(小学奥数讲座)分数应用题常见方法

合集下载

小学奥数讲义:分数、百分数应用题

小学奥数讲义:分数、百分数应用题

分数、百分数应用题1【知识要点】分数、百分数应用题是日常生活和生产实践中应用最广泛的一类数学问题,并且这类知识与生活有着紧密的联系。

如何掌握此类问题的特征,并能熟练、灵活地加以运用,是研究此类问题所要思考的。

在解题过程中要着重解决以下几个方面的问题:1、准确地确定单位“1”的量。

2、确定类型。

单位“1”的量×分率=分率对应量 分率对应量÷分率=单位“1”的量 分率对应量÷单位“1”的量=分率 3、确定好对应关系。

4、设单位“1”的量为x ,列方程解决问题。

复杂类型题可以通过画线段图帮助了解“量率对应”关系。

【例题精讲】 一、量率对应1、小林买了一支圆珠笔和一支钢笔共用去12元,圆珠笔的价钱是钢笔的15 。

一支圆珠笔和一支钢笔各多少元?2、一桶油,第一次用去25 ,第二次用去10千克,这时剩下的油的质量正好是整桶油的一半,这桶油有多少千克?3、要修一条路,已修了全长的53少2千米,还剩下12千米没修,求这条路有多少千米?4、仓库里有一批化肥,第一次取出总数的52,第二次取出总数的31少12袋,这时仓库里还剩24袋,两次共取出多少袋?5、王师傅要加工一批零件,第一天加工的零件比这批零件的81还多21个,第二天加工的零件比这批零件的61少6个,还剩下172个没加工。

王师傅一共要加工多少个零件?二、转化单位“1”1、阿呆三天看完一本书,第一天看了全书的31,第二天看了余下的72,第一天比第二天多看了15页,这本书共有多少页?2、甲、乙、丙三人合做一批玩具,甲所做玩具的个数是其余两人的21,乙所做玩具的个数是其余两人的31。

已知丙做了60个,求甲、乙各做了多少个?3、2008年北京奥运会进行到第13天时,金牌榜上排名前三名的分别是中国、美国和英国,共86枚金牌,其中英国占美国的138,美国占中国的2213,中国、美国、英国这时各得几枚金牌?4、某厂男职工比全厂职工总人数的53多60人,女职工人数是男职工的31,这个厂共有职工多少人?三、抓不变量解分数应用题1、今年妈妈54岁,女儿26岁,当女儿的年龄是妈妈的239时,妈妈多少岁?2、有甲、乙两袋小球,甲袋小球占甲、乙两袋小球总个数的52,如果从乙袋中取8个小球放到甲袋中,那么甲袋小球占甲、乙两袋小球总个数的209,这时乙袋中有多少个小球?3、甲、乙两人原有钱的比是3:4,后来甲又给乙50元,这时甲钱是乙的21,原来两人各有多少元钱?4、一堆棋子中,黑子颗数是白子的52,后来又放进了14颗黑子,这时黑子占全部棋子的73,这堆棋子原来有多少颗?5、甲、乙两人各带一些钱去超市,甲和乙带的钱数的比是13:9,两人都花了30元,甲剩下的钱是乙剩下的钱的2倍,原来甲、乙带的钱各是多少元?【练习】1、五年级参加数学竞赛的学生中,女生有18人,相当于男生参赛人数的32。

六个技巧解决小学六年级数学难题——分数应用题

六个技巧解决小学六年级数学难题——分数应用题

本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载,另外祝您生活愉快,工作顺利,万事如意!六个技巧解决小学六年级数学难题——分数应用题分数应用题是小学数学应用题中的重点难点,由于抽象程度比较高,很多孩子都难以把握,致使失分率也比较高。

其实,分数应用题的解题是有规律可循的,家长在辅导孩子时,就要教孩子抓住规律,得出解题方法。

总的来说,帮助孩子攻克分数应用题,家长从以下六个解题技巧入手。

一、字斟句酌分数应用题很多时候容易产生“歧义”,所以家长要特别提醒孩子在审题时抓住关键句,找准比较的对象。

分数应用题中都有说明两个量之间关系的句子,这些句子是应用题的题眼、解题的突破点。

比如:汽车在公路上行驶,先把速度提高20%,再把速度降低20%,现在的速度是原来的百分之几?分析:设定原来的速度为100%,提高20%后为120%,当再次降低时,是在120%的基础上降低,此时的20%是120%×0.2=24%。

