二维欧拉方程
关于二阶欧拉方程的求解

(其中 # ! , # " 为任意常数) ( 参考文献
[!]同济大学应用数学系 + 高等数学 (下册) (第五版) ] [ ,] 高等教育出版社, + 北京: "))" + ["]华中理工大学数学系 + 高等数学 (下册) [,] 高等教育出版社, + 北京: !--. + [/]罗亚平, 陈仲 + 微分方程 [,] 南京大学出版社, + 南京: !-0. + [1]复旦大学数学系 + 常微分方程 [,] 上海科学技术出版社, + 上海: !-0. + [2]东北师范大学数学系微分方程教研室 + 常微分方程 [,] 高等教育出版社, + 北京: !-0" +
"
"
# [ & / & $ / & $ -#]# &( / & * -")$ &
( $$)当 ! ", (#) 的共轭复特征根 # &! ’ $ " 是方程 时, 方程 (") 的通解为 " # " ! $!$ " ( ( ( &[ ($) +,( "*) & ) ’ &) %& $ "*) & ) & "
定理r2为方程2的两个特征根i当r1r2是方程2的互不相等的实特征r1r21fxdx1coslnxfxdx1sinlnxfiii当r1r2是方程2的相等的实特征根证明i当r1r2是方程2的互不相等的实特征根时将方程1的通解6进行分部积分xdxdxr1r2xdxdxr1r21fxdx1fxdxr1r2ii当r1r1r2coslnxisinlnxcoslnxisinlnx将其代入7式整理可得方程1的通解为1coslnxfxdx1sinlnxf3r2所以由定理2c1xxecoslnx的通解
可压缩二维无粘流动_二维_欧拉方程_有限差分_MacCormack_Bump

可压缩二维无粘流动摘要本题利用欧拉方程求解可压缩二维无粘流动,并将其与Numeca Fine/Turbo 的计算结果对比。
流道由上平板固壁和带有凸起的下固壁组成,进口给定总温、总压和速度方向,出口给定压力。
自编代码求解时,基于有限差分方法,利用MacCormack 格式对控制方程进行离散,根据黎曼不变量和边界条件由内层网格数据外推获得边界数据。
文中给出了计算收敛残差历史、密度、速度、压力、马赫数和熵分布,并将其和Numeca 计算结果对比,分析自编代码计算结果的合理性和误差来源。
关键词二维;欧拉方程;有限差分;MacCormack ;Bump1 问题提出该问题是经典的Bump 计算问题[1],如图1所示,上壁为平板,下壁带有凸起,均为滑移边界。
进口为轴向进气,且给定总参数为0280T K =和50 1.110p Pa =⨯,出口为5110out p Pa =⨯。
图1准一维管道示意图本题的分析思路:首先,建立计算域中的主控方程,然后根据MacCormack 格式对方程进行离散,最后通过边界条件和黎曼不变量确定边界数据。
收敛条件为相邻时间步的压力差的最大值小于610-Pa 。
2模型建立物理域中的主控方程为二维欧拉方程,如式(1)所示。
将物理域x-y 变换到计算域ξ-η,控制方程变为式(2),J 为坐标变换的雅克比行列式,y η、x η、y ξ和x ξ均为物理域坐标对计算域的偏导数。
220,,,u v u u p uv where v uv v p t x yE Hu Hv ρρρρρρρρρρρρ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥+∂∂∂⎢⎥⎢⎥⎢⎥++= ===⎢⎥⎢⎥⎢⎥+∂∂∂⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦Q F G Q F G (1)0,,,where J y x y x t ηηξξξη∂∂∂++= ==- =-+∂∂∂Q'F'G'Q'Q F'F G G'F G (2)未知物理量为,,,,,p u v H E ρ共6个,因此为了方程组的封闭西需要补充两个方程。
使用有限差分法计算二维欧拉方程

基于非结构网格 二维 Euler 方程的 Jameson 求解方法
姓名:王司文 学号:sx1301102
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
用有限体积方法求解欧拉方程

有限体积法求解二维可压缩Euler方程——计算流体力学课程大作业老师:夏健、刘学强学生:徐锡虎学号:SQ日期:2010年2月5日目录一、内容摘要 (2)二、流动控制方程 (2)三、有限体积法的空间离散 (2)四、人工耗散 (3)五、时间离散 (4)六、边界条件 (5)七、计算结果 (8)八、结论与展望 (11)参考文献 (11)一、内容摘要本文通过运用JAMESON 有限体积法求解了二维定常和非定常可压缩Euler 方程。
程序实现语言为C++。
其中,使用的网格是三角形非结构网格。
在时间推进上使用的是四步龙—库塔推进格式。
推进的时间步长取的是当地的时间步长。
为了消除迭代误差、round-off 等误差,本文采用了添加人工耗散项的办法。
