微积分入门(精华)
微积分入门(精华)

数是(x)ddxax f(t)dt f(x)
y
证 (x x)a x xf(t)dt
(axb)
( x x ) ( x )
(x)
x x
x
a
f(t)d t f(t)dt a
o
a
x xxb x
30
a xf( t) d t x x xf( t) d a txf( t) dt
0
0
解 令 f(x)exx, x[2,0]
f(x ) 0 , 02(exx)dx 0,
0 exdx
0
xdx,
2
2
于是
2exdx
2
xdx.
0
0
可以直接作出答案
21
性质5的推论:
(1)如 果 在 区 间 [ a , b ] 上 f ( x ) g ( x ) ,
则 a b f( x ) d x a b g ( x ) d .x ( a b )
n
n
n
f (i )xi i2xi xi2xi ,
i1
i1
i 1
14
n
i1
i n
2
1 n
1
n3
n
i2
i 1
n 13n(n1)62 (n1)
161n12n1, x0n
1 x2dx 0
n
lim 0 i1
i2xi
lim 11121 1 . n6 n n 3
15
五、定积分 的性质
16
A if(i) xi
4
曲边梯形面积的近似值为
n
Af(i )xi
i1
当 分 割 无 限 加 细 ,记 小 区 间 的 最 大 长 度 或 者 (x)
微积分知识点归纳

微积分知识点归纳微积分是数学中最基础也是最重要的分支之一、它研究的是函数的变化和求解问题的方法。
微积分的核心思想是将一个复杂的问题进行分解,然后通过求和和求极限的方法来得到问题的解答。
以下是微积分中一些重要的知识点的归纳:1.极限:极限是微积分的核心概念。
通过求极限,可以描述函数的变化趋势、计算无穷大和无穷小的值。
极限的定义是当自变量趋于其中一特定值时,函数的值趋于其中一极限值。
2.导数与微分:导数描述了函数的变化率。
它表示函数在其中一点的切线斜率。
求导的方法包括了基本的求导法则和一些特殊函数的求导法则,如幂函数、指数函数、对数函数等。
微分是导数的几何意义,也可以理解为函数的一小段近似线性变化。
3.积分与定积分:积分是导数的逆运算。
它表示函数在一定区间上的累积变化量。
定积分是积分的一种具体形式,它可以求解曲线下面的面积、路径长度和体积等问题。
定积分的计算方法包括基本的定积分法则和换元法、分部积分法等。
4.微分方程:微分方程描述了函数与其导数之间的关系。
它是微积分中一个很重要的应用领域。
常见的微分方程包括一阶线性微分方程、二阶线性常系数齐次微分方程等,可以通过积分的方法进行求解。
5.泰勒级数与级数收敛性:泰勒级数是一种将函数展开为幂级数的方法。
它可以将复杂的函数简化为无限可微的多项式函数进行计算。
级数收敛性研究级数求和是否能收敛到有限的值,常用的判别法有比值判别法、根值判别法和级数展开法等。
6.空间解析几何:空间解析几何是微积分的一个重要应用。
它研究了点、直线、平面和曲线在三维空间中的性质和关系。
通过微积分的方法可以求解空间曲线的长度、曲率和曲面的面积等问题。
7.多元函数微积分:多元函数微积分研究的是多变量函数的导数、偏导数和多重积分等。
它在计算机科学、经济学和物理学等领域有广泛的应用。
8.偏微分方程与变分法:偏微分方程描述了多元函数的偏导数与自变量之间的关系。
变分法是一种求解偏微分方程的方法,它通过极小化一些泛函来求解偏微分方程的解。
初步微积分知识点总结

初步微积分知识点总结导数和微分是微积分的基础知识。
导数描述了函数在某一点的变化率,可以用来求函数的切线斜率。
计算导数的方法包括利用定义公式、利用导数的性质、利用求导法则等。
对于初学者来说,要熟练掌握这些方法,可以通过大量的练习来加深理解。
在实际应用中,导数可以用来解决许多问题。
比如,当我们用函数描述物体在某一时刻的位置时,我们可以用导数来描述物体的速度。
