线纹尺linear scale缓进给磨削creep feed grinding蜗轮加工worm gear cutting适应控制机床adaptive controlled machine tool 锉刀file齿轮单面啮合检查仪gear single flank rolling tester齿轮整体误差测量技术integrated gear error measuring technique齿轮双面啮合检查仪gear two flank rolling tester机床主轴machine tool spindle机床进给箱feed box of machine tool机床导轨machine tool guideways机床变速箱speed change box of machine tool 机械手mechanical hand机械装配自动化machine assembling automation激光laser激光干涉仪laser interferometer激光加工laser beam machining磨削原理principle of grinding磨齿机gear grinding machine磨头mounted wheel锯切sawing锯床sawing machine钢坯磨床billet grinder锥齿轮加工刀具bevel gear cutting tool随行夹具pallet龙门刨床planing machine龙门铣床plano-milling machine挤压珩磨extrude hone螺纹车床thread turning machine螺纹测量screw thread measurement螺纹铣床thread milling machine螺纹磨床thread grinding machine转子自动线rotor type automatic line转塔车床turret lathe镜面磨削mirror finish grinding镗刀boring tool镗削boring镗模boring jig难加工金属材料的切削machining of difficult-to-cut metals读数显微镜readout microscope钻削drilling钻模drilling jig技术服务组Technical service Section质量检查室Quality examining room四棍操作室Four-roller bending machine control room8米立车操作室Vertical lathe control room 装配调度室Assembly scheduling room 焊接调度室Weld scheduling room配套调度室Auxiliary scheduling room。

非晶材料超塑性研究进展

非晶材料超塑性研究进展

非晶材料超塑性研究进展1.引言20世纪90年代美国和日本科学家开始制备出大块非晶合金,经过世界上许多科学家的努力,相继开发出如Fe,Co,Zr,Ni,Mg,Pd,Ti,Cu,Nd,La等多种大块非晶合金材料系列,而且所获得的非晶合金尺寸和临界冷却速度也更具有实用意义。

与晶态合金相比,非晶合金在强度、硬度、冲击断裂性能以及耐腐蚀性等方面更具明显的优势。

非晶态合金在结构上具有长程无序、短程有序和各向同性的特点, 其原子在空间排列上不具有周期性和平移性, 不存在晶态合金所特有的各种晶体缺陷。

与相同或相似成分的晶态合金相比, 非晶态合金往往具有优异的力学性能、化学性能和电磁性能。

自1990 年以来, 随着非晶形成理论的发展, 尤其是Inoue 提出了形成大块非晶合金的三条经验准则后, 材料科学工作者突破了制备非晶合金需要极高临界冷却速率的局限, 依靠合金体系各个组元的合理配比而使合金体系具有很强的非晶形成能力,从而改变了传统非晶合金只能以薄片、薄带、细丝、粉末等低维形状出现的状态, 使得大尺寸的非晶合金的制备成为现实。

目前, 人们已经在Mg 基、La 基、Zr 基、Ti 基、Fe 基、Co 基、Ni 基、Cu 基等多个合金系中开发出临界冷却速率小于1000K·s- 1 的大块非晶形成体系。

这些合金系可以用铜模铸造法制备出直径大于1mm 的全非晶制品, 其最大直径可达72mm 左右 , 这使得大块非晶合金成为一类极具应用前景的工程材料。

大块非晶合金在室温下具有非常高的断裂强度、大的弹性极限, 但它的室温塑性很低, 延伸率几乎为零 , 然而, 在过冷液相区间内, 它却具有非常好的超塑性性能, 与常规晶态合金的超塑性变形一样, 呈现大延伸、低应力及易成形等特性。

如Φ115mm 的La2Al2Ni 非晶试样的延伸率可达15000 %。

随着试样断面尺寸的增加, 延伸率也随之增加。

当直径为5mm 时, 延伸率可达到106%。

双相不锈钢超塑性变形机理

双相不锈钢超塑性变形机理
在双相不锈钢后期的超塑性变形过程中 相晶内和晶界都没有发现明显的位错运动
综上所述 在双相不锈钢超塑性变形过程 中 晶界滑移在超塑性变形前期阶段起到了主要 作用 晶粒转动也是双相不锈钢超塑性变形的机 理之一 它在双相不锈钢超塑性变形的后期作用 更大 晶内位错运动为双相不锈钢前期超塑性变 形提供了一定的变形量
参考文献
[1] 卡依勃舍夫 俄 . 金属塑性和超塑性. 王燕文译. 北京 机 械工业出版社 1982
[2] 陈浦泉 崔忠昕 赵敏. 超塑性研究的进展 方向及变形 机理. 金属科学与工艺 1990, 9(2): 16
[3] Zhang P X, Ren X P, Xie J X. Superplastic deformation of commercial 00Cr22Ni5Mo3N0.17 duplex stainless steel. J Univ SciTechnol Beijing, 2003, 10(2): 49
在 20 世纪 40 年代 前苏联学者
采用
溶解沉积理论解释超塑性变形的大延伸变形机
理 后又有人用动态再结晶和亚稳态理论来解释
了超塑性变形特征 [1] 70 年代人们才认识到超塑
性变形主要是晶界行为 对超塑性机理的认识发
生了很大的变化 出现了许多描述晶界运动过程
的模型[2] 按照现代观点 晶界滑移为晶界位错滑
1)北京科技大学材料科学与工程学院 北京 100083 2)济钢股份有限公司技术中心 济南 250101 3)济钢股份有限公司生产部 济南 250101
摘 要 从材料的晶体结构出发 研究了双相不锈钢超塑性变形的机理 利用背散射电子衍 射 花样分析系统 EBSD 获得了双相不锈钢变形过程中的 ODF 图 极图和取向与转轴分布 等晶体取向分布规律 结合透射电镜对微观组织的观察结果进行了综合分析 研究表明 双相 不锈钢超塑性变形的机理为形变诱导析出和动态再结晶 晶界滑移以及变形中的晶粒转动 关键词 超塑性 织构 相变 取向 分 类号 TG 113.25+3