另外,本文计算了NACA0012翼型在跨音速下不同迎角的情况,并与fluent 软件的计算结果进行了比较,来验证程序的准确性。
二、流动控制方程守恒形式的Euler 方程:0=-+Ω∂∂⎰⎰ΩGdx Fdy wd t S(1) 其中x 和y 代表笛卡儿坐标系。
W 是守恒变量。
⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=E V U W ρρρρ (2)F,G 表示通量⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+=UH UV P U U F ρρρρ2, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+=VH P V UV V G ρρρρ2(3) ρ,P , H 和E 表示密度,压强,单元总焓和单元总能量。
U,V 表示笛卡儿坐标系下的速度矢量。
这些量由理想气体的单位体积的总能量和总焓相互联系。
2/122)()(V U P E ++-=ργρ (4)P E H +=ρρ (5)三、有限体积法的空间离散计算域被划分为互不重叠的单元。
在每个单元运用守恒形式的Euler 方程。
由于每个单元相对于时间都是不变的,所以等式(1)可以写成:⎰⎰ΩΩ--=∂∂d Gdx Fdy tWS )( (8)其中Ω和S 是单元的体积和边界。
W 是单元的平均值。
应用有限差分法计算二维欧拉方程

应用有限差分法计算二维欧拉方程有限差分法是一种常用的数值计算方法,用于求解偏微分方程。
二维欧拉方程是一类常见的二阶偏微分方程,表示为:∂u/∂t=a(∂²u/∂x²+∂²u/∂y²)其中,u(x,y,t)是待求解的函数,a是常数。
为了使用有限差分法计算二维欧拉方程,我们需要离散化方程中的时间和空间变量。
我们可以将定义域分成n个小区间,将时间区间分成m个小区间,其中n和m可以任意选择,但需要满足数值稳定性要求。
在空间方向上,我们可以将二维区域分成nx × ny个小网格,每个小网格的尺寸为Δx × Δy,其中Δx和Δy是步长。
在时间方向上,我们将整个时间域分成m个时间步长,每个时间步长的尺寸为Δt。
我们可以用u(i,j,k)表示空间坐标(x,y)为(iΔx,jΔy)、时间坐标t 为kΔt的节点处的值。
根据欧拉法的思想,我们可以使用以下差分格式来近似二维欧拉方程:(u(i,j,k+1)-u(i,j,k))/Δt=a((u(i+1,j,k)-2u(i,j,k)+u(i-1,j,k))/Δx²+(u(i,j+1,k)-2u(i,j,k)+u(i,j-1,k))/Δy²)注意到,上式使用中心差分来近似二阶偏导数项。
通过对上述方程进行适当的变换和代数运算,我们可以得到u(i,j,k+1)的计算公式:u(i,j,k+1)=u(i,j,k)+aΔt((u(i+1,j,k)-2u(i,j,k)+u(i-1,j,k))/Δx²+(u(i,j+1,k)-2u(i,j,k)+u(i,j-1,k))/Δy²)通过以上公式,我们可以在每个时间步长上,从已知时刻的u值,计算下一个时刻的u值。
在进行计算前,我们还需要确定边界条件。
边界条件是在方程定义域的边界上给出的额外条件,用于限定问题的解。
常见的边界条件有固定值边界条件、导数值边界条件和周期性边界条件等。
欧拉方程的求解

欧拉方程的求解1.引言在数学研究领域,我们经常会看到以数学家名字命名的概念、公式、定理等等,让人敬佩跟羡慕.但是,迄今为止,哪位数学家的名字出现得最多呢?他就是数学史上与阿基米德、牛顿、高斯齐名的“四杰”之一,人称“分析学的化身”的盲人数学家欧拉(Leonhard Euler,1707--1783).几乎在每一个数学领域都可以看到他的名字,譬如我们熟悉的“欧拉线”、“欧拉圆”、“欧拉公式”、“欧拉定理”、“欧拉函数”、“欧拉积分”、“欧拉变换”、“欧拉常数”欧拉还是许多数学符号的发明者,例如用π表示圆周率、e 表示自然对数的底、()f x 表示函数、∑表示求和、i 表示虚数单位以欧拉命名的数学名词有很多,本文主要讲解以欧拉命名的方程即“欧拉方程”.在文献[1]中,关于欧拉方程的求解通常采用的是变量变换的方法.变量变换法就是将所求的欧拉方程化为常系数齐次线性微分方程,然后再来求解这个常系数齐次线性微分方程的解,亦即求其形如K y x =的解,进而求得欧拉方程的解.但有些欧拉方程在用变量变换法求解时比较困难.本文在所学的欧拉方程的求解的基础上,对欧拉方程进行了简单的分类,并针对不同阶的欧拉方程的求解给出了不同的定理.最后在每类欧拉方程后面给出了典型的例题加以说明.2.几类欧拉方程的求解定义1 形状为()1(1)110n n n n n n y a x y a xy a y x ---'++++= (1)的方程称为欧拉方程. (其中1a ,2a ,,1n a -,n a 为常数)2.1二阶齐次欧拉方程的求解(求形如K y x =的解)二阶齐次欧拉方程: 2120x y a xy a y '''++=. (2) (其中1a ,2a 为已知常数)我们注意到,方程(2)的左边y ''、y '和y 的系数都是幂函数(分别是2x 、1a x 和02a x ),且其次依次降低一次.