当我们用函数描述某一物理量随时间的变化时,我们可以用导数来描述物理量的变化率。
因此,掌握导数的知识对于理解自然现象和解决实际问题非常重要。
积分是导数的逆运算,它描述了函数下的面积或者体积。
计算积分的方法包括利用定积分的定义、利用积分的性质、利用换元法、利用分部积分等。
对于初学者来说,要熟练掌握这些方法,可以通过大量的练习来加深理解。
在实际应用中,积分可以用来解决许多问题。
比如,当我们用函数描述某一物理量的变化时,我们可以用积分来求出物理量的总量。
当我们用函数描述物体在某一时间段内的速度时,我们可以用积分来求出物体在这段时间内的位移。
因此,掌握积分的知识对于理解自然现象和解决实际问题非常重要。
微分方程是微积分的一个重要应用,它描述了某一物理量或者变化规律与其自身或者其他物理量之间的关系。
解微分方程的方法包括分离变量法、齐次方程法、一阶线性微分方程法、常系数线性齐次微分方程法等。
对于初学者来说,要熟练掌握这些方法,可以通过大量的练习来加深理解。
在实际应用中,微分方程可以用来描述许多自然现象和解决许多问题。
比如,当我们用微分方程描述弹簧振子的运动规律时,我们可以用微分方程来解出振子的运动轨迹。
当我们用微分方程描述电路中电荷的变化规律时,我们可以用微分方程来解出电路中电荷的变化规律。
因此,掌握微分方程的知识对于理解自然现象和解决实际问题非常重要。
微积分是一门非常重要的学科,它不仅是数学的基础学科,也是物理学、工程学、经济学等学科的基础。
通过学习微积分,我们可以更深入地理解自然现象和解决实际问题。
大一微积分知识点总结

大一微积分知识点总结微积分是高等数学的重要组成部分,对于大一的同学来说,是一门具有挑战性但又十分重要的课程。
以下是对大一微积分主要知识点的总结。
一、函数与极限函数是微积分的基础概念之一。
我们需要理解函数的定义、定义域、值域、单调性、奇偶性、周期性等性质。
比如,单调递增函数指的是当自变量增大时,函数值也随之增大;偶函数满足 f(x) = f(x) ,奇函数满足 f(x) = f(x) 。
极限是微积分中一个极其重要的概念。
极限的计算方法有很多,例如直接代入法、化简法、等价无穷小替换法、洛必达法则等。
等价无穷小在求极限时经常用到,比如当 x 趋近于 0 时,sin x 与 x 是等价无穷小。
洛必达法则则适用于“0/0”或“∞/∞”型的极限。
二、导数与微分导数反映了函数在某一点处的变化率。
对于常见的基本初等函数,如幂函数、指数函数、对数函数、三角函数等,要熟练掌握它们的求导公式。
导数的四则运算法则包括加法法则、减法法则、乘法法则和除法法则。
复合函数的求导法则是一个重点也是难点,需要通过链式法则来求解。
微分是函数增量的线性主部。
函数在某一点的微分等于函数在该点的导数乘以自变量的增量。
三、中值定理与导数的应用中值定理包括罗尔定理、拉格朗日中值定理和柯西中值定理。
这些定理在证明一些等式和不等式时非常有用。
利用导数可以研究函数的单调性、极值和最值。
当导数大于 0 时,函数单调递增;当导数小于 0 时,函数单调递减。
导数为 0 的点可能是极值点,但还需要通过二阶导数来判断是极大值还是极小值。
在实际问题中,经常需要通过求导数来找到最优解,比如求成本最小、利润最大等问题。
四、不定积分不定积分是求导的逆运算。
要熟练掌握基本积分公式,如幂函数的积分、指数函数的积分、三角函数的积分等。
积分的方法有换元积分法和分部积分法。
换元积分法包括第一类换元法(凑微分法)和第二类换元法。
分部积分法通常适用于被积函数是两个函数乘积的形式,比如 xe^x 。
微积分的基础知识与运算

微积分的发展历程
微积分作为现代数学中重要的分支,在牛顿、莱 布尼茨等数学家的努力下逐渐发展成熟。它的应 用领域广泛,是解决现实问题的重要工具之一。
● 05
第五章 链式法则与微分中 值定理
链式法则的概念
