流体力学_纳维尔斯托克斯_欧拉方程的推导

合集下载

纳维-斯托克斯方程(N-S方程)详细推导

纳维-斯托克斯方程(N-S方程)详细推导
深入研究非牛顿流体和复杂流体的运动规律
针对非牛解方法 ,以揭示其复杂的流动行为和机理。
THANKS FOR WATCHING
感谢您的观看
N-S方程的改进和发展
数值方法
为了解决N-S方程的求解问题, 研究者们发展出了许多数值方法,
如有限差分法、有限元法、谱方 法等。
近似模型
针对某些特定流动,研究者们提出 了许多近似模型,如雷诺平均N-S 方程、湍流模型等,以简化求解过 程。
多物理场耦合
随着计算技术的发展,多物理场耦 合成为研究流体流动的重要方向, 如流固耦合、流热耦合等。
应力张量
01
应力张量是描述流体内部应力的二阶张量,包括正应力和剪切 应力。
02
正应力表示流体在单位面积上受到的压力,而剪切应力表示流
体在单位面积上受到的切向力。
应力张量是流体的状态函数,其值取决于流体的状态和所处的
03
边界条件。
03 纳维-斯托克斯方程的推 导
纳维方程的推导
01
02
03
从质量守恒、动量守恒 和牛顿第二定律出发, 推导出描述流体运动的
考虑流体的粘性和惯性
02
N-S方程中包含了流体的粘性和惯性力,能够描述粘性流体在运
动过程中的受力情况和运动规律。
涉及到复杂的数学处理
03
N-S方程的推导涉及到复杂的数学处理,包括微积分、线性代数
和偏微分方程等。
02 流体的基本性质
流体的定义和分类
流体是能够流动的物质,具有连续性和 不可压缩性。根据其流动特性,流体可 分为牛顿流体和非牛顿流体两大类。
04 N-S方程的应用和限制
N-S方程的应用领域
流体力学
N-S方程是描述流体运动的基本方程,广泛应用于航空、航海、 气象、环境等领域。

流体力学中三个主要力学模型

流体力学中三个主要力学模型

流体力学中三个主要力学模型流体力学是研究流体运动的一门学科,涉及到物理学、数学、工程学等多个领域。

在流体力学中,有三个主要的力学模型,分别是欧拉方程、纳维-斯托克斯方程和边界层方程。

这三个模型在不同的情况下有不同的应用,下面将分别介绍它们的基本原理和应用。

一、欧拉方程欧拉方程是描述流体运动的最基本的方程之一,它是由欧拉在1755年提出的。

欧拉方程是基于质点运动的牛顿第二定律得出的,它描述了流体在不受外力作用时的运动状态。

欧拉方程的基本形式如下:ρ/t + ·(ρu) = 0ρ(dv/dt) = -p其中,ρ是流体的密度,t是时间,u是流体的速度,p是压力,v是速度的随时间的变化率,是向量微分算子。

欧拉方程的应用范围很广,可以用来描述各种不可压缩流体的运动,例如水、油、气体等。

欧拉方程可以用来研究流体的基本运动规律,如速度分布、压力分布等。

欧拉方程还可以用来研究流体的力学性质,如流体的动量、能量守恒等。

二、纳维-斯托克斯方程纳维-斯托克斯方程是描述流体运动的另一个重要方程,它是由纳维和斯托克斯在19世纪提出的。

纳维-斯托克斯方程是基于牛顿第二定律和连续性方程导出的,它描述了流体在受外力作用时的运动状态。

纳维-斯托克斯方程的基本形式如下:ρ(dv/dt) = -p + μ^2v + f·v = 0其中,μ是流体的动力粘度,f是体积力,如重力、电磁力等。

纳维-斯托克斯方程适用于各种流体的运动,包括不可压缩流体和可压缩流体。

它可以用来研究流体的运动规律、流体的力学性质和流体的稳定性等问题。

纳维-斯托克斯方程还可以用来模拟流体在各种工程应用中的运动,如飞机、汽车、船舶等。

三、边界层方程边界层方程是描述流体在边界层内的运动的方程,它是由普拉特在1904年提出的。

边界层是指流体与固体表面接触的区域,它的厚度很小,但是流体的速度和压力在这个区域内发生了显著的变化。

边界层方程是基于牛顿第二定律和连续性方程导出的,它描述了流体在边界层内的运动状态。

流体力学欧拉方程公式

流体力学欧拉方程公式

流体力学欧拉方程公式流体力学中的欧拉方程公式可是个相当重要的家伙!它就像是流体世界的密码,能帮我们解开很多关于流体运动的谜团。

欧拉方程公式描述了无黏性流体的运动规律。

咱们先来说说它的表达式:$\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \nabla) \vec{v} = -\frac{1}{\rho} \nabla p + \vec{g}$ 。