所以根据幂函数求导的性质,我们用幂函数K y x =来尝试,看能否选取适当的常数K ,使得K y x =满足方程(2). 对K y x =求一、二阶导数,并带入方程(2),得212()0K K K K K x a Kx a x -++=或212[(1)]0K K a K a x +-+=,消去K x ,有 212(1)0K a K a +-+=. (3)定义2 以K 为未知数的一元二次方程(3)称为二阶齐次欧拉方程(2)的特征方程.由此可见,只要常数K 满足特征方程(3),则幂函数K y x =就是方程(2)的解.于是,对于方程(2)的通解,我们有如下结论:定理1 方程(2)的通解为(i) 1112ln K K y c x c x x =+, (12K K =是方程(3)的相等的实根) (ii)1212K K x c x y c +=, (12K K ≠是方程(3)的不等的实根) (iii)12cos(ln )sin(ln )x x c x x y c ααββ+=.(1,2K i αβ=±是方程(3)的一对共轭复根)(其中1c 、2c 为任意常数)证明 (i )若特征方程(3)有两个相等的实根: 12K K =,则11K x y =是方程(2)的解, 且设2()u x y =,11()K y x u x =(()u x 为待定函数)也是方程(2)的解(由于21()y u x y =,即1y ,2y 线性无关),将其带入方程(2),得 11122111112[()2]()0K K K x K K u K xu x u a x K u xu a x u ''''-+++++=,约去1K x ,并以u ''、u '、u 为准合并同类项,得22111112(2)[(1)]0x u K a xu K a K a u '''++++-+=.由于1K 是特征方程(3)的二重根,因此21112(1)0K a K a +-+=或112(1)0K a +-=,于是,得20x u ux '''+=或0xu u '''+=,即 ()0xu ''=,故 12()ln u x c x c =+.不妨取()ln u x x =,可得方程(2)的另一个特解12ln K y x x =,所以,方程(2)的通解为1112ln K K y c x c x x =+.(其中1c ,2c 为任意常数)(ii )若特征方程(3)有两个不等的实根: 12K K ≠,则11K x y =,22K y x =是方程(2)的解. 又2211()21K K K K y x x y x-==不是常数,即1y ,2y 是线性无关的. 所以,方程(2)的通解为1212K K x c x y c +=. (其中1c ,2c 为任意常数)(iii )若特征方程(3)有一对共轭复根:1,2K i αβ=±(0β≠),则 ()1i x y αβ+=,()2i y x αβ-=是方程(2)的两个解,利用欧拉公式,有()ln 1(cos(ln )sin(ln ))i i x x x e x x i x y αβαβαββ+===+,()ln 2(cos(ln )sin(ln ))i i x x x e x x i x y αβαβαββ--===-,显然,12cos(ln )2y y x x αβ+= 和12sin(ln )2y y x x iαβ-=是方程(2)的两个线性无关的实函数解. 所以,方程(2)的通解为12cos(ln )sin(ln )x x x x y c c ααββ=+.(其中1c ,2c 为任意常数)例1求方程20x y xy y '''-+=的通解.解 该欧拉方程的特征方程为(1)10K K K --+=,即 2(1)0K -=,其根为: 121K K ==,所以原方程的通解为12(ln )y c c x x =+.(其中1c ,2c 为任意常数)例2 求方程280x y xy y '''--=的通解.解 该欧拉方程的特征方程为2(11)80K K +---=,即 2280K K --=,其根为: 12K =-,24K =,所以原方程的通解为4122c y c x x=+. (其中1c ,2c 为任意常数)例3 求方程的通解2350x y xy y '''++=.解 该欧拉方程的特征方程为(1)350K K K -++=,即 2250K K ++=,其根为: 1,212K i =-±,所以原方程的通解为121[cos(2ln )sin(2ln )]y c x c x x=+. (其中1c ,2c 为任意常数)2.2二阶非齐次欧拉方程的求解(初等积分法)二阶非齐次欧拉方程:212()x y a xy a y f x ++='''. (4)(其中1a ,2a 为已知实常数,()f x 为已知实函数)为了使方程(4)降阶为一阶线性微分方程,不妨设1121a K K =--,212a K K =, (5)则方程(4)变为212122)(1()K a x y K K xy K y f x +--+=''',即212()()()x xy K y K xy K y f x ---=''', (6)根据韦达定理,由(5)式可知,1K ,2K 是一元二次代数方程 212(1)0K a K a +-+= (3) 的两个根.