所以降低后是120%-24%=96%。

二、抓不变量有些分数应用题数量变化多,分析难度大,不易列式计算。

但是,仔细分析就会发现,变来变去,总有一个量是不变的,这就是我们所说的不变量。

对于这类分数应用题,家长辅导孩子解答时,要专注“不变量”,以静制动,使问题迎刃而解。

比如:有两桶水,第一桶水的重量是第二桶水的6倍,从第一桶取出12千克水加入第二桶,这时第一桶水的重量是第二桶的4倍,问第一桶原来有水多少千克?分析:两桶水的总重量总是不变的,但又未知,我们把它看作单位“1”的量。

则“取前”第一桶占两桶水总重量的1/(1+6)=1/7,“取后”第一桶占两桶水总重量的1/(1+4)=1/5。

第一桶取前取后差12千克占两桶总重量的1/5-1/7=2/35,故两桶水总重量为12÷2/35=210(千克),由此可求出原来第一桶水的重量为:210÷1/7=30(千克)三、找准单位“1”的量不管是简单分数应用题还是复杂的分数应用题,题中都有关键句,关键句中都有单位“1”的量,准确找出单位“1”的量是解答分数应用题的前提条件。

(小学奥数讲座)分数应用题常见方法

(小学奥数讲座)分数应用题常见方法

分数应用题常见方法在比较复杂的分数应用题中,“四步法”只是基础的分析思维,还需要借助一些方法来解题。

除了画图法外,还有以下几种解题方法(一)对应法小学四年级奥数中有专门的章节介绍对应法解应用题。

对应法的核心思维是:不仅数字可以列竖式进行加减,算式也可以列竖式加减例:学校安排一批学生到图书馆借书,如果男生增加1/5,人数将达到52人,如果女生减少1/5,人数是42人。

这批学生原有多少人?解析:根据题意,我们可以找出下面两个数量关系式:男生人数+1/5的男生人数+女生人数 = 52男生人数+女生人数-1/5的女生人数 = 42 这两个式子对应相减(竖式相减),得:1/5的男生人数+1/5的女生人数 = 10即1/5 ×(男生人数+女生人数)=10男生人数+女生人数=10÷1/5=50(人)(二)转化法当题中出现多个单位“1”时,我们可以把不同的单位“1”转化成统一的单位“1”例:小明、小英、小丽和小华四人爱好集邮,小明的邮票数是小英的1/2,小英的邮票数是小丽的1/3,小丽的邮票数是小华的1/4,已知四人共集邮132张,小明集邮多少张?解析:按照“四步法”,题中有三个不带单位的分率,它们的单位“1”分别是小英、小丽和小华;肯定用除法;题中只有一个带单位的数量:132张,列式一定是用132去除;132是指四人集邮总数,应除以四人的分率总和,题目最关键就是要把四人的分率表示出来,由于存在不同的单位“1”,首先必须把不同的单位“1”统一成一个单位“1”。

有正确的思路,才知道该做什么。

把题中三个单位“1”,统一转化成以小华的集邮数做单位“1”。

小华是单位“1”,根据“小丽的邮票数是小华的1/4”,小丽就是1/4;根据“小英的邮票数是小丽的1/3”,小英就是:1/3 × 1/4= 1/12;根据“小明的邮票数是小英的1/2”,小明就是:1/2× 1/12=1/24,现在四人的分率都表示出来了,可以除了。

小学奥数之分数的应用题

小学奥数之分数的应用题

小学奥数之分数的应用题1. 分析题目确定单位“1”2. 准确找到量所对应的率,利用量÷对应率=单位“1”解题3. 抓住不变量,统一单位“1”一、知识点概述:分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的对应是解题的关键.关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,进行对比分析。