这里面的每一项都有它独特的含义。

$\frac{\partial \vec{v}}{\partial t}$ 这一项表示的是流体速度随时间的变化率,就好比你在操场上跑步,速度一会儿快一会儿慢,这个变化率就是在描述这种快慢的改变。

$(\vec{v} \cdot \nabla) \vec{v}$ 这部分稍微有点复杂,它描述的是流体速度的空间变化对速度本身的影响。

想象一下河里的水,水流在不同位置速度不一样,这种速度的差异会影响整体的流动。

$-\frac{1}{\rho} \nabla p$ 这里的 $p$ 是压强,这一项表示压强梯度对流体运动的作用。

比如说,高压区的流体就会往低压区跑。

$\vec{g}$ 就是重力啦,很容易理解,在地球上,流体都会受到重力的影响。

给您讲讲我之前的一次经历,那回我去参观一个大型的水坝。

站在水坝边上,看着那汹涌奔腾的水流,我就在想,这背后不就是欧拉方程在起作用嘛!水从高处冲下来,速度越来越快,这就是重力在发挥作用。

而且不同位置的水速不同,也是因为水流所受的压力不同。

在实际应用中,欧拉方程公式可是大有用处。

比如说在航空领域,设计飞机的外形时,就得考虑空气这个流体的流动情况,通过欧拉方程来计算和优化,让飞机飞得更稳更快。

在水利工程中,像修建渠道、水闸,也得靠它来预测水流的情况,保证工程的安全和效率。

在研究气象的时候,欧拉方程也能帮上大忙。

预测风的走向、风速的变化,都离不开对流体力学的深入理解和运用欧拉方程公式进行的精确计算。

高等工程流体力学-纳维—斯托克斯方程的解

高等工程流体力学-纳维—斯托克斯方程的解

第三章 纳维—斯托克斯方程的解
29
第六节 沿有吹吸作用的壁面上的流动
一、沿均匀抽吸的平面上的定常流动
第三章 纳维—斯托克斯方程的解
第六节 沿有吹吸作用的壁面上的流动
一、沿均匀抽吸的平面上的定常流动 如图3-16所示,流体以速度U平行流过一
无限长的多孔平壁面,由于流体黏性的作用, 在近壁面区域形成了较大速度梯度的薄层。
由实验数据拟合所得的经验公式如下
此式的C误D 差 在R24e± 110%6 R之e 间 0。.4,
0 Re 2 105
(3-34a)
第三章 纳维—斯托克斯方程的解
21
第四节 低雷诺数流动
二、滑动轴承内的流动 (略)
(参见吴望一书§9.11)
第三章 纳维—斯托克斯方程的解
第五节 楔形区域的流动
第三章 纳维—斯托克斯方程的解
3
第三节 平行非定常流动
第三章 纳维—斯托克斯方程的解
4
第三节 平行非定常流动
得其运动方程为
vx 2vx
t
y 2
(3-20)
, 定解条件为 作无量纲变换
t 0, y 0 : vx 0
t 0, y 0 :
vx
U0
(3-21)
y : vx =0
y , 2 t
第三章 纳维—斯托克斯方程的解
2
第三节 平行非定常流动
一、突然加速平板引起的流动 设有一无限长、无限宽的平板,平板上
部充满黏性不可压缩流体。平板在某一时刻 突然由静止启动,并沿其自身平面加速至某 一固定速度U0,从而带动其周围原来静止的 流体流动。该问题为斯托克斯第一问题,由 斯托克斯解得,取直角坐标系,如图3-6所示。