具体求解方法:定理2 若1K ,2K 为方程(2)的两个特征根,则方程(4)的通解为 212111[()]K K K K y x x x f x dx dx ----=⎰⎰. (7)证明 因为1K ,2K 为方程(2)的两个特征根,于是方程(4)等价于方程(6),令 2xy K y p '-=,代入方程(6)并整理,得1()K f x p x xp =-' 和 2K p y y x x '-=, 解之,得方程(4)的通解为212111[()]K K K K y x x x f x dx dx ----=⎰⎰.由定理2知,只需要通过两个不定积分(当(7)式中的积分可积时)即可求得方程(4)的通解.为了方便计算,给出如下更直接的结论.定理3 若1K ,2K 为方程(2)的两个特征根,则(i )当12K K =是方程(2)的相等的实特征根时,方程(4)的通解为 11111[ln ()ln ()]K K K x x f x dx x x f x dx y x -----⋅=⎰⎰, (ii )当12K K ≠是方程(2)的互不相等的实特征根时,方程(4)的通解为112211121[()()]K K K K x x f x dx x x f x dx K K y ------=⎰⎰, (iii )当1,2K i αβ=±是方程(2)的共轭复特征根时,方程(4)的通解为 111[sin(ln )cos(ln )()cos(ln )sin(ln )()]y x x x x f x dx x x x f x dx αααβββββ----=-⎰⎰ 证明 (ii )当12K K ≠是方程(2)的互不相等的的实特征根时, 将方程(1)的通解(7)进行分部积分,得21212112212121121111211212112111[()]1[()]1{[()]}1[]()()()K K K K K K K K K K K K K K K K K K K x x x f x dx dx x x f x dx dx K K x x x d x f x dx K K x x K K y x f x dx x f x dx x f x dx -------------------=-===--⎰⎰⎰⎰⎰⎰⎰⎰⎰(8) (iii )当1,2K i αβ=±是方程(2)的共轭复特征根时,122K K i β-=, 再由欧拉公式有1ln [cos(ln )sin(ln )]K i i x x x e x x i x x αβαβαββ+===+, 2ln [cos(ln )sin(ln )]K i i x x x e x x i x x αβαβαββ--===-, 将其代入(8)式,整理可得方程(4)的通解为111[sin(ln )cos(ln )()cos(ln )sin(ln )()]x x x x f x dx x x x f x dx y αααβββββ-----=⎰⎰(i )的证明和(ii )类似.例1求方程22234ln y xy y x x x x '''-+=+的通解.解 该欧拉方程所对应的齐次方程的特征方程为2440K K -+=, 特征根为 122K K ==,所以由定理3,原方程的通解为23223222232122223212[ln (ln )ln (ln )]111{ln [(ln )ln ][(ln )(ln )]}23211ln [(ln )(ln )]62x x x x x dx x x x x x dx x x x c x x c x x c x x x x y x x c --+-⋅+++-+-+++===⎰⎰ (其中1c ,2c 为任意常数)例2求方程2322x x y xy y x e -+='''的通解.解 该欧拉方程所对应的齐次方程的特征方程为2320K K -+=,特征根为 12K =,21K =,所以由定理3,原方程的通解为23323212212()()x x x x x xx x e dx x x x e dxx e c x xe e c c x c x xe y x ---=+---=++=⎰⎰(其中1c ,2c 为任意常数)例3求方程2cos(ln )2x x x y xy y -+='''的通解. 解 该欧拉方程所对应的齐次方程的特征方程为2220k k -+=,特征根为 1,21K i =±,所以由定理3,原方程的通解为212122cos(ln )]cos(ln )cos(ln )11sin(ln )cos(ln )cos(ln ))sin(ln )cos(ln )sin(ln )cos(ln )sin(ln )[sin(ln )]{sin(ln )(ln )cos(ln )[ln(cos(ln )]}[][sin(ln )ln x x x x dx dx x x x dx x dx x x x x c x y x x x x x x x x x x c x x c x c x x x ----+===+++=++⎰⎰⎰⎰cos(ln )ln(cos(ln ))]x x (其中1c ,2c 为任意常数)在定理3中,若令()0f x =,则得到二阶齐次欧拉方程(2)的通解.