链式法则描述了复合 函数的导数计算规则, 对于求解复杂函数的 导数具有重要作用。 通过链式法则,我们 可以更有效地计算复 合函数的导数,提高 求导的效率。
物理学
近似计算物理现象 解决实际问题
工程学
估算工程参数 优化设计方案
微分方程
是求解微分方程的重要工 具
积分中值定理的 概念
积分中值定理描述函 数在某一区间上的平 均值性质,其中有柯 西中值定理、勒贝格 积分中值定理等,为 理解函数性质提供重 要依据。
积分中值定理的应用
性质证明
用于证明函数的 性质
学习微积分的建议
坚持练习
掌握基本概念和 方法
理解应用场 景
将理论知识应用 到实践中
多练习计算
熟练运用微积分 技巧
多与他人交 流
加深理解
拓展学习
学习高阶微积分
掌握不定积分、定积分等 高级概念 深入理解微积分的推导和 应用
探索多元微积分
理解多元函数概念 学习多元微分、多元积分 等内容
应用微积分解决问题
计算复杂图形的面积
03 速度与加速度
通过微积分求解物体的运动特性
微积分的数值计算
复化梯形法
求定积分的数值 近似
牛顿-拉夫逊 插值
曲线的插值与逼 近
预处理法
提高数值解的精 度
龙贝格积分 法
加速定积分的收 敛速度
感谢观看
THANKS
微分中值定理的应用
微积分基础公式

微积分基础公式
微积分是数学中的一个重要分支,也是物理学、工程学、经济学等领域中必不可少的工具。
下面是微积分基础公式的介绍:
1.导数公式
导数是微积分中的重要概念,表示函数在某一点处的变化率。
如果函数f(x)在点x处可导,那么它的导数为:
f'(x) = lim (Δx→0) [f(x+Δx) - f(x)]/Δx
2.求导法则
求导法则是求导的基本规则,包括常数法则、幂函数法则、指数函数法则、对数函数法则、三角函数法则等。
3.微分公式
微分是导数的另一种表达形式,表示函数在某一点处的变化量。
如果函数f(x)在点x处可微,那么它的微分为:
df = f'(x) dx
4.积分公式
积分是微积分中的另一个重要概念,表示函数在某一区间上的面积。
如果函数f(x)在区间[a,b]上连续,那么它的积分为:∫a^bf(x)dx
5.基本积分法
基本积分法是求解积分的基本方法,包括换元积分法、分部积分法、三角换元积分法等。
以上是微积分基础公式的介绍,对于学习微积分的同学们来说,
掌握这些公式是非常重要的。
大一微积分前五章知识点

大一微积分前五章知识点微积分是数学的一门重要分支,广泛应用于自然科学、工程技术、经济管理等领域。
作为大一学生的你,将要学习微积分的前五章内容。
下面将介绍这五章的主要知识点和概念。
第一章:数列与极限1. 数列的概念:数列是由一系列有序的数按一定规律排列而成的。
2. 数列的极限:当数列的项随着自变量的变化而趋近于一个确定的常数时,称该常数为数列的极限。
3. 收敛数列与发散数列:若数列存在极限,则称为收敛数列,否则称为发散数列。
4. 数列极限的性质:数列极限具有唯一性、有界性和保号性等重要性质。
第二章:函数与极限1. 函数的概念:函数是一个自变量和因变量之间的映射关系。
2. 函数的极限:当函数的自变量趋近于某个值时,函数的值根据一定的规则趋近于一个确定的常数,称该常数为函数的极限。
3. 函数极限的运算法则:极限有四则运算法则、复合函数的极限法则等。
4. 无穷小量与无穷大量:在函数极限的计算中,我们常常会用到无穷小量和无穷大量的概念。
第三章:连续函数与导数1. 连续函数的定义:函数在某一点上的函数值等于该点的极限,我们称该函数在该点连续。
2. 连续函数的性质:连续函数具有保号性、介值性和局部有界性等重要性质。
3. 导数的概念:导数是描述函数变化快慢程度的量,用于研究函数在任意点的切线斜率。
4. 导数的计算方法:导数具有基本运算法则、常用函数的导数公式等。
第四章:微分学的应用1. 微分的几何应用:微分学常用于求曲线的切线和法线、求曲率等几何问题的解决。