欧拉方程推导全过程

欧拉方程推导全过程

欧拉方程推导全过程嘿,数学爱好者们!今天我要带大家走进一个超级有趣的数学世界,那就是欧拉方程的推导。

这可不像在公园散步那么简单,但也绝不是无法攀登的高山,只要跟着我一步一步来,保准你能搞明白。

咱先来说说什么是欧拉方程。

想象一下,在数学这个大王国里,有一个神秘的方程式,就像一颗璀璨的明珠,它把指数函数、三角函数这些看似不太相关的家伙巧妙地联系在了一起。

这就是欧拉方程,$e^{ix} = \cos x + i\sin x$,其中$e$是自然常数,$i$是虚数单位,$x$是一个实数。

这个方程就像一把魔法钥匙,能打开很多数学难题的大门呢。

那咱们怎么推导这个神奇的方程呢?咱们得从泰勒级数这个有力的工具开始。

泰勒级数就像是一个超级放大镜,可以把一个函数展开成无穷项的多项式。

对于指数函数$e^x$,它的泰勒级数展开式是:$e^x = 1 + x + \frac{x^2}{2!}+ \frac{x^3}{3!}+ \frac{x^4}{4!}+ \cdots$。

这个式子看起来有点吓人,但是别怕,咱们一点点分析。

这里的$n!$就是$n$的阶乘,也就是从$1$乘到$n$。

再来看三角函数$\cos x$和$\sin x$的泰勒级数展开式。

$\cos x = 1 - \frac{x^2}{2!}+ \frac{x^4}{4!}- \frac{x^6}{6!}+ \cdots$,$\sin x = x - \frac{x^3}{3!}+ \frac{x^5}{5!}- \frac{x^7}{7!}+ \cdots$。

现在咱们把$x$换成$ix$代入到$e^x$的泰勒级数展开式中。

$e^{ix} = 1 + ix + \frac{(ix)^2}{2!}+ \frac{(ix)^3}{3!}+ \frac{(ix)^4}{4!}+ \cdots$。

那这个式子要怎么化简呢?咱们来仔细瞧瞧。

$(ix)^2 = -x^2$,$(ix)^3 = -ix^3$,$(ix)^4 = x^4$等等。

N-S(纳维斯托克斯)方程推导过程

N-S(纳维斯托克斯)方程推导过程

很多人一听到N-S 方程就有点头皮发麻,因为涉及到流体力学的知识比较多,如果没有一个完整有逻辑的思路,理解N-S 方程是有点困难。

其中涉及到欧拉法,场论,随体导数,流体力学连续性方程(即质量守恒方程),流体力学N-S 方程(即动量方程),动量方程在流体力学中有两种,一种是理想流体动量方程,一种是粘性流体动量方程,粘性流体的动量方程也叫纳维-斯托克斯方程,也简称N-S 方程。

我试图想把N-S 方程弄清楚点,所以写了一点东西,分享一下。

首先要讲一下流体力学的欧拉法,在课本中还讲了拉格朗斯法,因为连续性方程和N-S 方程是用欧拉法得出的,和拉格朗日法没什么关系。

我就不讲拉格朗日法,以免产生混乱。

欧拉方法的着眼点不是流体质点而是空间点。

设法在空间中的每一点上描述出流体运动随时间的变化状况。

如果每一点的流体运动都已知道,则整个流体的运动状况也就清楚了。

欧拉方法中流体质点的运动规律数学上可表示为下列矢量形式:假设空间一点的坐标(x,y,z,t),其中x,y,z 是该空间的坐标,t 是此刻时间。

u,v,w 是这一空间点的三个方向速度。

p,ρ,T 是这一空间点的压力,密度和温度。

这样就有了每一个点的速度,压力,密度,温度,就可以描述运动流体的状态。

这里需要强调一点的是下面这六个式子,可以换一个角度把他们看成方程,对后面理解连续性方程和N-S 方程有帮助,比如u=x+2y+3z),,,();,,,();,,,();,,,();,,,();,,,(t z y x T T t z y x t z y x p p t z y x w w t z y x v v t z y x u u ======ρρ因为后面需要随体导数的概念,还需要把速度函数表示成矢量的形式。