推论 方程(2)的通解为(i)1112ln K K x c x x y c +=, (12K K =是方程(2)的相等的实特征根) (ii)1212K K x c x y c +=, (12K K ≠是方程(2)的不等的实特征根) (iii)12cos(ln )sin(ln )x x c x x y c ααββ+=.(1,2K i αβ=±是方程(2)的共轭复特征根)(其中1c ,2c 为任意常数)2.3三阶非齐次欧拉方程的求解(常数变易法)三阶非齐次欧拉方程:32123()x y a x y a xy a y f x +++=''''''.(9) (其中1a ,2a ,3a 为常数)(9)对应的齐次方程为321230x y a x y a xy a y +++=''''''. (10) 特征方程为321123(3)(2)0K a K a a K a +-+-++=.(11)定理4 设1K 是方程(11)的根,2K 是方程22122112(31)[3(1)2]0K K a K K K a K a ++-+-++=的根,则(9)的通解为12211211(231)(22){[()]}K K K K a K K a x x x f x dx dx dx y x -++-++-=⎰⎰⎰ . (12) 证明 根据条件1K y cx =(c 为任意常数)是方程(10)的解. 设1()K y c x x =是方程(9)的解(其中()c x 是待定的未知数), 将其代入方程(9),整理得1121111112(3)3231111213()(3)()[3(1)2]()[(3)(2)]()()K c x K a x c x K K a K a x c x K a K a a K a x c x x f x ---+-''''''+++-++++-+-++= (13)因为1K 是(11)的根,则321111213(3)(2)0K a K a a K a +-+-++=,于是(13)式化为1(3)121111112()(3)()[3(1)2]()()K c x K a x c x K K a K a x c x x f x -+--''''''+++-++=(14)这是以()c x '为未知函数的二阶欧拉方程. 设2K 为(14)对应的齐次方程的特征方程21111112(31)[3(1)2]0K K a K K K a K a ++-+-++=, (15)的根,则221121(23)(2)()[()]K K K a K K c x x x x f x dx dx -+++-'=⎰⎰.从而2211211(23)(22){[()]}()K K K a K K a x x x f x dx dx dx c x -++++-=⎰⎰⎰. 故方程(1)的通解为12211211(231)(22){[()]}K K K K a K K a x x x f x dx dx dx y x -++-++-=⎰⎰⎰.定理5 设1K 是方程(11)的根,2K 是方程(15)的根,则(i )当1K 是方程(11)的单实根,2K 是方程(15)的单实根,则(9)的通解为1212121121(2)1(3)(2)121[()()](32)1K K K K K K a K K a x y x x f x dx x x f x dx dx K K a -++-++++=-++-⎰⎰⎰(ii )当1K 是方程(11)的单实根,2K 是方程(15)的单虚根,则(9)的通解为111(2)(2){[sin(ln )cos(ln )()cos(ln )sin(ln )()]}K K K x x xx f x dx x x x f x dx dxy xαααβββββ-++-++-=⎰⎰⎰(其中11132K a α--=,β=(iii )当1K 是方程(11)的单实根,2K 是方程(15)的重实根,则(9)的通解为121212(2)(2){[ln ()ln ()]}K K K K K K x x x f x dx x x f x dx dx y x -++-++-⋅=⎰⎰⎰,(iv )当1K 是方程(11)的三重实根,方程(15)变为2210K K ++=,有21K =-,则(9)的通解为111(1)(1)1{[ln ()ln ()]}K K K y x x x x f x dx x x f x dx dx -+-+-=-⋅⎰⎰⎰. 