基于m值高效法的TA15合金超塑性变形

基于m值高效法的TA15合金超塑性变形

基于m值高效法的TA15合金超塑性变形孙前江;王高潮【摘要】对TAl5合金在拉伸试验机上进行应变速率敏感因子(m值)高效超塑性变形试验,研究合金的超塑性性能和显微组织.结果表明:在780~950℃变形时,TAl5合金呈现出良好的超塑性能;900℃变形时,该合金的超塑性能最好,m值达到0.62,最大伸长率为1287%;随着变形温度的升高,合金的超塑性能降低,950℃时伸长率仅为567%.显微组织分析表明:TAl5合金在超塑性变形过程中,晶粒始终保持等轴状;由于变形温度升高,晶粒合并长大,950℃时发生α→β相转变,初生α相体积分数大幅度降低.与最大m值法相比较,m值高效超塑性变形不仅使TAl5合金获得了良好超塑性能,变形效率也显著提高.%The high efficient superplastic deformation experiments of TA15 alloy based on m value were performed on the tensile testing machine.The superplastic properties and microstructure were studied.The results indicate that TA15 alloy exhibits excellent superplasticity at temperatures of 780-950 ℃.The superplasticity is the best at 900 ℃.The m value is 0.62 and the maximum elongation is 1287%.With temperature increases,the superplasticity decreases and the elongation is only 567%at 950 ℃.The microstructure analysis shows that the equiaxed grains are kept during deformation.The grains merge and grow up due to increasing temperature.The volume fraction of primary α phase decreases greatly because α--→ β phase transformation occu rs at 950 ℃.Compared with the method of maximum m value,not only the excellent superplasticity of TA15 alloy is obtained by the high efficientsuperplastic deformation,but also the deformation efficiency is enhanced obviously.【期刊名称】《中国有色金属学报》【年(卷),期】2017(027)004【总页数】8页(P716-723)【关键词】TAl5合金;超塑性;m值;显微组织【作者】孙前江;王高潮【作者单位】南昌航空大学航空制造工程学院轻合金加工科学与技术国防重点学科实验室,南昌330063;南昌航空大学航空制造工程学院轻合金加工科学与技术国防重点学科实验室,南昌330063【正文语种】中文【中图分类】TG146.2TA15合金属一种高Al当量的近型钛合金,既具有型钛合金良好的热强性和可焊性,又具有接近于型钛合金的工艺塑性[1−2]。

镁合金材料超塑性的研究进展

镁合金材料超塑性的研究进展

镁合金是继钢铁和铝合金之后发 展起来的第三类金属结构材料 ,并被称 之为“21 世 纪 绿 色 金 属 结 构 工 程 材 料”[1 ,2 ] 。
由于晶 体 发 生 塑 性 变 形 时 滑 移 面 总是原子排列的最密排面 ,而滑移方向 总是原子排列的最密方向 。因此 ,密排六方结构的多 晶镁 ,其塑性变形在低于 498 K 时仅限于基面{0001} 〈11 20〉滑移及锥面{101 1}〈10 11〉孪生 [3 ,4] 。镁合金 变形时只有 3 个几何滑移系和 2 个独立滑移系 ,与其 它常用金属如铝 、铁 、铜相比 ,镁的滑移系少是造成其 塑性变形能力差的主要原因 。目前 ,大多数镁合金产 品都是用铸造方法生产的 ,很少采用锻压 、轧制 、挤压 等塑性成型方法加工 ,这使镁合金的应用受到了极大 地限制 。为此 , 镁合金超塑成形受到国内外广泛关 注[5] 。 目前 ,超塑成形技术主要用于铝 、钛等合金零件的 生产 ,很少用于镁合金零件的生产[6 ,7] 。因此 ,研究镁 合金超塑性及其成形技术对于扩大镁合金应用范围 、
·664 ·
铸造技术 FOUNDR Y TEC HNOLO GY
Vol. 26 No . 8 Aug. 2005
镁合金材料超塑性的研究进展
宋佩维1 ,2 ,郭学锋2 ,张忠明2 ,徐春杰2 ,井晓天2
(1. 陕西理工学院机电工程系 ,陕西 汉中 723003 ;2. 西安理工大学材料科学与工程学院 ,陕西 西安 710048)
摘要 :综述了镁合金超塑变形的机理与特点 ,评述镁合金超塑性研究现状 ,指出了细晶超塑性 、大晶粒超塑性 、高应变速率超 塑性和低温超塑性是镁合金超塑性研究的重点和发展方向 。 关键词 :镁合金 ;超塑性 ;研究现状 ;发展方向 中图分类号 : T G146. 2 + 2 ; T G113. 25 + 3 文献标识码 :A 文章编号 :100028365 (2005) 0820664203
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档