前面u,v,w 是标量,是ν在(x,y,z,t)直角坐标系三个方向的速度。

),(t rνν=M 点(x,y,z,t ),速度为),(t M ν ,过了t ∆之后,在M '点,速度为),(t t M ∆+'ν。

理想流体动量传输方程——欧拉方程

理想流体动量传输方程——欧拉方程

pxx dx x
xz dx y
x
xy dx
x
0
实际流体微小平行六面体
x
3.4 实际流体动量传输方程——纳维尔-斯托克斯方程
微元体受力分析(续):
垂直于 y轴的两个平面
z
后面
压应力: pyy
切应力: yx、 yz
pyy
yx
前面压应切力应:力p:yyyyxzpxyyyyyyydzx yddyyy
x方向: (1)压力
p p dy
y
z
D
C
P
P
P x
dx
dydz
P x
dxdydz
E
p
pF
p p dx x
(2)体积力
A
B
Xρdxdydz
(3)流体加速度
ma dxdydz dux
dt
H
p p dz
G
p
0
z
x
y
理想流体微小平行六面体
ma F dxdydz dux Xdxdydz p dxdydz
后面: yxdxdz
前面: yxdxdz 底面: zx dxdy
yx
y
0
dydxdz
y
zx
yx
yx
y
dy
x
微小平行六面体在x方向受力分析
顶面: zxdxdy
zx
z
dzdxdy
3.4 实际流体动量传输方程——纳维尔-斯托克斯方程
体积力:同理想流体,x方向分量→Xρdxdydz
惯性力:ma( x方向)→ dxdydz dux
用矢量表示—— W 1 P Du
Dt
(3.39)

欧拉方程推导过程

欧拉方程推导过程

欧拉方程推导过程概述欧拉方程(Euler’s equation)是描述流体运动的基本方程之一,它是由瑞士数学家欧拉(Leonhard Euler)在18世纪提出的。

欧拉方程在流体力学、空气动力学等领域具有广泛的应用。

本文将介绍欧拉方程的推导过程,以及一些相关的概念。

基本假设在推导欧拉方程之前,我们需要先明确一些基本假设和定义: 1. 流体是连续的:假设流体是连续、无限可分的。

这意味着我们可以对流体的性质进行连续的观察和分析。

2. 流体是可压缩的:假设流体在运动过程中可以发生密度的变化。

3. 流体满足牛顿力学:假设流体的运动可以用牛顿力学描述,即满足牛顿第二定律。

推导过程为了推导欧拉方程,我们首先需要从基本假设出发,利用牛顿第二定律来描述流体运动。

1. 守恒方程守恒方程是流体力学中的基本方程,描述了质量、动量和能量的守恒。

在欧拉方程的推导中,我们主要关注质量守恒和动量守恒。

1.1 质量守恒质量守恒可以表达为以下形式:∂ρ+∇⋅(ρv)=0∂t其中,ρ表示流体的密度,v表示流体的速度。

该方程描述了密度在空间和时间上的变化。

1.2 动量守恒动量守恒可以表达为以下形式:ρ(∂v ∂t+v ⋅∇v)=−∇p +∇⋅T +ρg 其中,p 表示流体的压强,T 表示应力张量,g 表示重力加速度。

该方程描述了流体的动量在空间和时间上的变化。

2. 应力张量欧拉方程中的应力张量T 描述了流体内部的相互作用力。

它可以通过牛顿第二定律和基本假设推导得到。

2.1 应力张量的定义应力张量是一个二阶张量,它描述了流体内部各点沿不同方向的力和应变之间的关系。

在流体力学中,应力张量可以表示为:T ij =−pδij +σij其中,p 是流体的压强,δij 是克罗内克(Kronecker )δ符号,σij 是剪切应力张量。