证明 (i )因为2K 是方程(15)的单实根,得(14)的通解为212121121(2)1(3)(2)31211[()()](32)1()K K K K K a K K a x x f x dx x x f x dx K K a c x -++-++++--++-='⎰⎰则(9)的通解为1212121121(2)1(3)(2)3121[()()](32)1K K K K K K a K K a x y x x f x dx x x f x dx dx K K a -++-++++-=-++-⎰⎰⎰(ii )因为2K 是方程(14)的单虚根,此时方程(15)有一对共轭虚根1,22K =得(14)的通解为11(2)(2)[sin(ln )cos(ln )()cos(ln )sin(ln )()]()K K x x x x f x dx x x x f x dx c x αααβββββ-++-++-='⎰⎰则(9)的通解为111(2)(2){[sin(ln )cos(ln )()cos(ln )sin(ln )()]}K K K x x xx f x dx x x x f x dx dxy xαααβββββ-++-++-=⎰⎰⎰(其中11132K a α--=,β=(iii )因为2K 是方程(15)的重实根,得(9)的通解为121212(2)(2){[ln ()ln ()]}K K K K K K x x x f x dx x x f x dx dx y x -++-++-⋅=⎰⎰⎰.(iv )当1K 是方程(10)的三重实根(1133a K =-),方程(15)变为222210K K ++=,有21K =-,将1133a K =-,21K =-代入(12)式得11(1)11{[()]}K K y x x x x f x dx dx dx -+--=⎰⎰,对上式分部积分得(9)的通解为111(1)(1)1{[ln ()ln ()]}K K K x x x x f x dx x x f x dx dx y -+-+-⋅-⋅=⎰⎰⎰.例1 求三阶欧拉方程32366x y x y xy y x -+-=''''''的通解. 解 原方程对应的齐次方程为323660x y x y xy y -+-='''''',其特征方程为3261160K K K -+-=,解得其特征根为1,2,3,取 11K =, 将11K =,13a =-,26a =,代入方程(15),得2220K K -=,解得21K =或0,利用定理5(i )的通解公式有323212311[]ln 22y x x x dx x dx dx x x c x c x c x --=-=+++⎰⎰⎰. (其中1c ,2c ,3c 为任意常数)例2 求三阶欧拉方程3241313x y x y xy y x ''''''-+-=的通解. 解 原方程对应的齐次方程为32413130x y x y xy y ''''''-+-=,其特征方程为21613()()0K K K -+-=,从而解得特征单实根为11K =,将11K =,14a =-,213a =代入方程(15),得到222250K K -+=,解得 1,2212i K =±. 令212i K =+,则1α=,2β=, 利用定理5(ii )的通解公式有33213{[sin(2ln )cos(2ln )cos(2ln )sin(2ln )]}211ln [sin(2ln )cos(2ln )]816xx x x dx x x x dx dxx x c x c x c x y x ---=+-+=⎰⎰⎰(其中1c ,2c ,3c 为任意常数)2.4 n 阶齐次欧拉方程的求解(求形如K y x =的解)令K y x =是方程(1)的解,将其求导(需要求出y '、y ''(1)n y -、()n y )代入方程(1),并消去K x ,得 1(1)(1)(1)(1)(2)0n n K K K n a K K K n a K a ---++--++++=. (16)定义3 以K 为未知数的一元n 次方程(16)称为n 阶齐次欧拉方程(1)的特征方程.由此可见,如果选取k 是特征方程(16)的根,那么幂函数k y x =就是方程(1)的解.于是,对于方程(1)的通解,我们有如下结论:定理6 方程(1)的通解为112211n n n n y c y c y c y c y --=++++(其中1c ,2c 1n c -,n c 为任意常数),且通解中的每一项都有特征方程(16)的一个根所对应,其对应情况如下表:例1 求方程4(4)3(3)281550x y x y x y xy '''+++=的通解. 解 该欧拉方程的特征方程为(1)(2)(3)8(1)(2)15(1)50K K K K K K K K K K ---+--+-+=,整理,得2(22)0K K K ++=,其根为]cos(ln k β120K K ==,3,41K i =-±,所以原方程的通解为3412ln cos(ln )sin(ln )c cy c c x x x x x=+++. (其中1c ,2c ,3c ,4c 为任意常数)例2 求方程(4)(3)432670x y x y x y xy y ++++='''的通解. 解 该欧拉方程的特征方程为(1)(2)(3)6(1)(2)7(1)10K K K K K K K K K K ---+--+-++=,整理,得410K +=,其根为1,2K i =-,3,4K i =(即一对二重共轭复根),所以原方程的通解为1234cos(ln )sin(ln )ln cos(ln )ln sin(ln )y c x c x c x x c x x =+++.