在几个量中,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系 例如:(1)a 是b 的几分之几,就把数b 看作单位“1”.(2)甲比乙多18,乙比甲少几分之几?方法一:可设乙为单位“1”,则甲为19188+=,因此乙比甲少191889÷=.方法二:可设乙为8份,则甲为9份,因此乙比甲少1199÷=.二、怎样找准分数应用题中单位“1” (一)、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。

例如:我国人口约占世界人口的几分之几?——世界人口是总数,我国人口是部分数,世界人口就是单位“1”。

解答题关键:只要找准总数和部分数,确定单位“1”就很容易了。

(二)、两种数量比较分数应用题中,两种数量相比的关键句非常多。

有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。

在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。

例如:六(2)班男生比女生多——就是以女生人数为标准(单位“1”),解题关键:在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。

这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。

(三)、原数量与现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。

小学六年级上奥数教程:第六讲 分数应用题(一)--学生版

小学六年级上奥数教程:第六讲  分数应用题(一)--学生版

第6讲 分数应用题(一)【解题秘钥】把不同的数量当作单位“1”,得到的分率可以在一定的条件下转化。

如果甲是乙的a b ,乙是丙的c d ,则甲是丙的ac bd ;如果甲是乙的a b ,则乙是甲的b a;如果甲的a b 等于乙的c d ,则甲是乙的c d ÷a b =bc ad ,乙是甲的a b ÷a b =ad bc。

【经典例题】例题1:乙数是甲数的23 ,丙数是乙数的45,丙数是甲数的几分之几?练习11. 乙数是甲数的34 ,丙数是乙数的35,丙数是甲数的几分之几?2. 一根管子,第一次截去全长的14 ,第二次截去余下的12,两次共截去全长的几分之几?例题2:修一条8000米的水渠,第一周修了全长的14 ,第二周修的相当于第一周的45,第二周修了多少米?练习2用两种方法解答下面各题:1.一堆黄沙30吨,第一次用去总数的15,第二次用去的是第一次的114倍,第二次用去黄沙多少吨?2.大象可活80年,马的寿命是大象的12,长颈鹿的寿命是马的78,长颈鹿可活多少年?例题3:晶晶三天看完一本书,第一天看了全书的14,第二天看了余下的25,第二天比第一天多看了15页,这本书共有多少页?练习31.有一批货物,第一天运了这批货物的14,第二天运的是第一天的35,还剩90吨没有运。

这批货物有多少吨?2. 修路队在一条公路上施工。

第一天修了这条公路的14 ,第二天修了余下的23,已知这两天共修路1200米,这条公路全长多少米?例题4、男生人数是女生人数的45,女生人数是男生人数的几分之几?练习41. 停车场里有小汽车的辆数是大汽车的34,大汽车的辆数是小汽车的几分之几?2. 如果山羊的只数是绵羊的67,那么绵羊的只数是山羊的几分之几?例题5、甲数的13 等于乙数的14,甲数是乙数的几分之几,乙数是甲数的几倍?练习51. 甲数的34 等于乙数的25,甲数是乙数的几分之几?乙数是甲数的几分之几?2. 甲数的123 倍等于乙数的56,甲数是乙数的几分之几?乙数是甲乙两数和的几分之几?【作业】1.一个旅客从甲城坐火车到乙城,火车行了全程的一半时旅客睡着了。

小学奥数 分数应用题 倒推法 讲解

小学奥数 分数应用题 倒推法 讲解

小学奥数之倒推法例题讲解例题:商店购进一种商品来销售,第一天卖出总数的17又8个,第二天卖出余下的14又5个,第三天卖出余下的25又15个,正好卖完。

求这种商品原有多少个?分析:有时候一些应用题里面有多个单位“1”,或者说单位“1”不统一,这时候我们该怎么办呢?就像上面这题,“原来的商品个数”是一个单位“1”,第二天余下的商品是另一个单位“1”,第三天余下的商品又是另一个单位“1”。

这个时候我们就可以运用“倒推法”,从结果出发一步步往前推。

首先我们画出线段图:先推理①的数量:根据题意“第三天卖出余下的25又15个,正好卖完。

”,可知15个占了①的(1-25),因此我们用除法可以求出①的数量。

15÷(1-25)=15÷35=25(个)再推理②的数量:根据题意“第二天卖出余下的14又5个”,可知②的数量+5,就占了②的(1-14),因此我们用除法可以求出②的数量。