2. 最值与最值问题:利用微分学的知识,可以求函数的最大值、最小值及其所对应的自变量。
3. 函数的单调性与曲线的凹凸性:通过函数的导数可以判断函数的单调性和曲线的凹凸性。
第五章:不定积分1. 不定积分的概念:不定积分是反导数的概念,表示求函数的原函数的过程。
2. 基本积分表:基本积分表是常见函数的积分公式,学习时需要熟记并掌握应用。
3. 不定积分的计算方法:通过基本积分表、换元积分法、分部积分法等方法可以计算不定积分。
微积分大一知识点总结简单

微积分大一知识点总结简单微积分是数学中的一门重要学科,也是大学数学课程中不可或缺的一部分。
它是研究函数的变化规律和求解各种数学问题的工具。
在大一的微积分课程中,我们学习了一些基本的微积分知识点,本文将对这些常见且简单的大一微积分知识进行总结。
一、函数与极限在微积分的学习中,函数与极限是最基础的概念之一。
函数可以看作是两个集合之间的一种特殊关系,它描述了自变量和因变量之间的对应关系。
而极限是用来描述一个函数在某一点处的趋势和性质的概念。
1. 函数的定义函数是指在一个集合内部,每个自变量都与唯一的因变量对应。
函数可以用数学公式表示,例如y=f(x),其中x是自变量,y是因变量,f(x)表示函数表达式。
2. 极限的定义极限是用来描述函数在某个点附近的性质。
设函数f(x)在点x=a的某个去心邻域内有定义,如果存在常数A,对于任意给定的正数ε,总存在正数δ,使得当自变量x满足0 < |x-a| < δ时,都有|f(x)-A| < ε。
则称常数A是函数f(x)当x趋于a时的极限,记作lim(f(x))=A。
二、导数与微分导数与微分是微积分中的重要概念,它们可以用来研究函数的变化率和函数在某一点的性质。
1. 导数的定义函数在某一点的导数描述了函数在该点处的变化率。
设函数y=f(x),如果当自变量x沿着某个方向趋近于某一点a时,函数值f(x)的变化具有确定的趋势,即当x趋近于a时,有极限lim[(f(x)-f(a))/(x-a)]存在,则称函数在点a处可导,其导数为f'(a),即f'(a)=lim[(f(x)-f(a))/(x-a)]。
2. 微分的定义微分是导数的微小变化量,它描述了函数在某一点处的局部线性逼近。
函数f(x)在点x=a处的微分表示为df,满足df=f'(a)dx,其中dx是自变量的微小增量。
三、积分与定积分积分与定积分是微积分中的另外两个重要概念,它们可以用来求解曲线下的面积和函数的反导函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节 定积分的概念与性质
一、问题的提出
实例1 (求曲边梯形的面积)
y
曲边梯形由连续曲线
y f (x)
y f ( x)( f ( x) 0)、
x轴与两条直线x a 、
x b所围成.
A?
oa
bx
用矩形面积近似取代曲边梯形面积
y
y
oa
b xo a
bx
(四个小矩形)
(九个小矩形)
积分和
f (i )xi
积分下限
被 积 函 数
被
积
[a,b] 积分区间
积
分
表
变
达 式
量
注意:
(1) 积分值仅与被积函数及积分区间有关,
而与积分变量的字母无关.
b
a
f
( x)dx
b
a
f
(t )dt
b
a
f
(u)du
(2)定义中区间的分法和i 的取法是任意的.
(3)当函数 f ( x)在区间[a,b]上的定积分存在时,
例1 利用定义计算定积分 1 x2dx. 0
解
将[0,1]n 等分,分点为xi
i ,(i n
1,2,, n )
小区间[ xi1 , xi ]的长度xi
1 ,(i n
1,2,, n )
取i xi ,(i 1,2,, n)
n
n
n
f (i )xi i2xi xi2xi ,
n1 6 11 n
2
1 n
1. 3
五、定积分 的性质
性质1
b[ a
f
(
x)
g(
x)]dx
b
a
f
(
x)dx
b
a
g(
x)dx
.