(其中1c ,2c ,3c ,4c 为任意常数)3.结束语从前面的讨论过程来看,和教材中的变量变换法相比,本文中的解决办法更直接、更简单.但需要说明的是,本文中的定理和例题都是在0x >范围内对齐次欧拉方程求解的,如果要在0x <范围内对其求解,则文中的所有ln x 都将变为ln()x -,所得的结果和0x >范围内的结果相似.4.致谢经过这好几个月忙碌的学习跟工作,本次毕业论文的写作已经接近尾声了,但这次毕业论文的写作经历让我感受颇多.首先,自己要有很好的专业知识的储备,这也是写作的基础.其次,自己要有严谨的思维逻辑.再次,自己要善于思考,遇到不懂得问题就要勤于思考,查资料,问老师.最后,自己一定要有坚持不懈的精神.毕业论文的写作是一个长期的过程,在写作过程中我们难免会遇到各种各样的过程,但我们不能因此就放弃,而要做到坚持.要相信“有付出就一定会有所收获”的.在这里首先要感谢我的指导老师胡宏昌教授.胡老师平日里工作繁多,但在我做毕业论文阶段,他都给予了我悉心的指导,细心地纠正论文中的错误并给予指导.如果没有他的大力支持,此次论文的完成将变得非常困难.除了敬佩胡老师的专业水平外,他的治学严谨和科学研究的精神也值得我永远学习,并将积极影响我今后的学习和工作.然后还要感谢大学四年来我的所有的老师跟领导,为我们打下了坚实的专业知识的基础.最后祝各位评审老师身体健康,工作顺利!5、参考文献[1]王高雄,周之铭,朱思铭,王寿松.常微分方程[M].第3版.北京:高等教育出版社,2006:142-144.[2]华东师范大学数学系.数学分析(上)[M].第3版.北京:高等教育出社,1999:87-199.[3]钟玉泉.复变函数论[M].第3版.北京:高等教育出版社,2003:10-11.[4]胡劲松.一类欧拉方程特解的求解.重庆科技学院学报[J],2009,11(2):143-144.[5]胡劲松,郑克龙.常数变易法解二阶欧拉方程.大学数学[J],2005,21(2):116-119.[6]米荣波,沈有建,汪洪波.三阶欧拉方程求解的简化常数变易方法.海南师范大学学报[J],2008,21(3):260-263.[7]胡劲松.齐次欧拉方程的另一种求解方法.重庆工学院学报[J],2004,18(1):4-748.[8]冀弘帅.认识伟大的数学家----欧拉.数学爱好者[J],2006,10:52-53.[9]卓越科学家欧拉.中学生数理化(北师大版)[J],2007,Z2: 101-102.。
应用有限差分法计算二维欧拉方程

基于非结构网格二维Euler方程的Jameson求解方法姓名:王司文学号:sx摘要本文介绍了基于CFD理论的求解二维可压缩流Euler方程的Jameson中心格式方法。
在空间离散上采用的是有限体积法,时间上采用的是四步显式Runge -Kutta迭代求解。
人工耗散项为守恒变量的二阶和四阶差分项。
边界条件采用的是无反射边界条件,并采用当地时间步长进行加速收敛。
最后对NACA0012翼型划分了三角形,并应用本文程序进行数值模拟,结果较为理想。
关键字:CFD,Jameson中心格式,Euler方程,有限体积法AbstractA method for the numerical solution of the two-dimensional Euler equations has been developed. The cell-centred symmetric finite-volume spatial discretisation is applied in a general formulation. The integration in time, to a steady-state solution, is performed using an explicit, four-stage Runge-Kutta procedure. The artificial dissipation is constructed as a blending of second and fourth differences of the conserved variables. And in the boundary, there is none of the outgoing waves are reflected back into the computational domain. An acceleration technique called local time stepping is used. At last, standard test cases for both subsonic and supersonic flows have been used to validate the method.Key words:CFD, Jameson method,Euler equations, finite-volume第一章引言在工程应用的推动下,计算流体力学随着计算机技术的发展和计算格式的不断更新而迅猛发展。