(25+5)÷(1-14)=40(个)最后推理③的数量:根据题意“第一天卖出总数的17又8个”,可知③的数量+8,就占了③的(1-17),因此我们用除法可以求出③的数量。

(40+8)÷(1-17)=56(个)答:这种商品原有56个。

老司机的话:这种题型虽然也可以用初中的“一元一次方程”做出来,但小学生不好理解。

我们灵活运用“线段图”和“倒推法”,可以有效率地提高小学生的思维能力,促进他们智力的开发。

“倒推法”在其他领域也有不少用处,例如名侦探查案的时候,可以根据现场的蛛丝马迹查出坏人是谁。

是一种很有趣的方法呢~。

分数应用题的方法和技巧

分数应用题的方法和技巧

分数应用题的方法和技巧
在解答分数应用题时,以下是一些常用的方法和技巧:
1. 确定未知数:首先明确问题中的未知数,并用一个变量来表示。

例如,如果问题涉及到某个人的年龄,可以用x来表示这个人的年龄。

2. 变量的分数表达式:根据问题描述,将变量表示为一个分数表达式。

例如,如果问题中提到某个人年龄的1/3等于15岁,则可以表示为x/3 = 15。

3. 解方程:将问题转化为一个方程,并求解这个方程来得到未知数的值。

在上述例子中,通过乘以3,可以得到x = 45。

4. 确认答案的合理性:将未知数的值代入原方程中,确认答案的合理性。

在上述例子中,将x = 45代入x/3 = 15,可以验证
等式成立。

5. 注意化简:在解题过程中,可能需要对分数进行化简。

例如,将2/4简化为1/2,便于计算。

6. 注意单位转换:问题中可能涉及到单位的转换。

在解题过程中,需要注意将单位转换为一致的形式,以便计算。

7. 图形辅助:对于某些问题,可以用图形进行辅助。

例如,在解决比例问题时,可以用图形表示比例关系,帮助理解和解决问题。

8. 相关知识点:对于一些特定的类型的分数应用题,掌握相关的数学知识点会有帮助。

例如,理解分数的基本运算法则、比例关系的性质等。

以上是一些常用的方法和技巧,希望对解答分数应用题有所帮助。

小学奥数-分数应用题

小学奥数-分数应用题

分数应用题【解题技巧】(1)求一个数的几分之几是多少(用乘法)(2)求一个数是另一个数的几分之几(用除法)(3)已知一个数的几分之几是多少,求这个数(用除法或列方程)【经典例题】例1 某粮库上午运走全部存粮的31又2000袋,下午又运进粮食6000袋,现在粮库中的存粮比原来少61。

若有原来粮库的存粮n 袋,那么n 等于多少?例2 某车间三个小组共做一批零件,第一小组做了总数的72,第二小组做了1600个零件,第三小组做的零件是前面两个小组总和的一半。

求这批零件共有多少个?例3 某班女生人数是男生人数的54,后又转来一名女生,结果女生人数是男生人数的65。

求现在全班学生的人数。

例4 某校男生人数的41比女生人数的31多50人,男生人数的43是女生人数的两倍。

男生、女生各多少人?例5 足球赛门票15元一张,降价后观众增加了一半,收入增加了51。

问一张门票降价了多少元?例6 食堂买来一批面粉,第一天吃了这批面粉总量的101;第二天吃了余下面粉总量的91;以后7天,每天分别吃去当天面粉总量的;21,31,,61,71,81⋅⋅⋅第10天吃了4袋,正好把所有的面粉都吃完了。

问这批面粉原来共有多少袋?例7 甲、乙两班共有84人,甲班人数的85与乙班人数的43共有58人。

问两班各有多少人?例8 育才小学上学期有男女同学共750人,本学期男同学增加61,女同学减少51,共有710人。

问本学期男、女同学各有多少人?【练习、习题】1.一批零件,甲先完成41,接着乙完成剩下的31,其余的由丙、丁完成,丙完成的比丁少31。

已知甲比丁少完成15个,求这批零件共有多少个?2.一批水果,其中苹果重量比总数的31多40千克,香蕉660千克其余的是橘子。

已知橘子的重量相当于苹果和香蕉总重量的41,则苹果共有多少千克?3.游泳班共有若干人,其中女生占103。

若再增加15名女生,则女生将占总数的2511。

问这个游泳班中原有女生多少人?4.姐妹两人共养兔100只。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分数应用题常见方法
在比较复杂的分数应用题中,“四步法”只是基础的分析思维,还需要借助一些方法来解题。