2.2 应力张量的推导为了推导应力张量,我们考虑流体中某一点的受力情况。

由牛顿第二定律可知,该点受到的合力等于质量乘以加速度:F =ma将质量表示为体积乘以密度m =ρV ,并将加速度表示为速度的时间导数a =dv dt ,可以得到:F =ρV dv dt将体积表示为面积乘以厚度V =SΔz ,并将速度的导数表示为时间的偏导数dv dt =∂v ∂t ,可以得到:F =ρSΔz ∂v ∂t当体积趋近于0时,左侧的合力可以表达为面积上的应力乘以面积元dS,即F= TdS。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、流体力学基本公式公式的含义:质量守恒、动量守恒、能量守恒()0D V Dtρδ=(0.1)()D VUV f Dtρδδρδτ=+(0.2)()()()2/2D V e U V f U U V q Dtρδδρδτδρ+=⋅+⋅+(0.3)将(0.1)式应用于(0.2)、(0.3)两式可得()()()()()()()()()2222/2/2/2/2 D VU D V DU DU U V V V f Dt Dt Dt Dt D V e U D e U D V e U V Dt Dt Dt D e U V V f U U V q Dt V f ρδρδρδρδδρδτρδρδρδρδδρδτδρδρ=+==+++=+++==⋅+⋅+=+ ()U U V q δττδδρ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋅+⋅+⎩即DU f Dt V δτδρ=+()2/2D e U U f U q DtV V δττδδρδρ+⎛⎫⋅=+⋅++ ⎪⎝⎭而(0.1)式本身作如下简化:()()()()00D V D D V V DtDt DtD V D D U Dt VDt Dt ρδρδδρδρρρρδ=+=+=+∇⋅=那么三个控制方程可以表示为()20/2D U DtDUf Dt V D e U U f U q Dt V V ρρδτδρδττδδρδρ⎧⎪+∇⋅=⎪⎪⎪=+⎨⎪⎪+⎛⎫⋅⎪=+⋅++ ⎪⎪⎝⎭⎩(0.4)将()()()D U Dtt∂=+⋅∇∂ 应用于(0.4)式,可以得到()0U t ρρ∂+∇⋅=∂ (0.5)U U U f t V δτδρ∂+⋅∇=+∂(0.6)()()22/2/2e U U U e U f U q t V V δττδδρδρ∂+⎛⎫⋅+⋅∇+=+⋅++ ⎪∂⎝⎭(0.7)将(0.6)式代入(0.7)式化简,可得()()()()2222/2/2/2/2e U U e U t U e U e U U t t U U U U U qt V ρρρτδρδρ⎛⎫∂+ ⎪+⋅∇+ ⎪∂⎝⎭⎛⎫∂∂⎛⎫ ⎪=+⋅∇++⋅∇ ⎪ ⎪∂∂⎝⎭⎝⎭⎛⎫∂⋅=+⋅∇⋅++ ⎪∂⎝⎭其中,()()()()()2/2/21122i i i i i i i i U U U U U U U U U U U ttt t t t∂⎛⎫∂∂∂∂∂==+==⋅ ⎪∂∂∂∂∂∂⎝⎭()()21/22j j j i i j i iU U U U U U U U U U U x x ∂∂⋅∇===⋅∇⋅∂∂所以e U U e q t V τδδρ∂⋅+⋅∇=+∂(0.8)于是,三个控制方程化简为()0U t U U U f t V e U U e qtV ρρδτδρτδδρ⎧∂+∇⋅=⎪∂⎪⎪∂⎪+⋅∇=+⎨∂⎪⎪∂⋅⎪+⋅∇=+∂⎪⎩(0.9)其中,τ为剪应力对微元体的力,故()1,2,31,2,31,2,31,2,31111ij i i j k ij i i i i j ki j j ij j k ij i ij i i j k i j T dx e dx dx T x e TV dx dx dx x U T dx dx dx U x U T T U V dx dx dx x δτδρρρρτδδρρρρ====∂⎧⎪∂∂⎪===∇⋅∂⎪⎪⎨∂⎪⎪∂∂⋅===⋅∇⋅⎪∂⎪⎩∑∑ 所以,三个控制方程最终可以写为()()011U t U U U f T t e U e T U qtρρρρ⎧∂+∇⋅=⎪∂⎪⎪∂+⋅∇=+∇⋅⎨∂⎪⎪∂+⋅∇=⋅∇⋅+⎪∂⎩(0.10)其中,T 为微元体受到的表面应力()22j ki ij kk ij ij ij k j i u u u T p S S p x xx λδμμδμ⎛⎫∂⎛⎫∂∂=-++=--++ ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭即()()2T p U I U U μμ=--∇⋅+∇+∇(0.11)将(0.11)代入(0.10)式可以得到()()()()()()2323011U t U U U f p U U U te U e p U I U U U q tρρμμρμμρ⎧∂+∇⋅=⎪∂⎪⎪∂⎡⎤+⋅∇=+∇--∇⋅+∇⋅∇+∇⎨⎣⎦∂⎪⎪∂⎡⎤+⋅∇=--∇⋅+∇+∇⋅∇⋅+⎪⎣⎦∂⎩(0.12)将(0.12)式写为张量形式()2222323011i i j j ii i j i j i i j j i j j j j j i i j i j i i U t x U U U U U p U f t x x x x x x x x U U U U U e U e p q t x x x x x ρρμμρμμρ⎧∂∂⎪+=⎪∂∂⎪⎡⎤⎛⎫⎛⎫⎪∂∂∂∂∂∂⎪+=+--++⎢⎥ ⎪ ⎪⎨ ⎪ ⎪∂∂∂∂∂∂∂∂∂⎢⎥⎪⎝⎭⎝⎭⎣⎦⎪⎡⎤⎛⎫⎛⎫∂∂∂∂∂∂⎪+⋅∇=--+++⎢⎥ ⎪ ⎪⎪ ⎪ ⎪∂∂∂∂∂∂⎢⎥⎝⎭⎝⎭⎪⎣⎦⎩(0.13) 再将(0.13)式写为分量形式,得()()()222222222220 113 113x y u v w t x y z u u u u u v w tx y z p u v w u u u f x x x y z xy z v v v v u v w t x y z p u v w v v f y y x y z x y ρρρρμμρμμρ∂∂∂∂+++=∂∂∂∂∂∂∂∂+++∂∂∂∂⎡⎤⎛⎫⎛⎫∂∂∂∂∂∂∂∂=+-++++++⎢⎥⎪ ⎪∂∂∂∂∂∂∂∂⎝⎭⎝⎭⎣⎦∂∂∂∂+++∂∂∂∂⎛⎫∂∂∂∂∂∂∂∂=+-++++++ ⎪∂∂∂∂∂∂∂⎝⎭222222223113 2z v z w w w wu v w tx y z p u v w w w w f z z x y z x y z e e e e u v w t x y z p u v w u v w x y z x y z u μμρνρν⎡⎤⎛⎫⎢⎥⎪∂⎝⎭⎣⎦∂∂∂∂+++∂∂∂∂⎡⎤⎛⎫⎛⎫∂∂∂∂∂∂∂∂=+-++++++⎢⎥⎪ ⎪∂∂∂∂∂∂∂∂⎝⎭⎝⎭⎣⎦∂∂∂∂+++∂∂∂∂⎛⎫⎛⎫⎛⎫∂∂∂∂∂∂=--++++ ⎪ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭∂+∂222222+v w u v u w v w q x y z y x z x z y ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∂∂∂∂∂∂∂∂⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪++++++++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪∂∂∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎪⎝⎭⎩(0.14)当流体不可压缩时,ρ为常数,(0.14)式可以化简为22222222222222220111x y z u v w x y z u u u u pu u u u v wf t x y z x x y z v v v v p v v v u v w f t x y z y x y z w w w w pw w uv w f t x y z z x y μρμρμρ∂∂∂++=∂∂∂⎡⎤⎛⎫∂∂∂∂∂∂∂∂+++=+-+++⎢⎥ ⎪∂∂∂∂∂∂∂∂⎝⎭⎣⎦⎡⎤⎛⎫∂∂∂∂∂∂∂∂+++=+-+++⎢⎥ ⎪∂∂∂∂∂∂∂∂⎝⎭⎣⎦∂∂∂∂∂∂∂∂+++=+-+++∂∂∂∂∂∂∂22w z ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎡⎤⎛⎫⎪⎢⎥ ⎪∂⎝⎭⎪⎣⎦⎩(0.15)此时方程已经封闭,最后一个方程不需要再给出。