可压缩二维无粘流动_二维_欧拉方程_有限差分_MacCormack_Bump

可压缩二维无粘流动摘要本题利用欧拉方程求解可压缩二维无粘流动,并将其与Numeca Fine/Turbo 的计算结果对比。
流道由上平板固壁和带有凸起的下固壁组成,进口给定总温、总压和速度方向,出口给定压力。
自编代码求解时,基于有限差分方法,利用MacCormack 格式对控制方程进行离散,根据黎曼不变量和边界条件由内层网格数据外推获得边界数据。
文中给出了计算收敛残差历史、密度、速度、压力、马赫数和熵分布,并将其和Numeca 计算结果对比,分析自编代码计算结果的合理性和误差来源。
关键词二维;欧拉方程;有限差分;MacCormack ;Bump1 问题提出该问题是经典的Bump 计算问题[1],如图1所示,上壁为平板,下壁带有凸起,均为滑移边界。
进口为轴向进气,且给定总参数为0280T K =和50 1.110p Pa =⨯,出口为5110out p Pa =⨯。
图1准一维管道示意图本题的分析思路:首先,建立计算域中的主控方程,然后根据MacCormack 格式对方程进行离散,最后通过边界条件和黎曼不变量确定边界数据。
收敛条件为相邻时间步的压力差的最大值小于610-Pa 。
2模型建立物理域中的主控方程为二维欧拉方程,如式(1)所示。
将物理域x-y 变换到计算域ξ-η,控制方程变为式(2),J 为坐标变换的雅克比行列式,y η、x η、y ξ和x ξ均为物理域坐标对计算域的偏导数。
220,,,u v u u p uv where v uv v p t x yE Hu Hv ρρρρρρρρρρρρ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥+∂∂∂⎢⎥⎢⎥⎢⎥++= ===⎢⎥⎢⎥⎢⎥+∂∂∂⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦Q F G Q F G (1)0,,,where J y x y x t ηηξξξη∂∂∂++= ==- =-+∂∂∂Q'F'G'Q'Q F'F G G'F G (2)未知物理量为,,,,,p u v H E ρ共6个,因此为了方程组的封闭西需要补充两个方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二维欧拉方程
二维欧拉方程是描述流体力学中二维不可压缩流体运动的基本方程之一。
它是通过质量守恒和动量守恒两个方程来描述流体的运动行为。
本文将详细介绍二维欧拉方程的含义、推导过程以及其在流体力学中的应用。
二维欧拉方程是指在二维坐标系中描述流体运动的方程。
在二维欧拉方程中,假设流体是不可压缩的,即流体的密度保持不变。
根据质量守恒定律,可以得到质量守恒方程:
∂ρ/∂t + ∂(ρu)/∂x + ∂(ρv)/∂y = 0
其中,ρ表示流体的密度,t表示时间,u和v分别表示流体在x 和y方向上的速度分量。
这个方程表示了流体质量在时间和空间上的变化关系。
当流体是不可压缩的时候,质量守恒方程简化为:
∂u/∂x + ∂v/∂y = 0
这个方程说明了流体速度的变化与空间位置的关系。
根据动量守恒定律,可以得到动量守恒方程:
∂(ρu)/∂t + ∂(ρu^2)/∂x + ∂(ρuv)/∂y = -∂p/∂x + μ(∂^2u/∂x^2 + ∂^2u/∂y^2)
∂(ρv)/∂t + ∂(ρuv)/∂x + ∂(ρv^2)/∂y = -∂p/∂y + μ(∂^2v/∂x^2
+ ∂^2v/∂y^2)
其中,p表示流体的压强,μ表示流体的动力粘度。
这个方程表示了流体动量在时间和空间上的变化关系。
通过动量守恒方程,可以推导出流体的速度分布以及压强分布。
二维欧拉方程的推导过程较为复杂,涉及到偏导数和微分方程的运算。
在此不做详细展开,仅介绍其基本思路。
首先,利用质量守恒方程将动量守恒方程中的密度项进行消去,得到速度分量的偏微分方程。
然后,利用流体的不可压缩性质,即速度分量满足的条件,将速度分量的偏微分方程进行简化。
最后,将速度分量的偏微分方程与压强的偏微分方程进行组合,并根据边界条件进行求解。
二维欧拉方程广泛应用于流体力学的研究中。
通过求解二维欧拉方程,可以得到流体在不同空间位置和时间点上的速度和压强分布。
这对于研究流体的运动行为、预测流体的行为以及优化流体系统具有重要意义。
例如,在飞机设计中,可以利用二维欧拉方程来研究飞机在不同速度和高度下的气动性能,从而优化飞机的设计。
在水力学中,也可以利用二维欧拉方程来研究水流的流动规律,预测水流对建筑物和水利工程的影响。
二维欧拉方程是描述二维不可压缩流体运动的基本方程,通过质量守恒和动量守恒两个方程来描述流体的运动行为。
通过求解二维欧拉方程,可以得到流体在不同空间位置和时间点上的速度和压强分
布,从而对流体的运动行为进行研究和预测。
它在流体力学中具有重要的应用价值,对于优化流体系统的设计和预测流体行为具有重要意义。