除了画图法外,还有以下几种解题方法
(一)对应法
小学四年级奥数中有专门的章节介绍对应法解应用题。

对应法的核心思维是:不仅数字可以列竖式进行加减,算式也可以列竖式加减
例:学校安排一批学生到图书馆借书,如果男生增加1/5,人数将达到52人,如果女生减少1/5,人数是42人。

这批学生原有多少人?
解析:根据题意,我们可以找出下面两个数量关系式:
男生人数+1/5的男生人数+女生人数 = 52
男生人数+女生人数-1/5的女生人数 = 42 这两个式子对应相减(竖式相减),得:
1/5的男生人数+1/5的女生人数 = 10
即1/5 ×(男生人数+女生人数)=10
男生人数+女生人数=10÷1/5=50(人)
(二)转化法
当题中出现多个单位“1”时,我们可以把不同的单位“1”转化成统一的单位“1”
例:小明、小英、小丽和小华四人爱好集邮,小明的邮票数是小英的1/2,小英的邮票数是小丽的1/3,小丽的邮票数是小华的1/4,已知四人共集邮132张,小明集邮多少张?
解析:按照“四步法”,题中有三个不带单位的分率,它们的单位“1”分别是小英、小丽和小华;肯定用除法;题中只有一个带单位的数量:132张,列式一定是用132去除;132是指四人集邮总数,应除以四人的分率总和,题目最关键就是要把四人的分率表示出来,由于存在不同的单位“1”,首先必须把不同的单位“1”统一成一个单位“1”。

有正确的思路,才知道该做什么。

把题中三个单位“1”,统一转化成以小华的集邮数做单位“1”。

小华是单位“1”,根据“小丽的邮票数是小华的1/4”,小丽就是1/4;根据“小英的邮票数是小丽的1/3”,小英就是:1/3 × 1/4= 1/12;根据“小明的邮票数是小英的1/2”,小明就是:1/2
× 1/12=1/24,现在四人的分率都表示出来了,可以除了。

132÷(1+ 1/4 + 1/12 + 1/24)
=132÷ 11/8
=96(张)
算出来的是单位“1”:小华的邮票张数,小明的张数是:96× 1/24=4(张)
思考:为什么要挑小华的邮票张数做统一的单位“1”,可不可以把三个单位“1”都统一成小英的邮票总数或小丽的邮票总数?去试试!
(三)假设法
解题思维及方法,请阅博文“假设法的应用”
例:某修路队三天修完一条路,第一天修了全长的1/3多150米,第二天修了全长的2/5少100米,第三天修了1950米,这条路全长多少?
解析:按“四步法”,单位“1”是全长,用除法,题中带单位的数量有三个:150米、100米和1950米,到底用哪个去除,关键是要找到它们对应的分率。

除了画图法,我们还可以通过假设法来找相对
应的分率。

假设第一天只修了全长的1/3,没有多修150米;假设第二天修了全长的2/5,没有少修100米,那么,三天要修完全长,第三天必须要修(1950+150-100)=2000米。

很容易求出第三天的分率:1- 1/3 –2/5 = 4/15
2000÷ 4/15 =7500米,就是单位“1”全长
(四)把分数看成比的方法
分数可以转化成比,把比当份数,也是一种好的解题方法
例学校田径队有35人,其中女生人数是男生人数的3/4,女生人数是多少?
解析:“女生人数是男生人数的3/4”转化成比,就是:女生人数和男生人数之比是3:4,女生人数是3份,男生人数是4份,总共7份,总共35人,每份就是35÷7=5人,那么,女生人数就是5×3=15人
(五)抓住不变量的方法
一些较复杂的分数应用题中,会出现许多数量前后发生变化
的。