在二维情况下,(0.14)式可以简化为()()22222222230113113 x y u v t x y u u u p u v u u u v f t x y x x x y xy vv v p u v v v u v f t x y y y x y x y e e eu vtx y p u x ρρρμμρμμρνρ∂∂∂++=∂∂∂⎡⎤⎛⎫⎛⎫∂∂∂∂∂∂∂∂∂++=+-++++⎢⎥⎪ ⎪∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭⎣⎦⎡⎤⎛⎫⎛⎫∂∂∂∂∂∂∂∂∂++=+-++++⎢⎥⎪ ⎪∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭⎣⎦∂∂∂++∂∂∂∂=--∂222 2+v u v y x y u v u v qx y y x ν⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎛⎫⎛⎫⎛⎫∂∂∂⎪++ ⎪ ⎪ ⎪⎪∂∂∂⎝⎭⎝⎭⎝⎭⎪⎪⎛⎫⎛⎫⎛⎫⎛⎫∂∂∂∂⎛⎫⎪ ⎪ ⎪++++ ⎪ ⎪ ⎪ ⎪ ⎪⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎩(0.16) 二维不可压缩情况下,控制方程可以简化为22222222011x y u vx y uu u p u u u v f tx y x x y v v v p v v u v f t x y y x y μρμρ⎧∂∂⎪+=∂∂⎪⎪⎡⎤⎛⎫∂∂∂∂∂∂⎪++=+-++⎨⎢⎥ ⎪∂∂∂∂∂∂⎝⎭⎣⎦⎪⎪⎡⎤⎛⎫∂∂∂∂∂∂⎪++=+-++⎢⎥ ⎪⎪∂∂∂∂∂∂⎝⎭⎣⎦⎩(0.17)此时方程已经封闭,能量方程不需要再给出。

相关文档
最新文档