证
b
a[
f
(
x)
g(
x)]dx
n
lim
0
[
i 1
f
(i
)
g(i
)]xi
n
n
lim
0
0
1
2
n1
n
把区间[a, b]分成n 个小区间,各小区间的长度依次为
xi xi xi1,(i 1,2,),在各小区间上任取
一点i (i xi ),作乘积 f (i )xi (i 1,2,)
n
并作和S f (i )xi ,
i 1
记 x max{x1,x2, ,xn},
(i )xi
n
n
lim k 0 i1
f (i )xi
k lim 0 i1
f (i )xi
b
k a f ( x)dx.
思路:把整段时间分割成若干小段,每小段上 速度看作不变,求出各小段的路程再相加,便 得到路程的近似值,最后通过对时间的无限细 分过程求得路程的精确值.
(1)分割 T1 t0 t1 t2 tn1 tn T2
ti ti ti1
si v( i )ti
f ( x) 0, f ( x) 0,
b
a f ( x)dx A
曲边梯形的面积
b
a f ( x)dx
A
曲边梯形的面积 的负值
A1 A2
A3 A4
b
a f ( x)dx
A1 A2
A3
A4
几何意义:
它是介于 x 轴、函数 f (x)的图形及两条 直线 x a, x b 之间的各部分面积的代数和. 在 x 轴上方的面积取正号;在 x 轴下方的面 积取负号.
如果不论对[a, b]
怎样的分法, 也不论在小区间[ xi1 , xi ]上
点i 怎样的取法,只要当 x 0时,和S 总趋于
确定的极限I , 我们称这个极限 I 为函数 f ( x)
在区间[a, b]上的定积分,记为
积分上限 b a
f ( x)dx
I
lim 0
n i 1
部分路程值
某时刻的速度
n
(2)求和 s v( i )ti
i 1
(3)取极限 max{t1,t2 ,,tn }
n
路程的精确值
s
lim
0
i 1
v(
i
)ti
二、定积分的定义
定义 设函数 f ( x)在[a, b]上有界,在[a, b]中任意插入
若干个分点 a x x x x x b
趋近于零 ( x 0或者 0) 时,
n
曲边梯形面积为
A
lim
0
i 1
f
(i )xi
实例2 (求变速直线运动的路程)
设某物体作直线运动,已知速度v v(t)是 时 间 间 隔 [T1 ,T2 ]上 t 的 一 个 连 续 函 数 , 且 v(t) 0,求物体在这段时间内所经过的路程.
上任取
一点
,
i
o a x1
b xi1i xi xn1
x
以 [ xi1, xi ]为底,f (i ) 为高的小矩形面积为
Ai f (i )xi
曲边梯形面积的近似值为
n
A f (i )xi
i 1
当分割无限加细,记小区间的最大长度 或者( x )
x max{x1, x2 , xn}
i 1
i 1
i 1
n
i 1
i n
2
1 n
1 n3
n
i 1
i2
1 n3
n(n
1)(2n 6
1)
1 6
1
1 n
2
1 n
,
x 0 n
1 x2dx 0
n
lim 0 i1
i 2xi
lim
i 1
f
(i )xi
lim 0
i 1
g(i )xi
b
b
a f ( x)dx a g( x)dx.
(此性质可以推广到有限多个函数作和的情况)
性质2
b
a kf
(
x
)dx
k
b
a
f
(
x)dx
(k 为常数).
证
bkf a
( x)dx
lim
0
n
kf
i 1
显然,小矩形越多,矩形总面积越接近 曲边梯形面积.
曲边梯形如图所示,
在区间 [a, b]内插入若干
个分点,a x0 x1 x2 xn1 xn b, 把区间[a,b] 分成 n y
个小区间[ xi1, xi ],
长度为 xi xi xi1;
在每个小区间[ xi1, xi ]
称 f ( x)在区间[a, b]上可积.
三、存在定理
定理1 当函数 f ( x)在区间[a, b]上连续时, 称 f ( x)在区间[a, b]上可积.
定理2 设函数 f ( x)在区间[a, b]上有界,
且只有有限个第一类的 间断点,
则 f ( x)在 区间[a, b]上可积.
四、定积分的几何意义