这时的解题思维是:在这些变化中抓住不变的量,将不变的量作为标准,有目的地转化数量关系。

来找到解题的线索。

不变的量可能是某一部分量不变,也可以是和、差不变,视题目具体情况而定
例1 某车间的女工人数是男工人数的1/2,若调走21个男工,那么男工人数是女工人数的1/2,这个车间的女工人数是多少?
解析:按“四步法”,题中单位“1”有两个:男工人数和女工人数,但男工人数前后发生了变化,“抓住不变量”,由题意可知,女工人数不变,把它作为单位“1”,把“女工人数是男工人数的1/2”转化成“男工人数是女工人数的2倍”,这时两个单位“1”统一了,可以除了。

21是指调走的男生,必须找出调走男工人数的分率。

原来男工人数的分率是2,现在是1/2,说明调走了(2- 1/2 )=3/2,21÷ 3/2=14(人),就是单位“1”女工的人数
例2.甲乙两个粮仓,原来甲存粮吨数是乙的5/7,如果从乙仓调6吨到甲仓,甲仓粮的吨数是乙仓的4/5,原来甲乙两仓各有粮多少吨?
解析:按“四步法”,乙仓是单位“1”,肯定用除法。

但乙仓存粮前后发生了变化,“抓住不变量”,两个仓的存粮总和不变,把它当作单位“1”,题中的条件都转化成以总存粮为单位“1”。

“原来甲存粮吨数是乙的5/7”,说明原来乙是7份,甲是5份,总共是12份,甲占5/12,乙占7/12;“甲仓粮的吨数是乙仓的4/5”说明调走了后,甲是4份,乙是5份,总共9份,甲占4/9,乙占5/9。

题中带单位的数量是6吨,是指乙调走的吨数,乙调走的分率是(7/12 – 5/9)= 1/36 相对应,可以除了。

6÷ 1/36 =216吨,就是单位“1”总的存粮
那么,原来甲仓:216× 5/12 = 90吨,乙仓存粮:216× 7/12 =126吨
例3.有两根蜡烛,一根长8厘米,另一根长6厘米。

把两根都燃烧掉同样长的部分后,短的一根剩下的长度是长的一根剩下长度的3/5,每段燃烧掉了多少厘米?
解析:依“四步法”,单位“1”是长的一根剩下的长度,用除法。

由题意可知。

这两根蜡烛长度的差没有发生变化。

燃烧前与燃烧后两根蜡烛都是相差8-6=2厘米。

现在最关键的是要找出2厘米所对应的分率,也就是两根蜡烛燃烧后相差的分率。

“短的一根剩下的长度是长的一根剩下长度的3/5”,长的一根剩下的长度为单位“1”,那么短的一根剩下的长度就是3/5,相差1- 3/5= 2/5,现在可以除了
2÷ 2/5=5厘米,就是单位“1”长的一根剩下的长度,说明燃烧掉了8-5=3厘米
(六)还原法
在三、四、五年级奥数中,都有专门的章节介绍还原法,它最核心的思维是倒推思维
例:3只猴子吃篮子的桃子,第一只猴子吃了1/3,第二只猴子吃了剩下的1/3,第三只猴子吃了第二只猴子剩下的1/4,最后篮子里剩下6只桃子。

问原来有多少只桃子?
解析:从最后剩下的6只桃子,进行倒推
6只桃子占第二只猴子吃剩下后桃子数的1- 1/4=3/4,6÷ 3/4 =8只,就是第二只猴子吃剩下的桃子数;8只桃子占第一只猴子吃剩下桃子数的1- 1/3= 2/3,8÷ 2/3=12只,就是第一只猴子吃剩下的桃子数;12只桃子占篮子桃子数的1- 1/3=2/3,12÷ 2/3 =18,就是原有桃子数了。

(七)方程法
在解任何应用题时,方程都是一种不能忽视的备用方法
例某校有学生465人,其中女生的2/3比男生4/5少20人,
男生有多少人?
解析;设男生为x人,女生就有(465-x)人
从“女生的2/3比男生4/5少20人”找题中的数量关系式:女生× 2/3+20=男生× 4/5
列方程2/3 ×(465-x)+20= 4/5 ×x 解得x=225。

相关文档
最新文档