三角形命题证明专题
三角形中的边角关系、命题与证明期末复习(含答案)

期末复习三角形中的边角关系、命题与证明类型一三角形的有关概念1.已知AD,AE分别是△ABC的中线和角平分线,则下列结论中错误的是()A.BD=BCB.BC=2CDC.∠BAE=∠BACD.∠BAC=2∠CAD2.如图QM3-1所示:图QM3-1(1)在△ABC中,BC边上的高是;(2)在△AEC中,AE边上的高是.3.如图QM3-2,回答下列问题:(1)图中有几个三角形?试写出这些三角形;(2)∠1是哪个三角形的内角?(3)以CE为一条边的三角形有几个?是哪几个?图QM3-2类型二三角形中三边关系的应用4.小明和小丽是同班同学,小明的家距学校2千米远,小丽的家距学校5千米远,设小明家距小丽家x千米远,则x的值应满足()A.x=3B.x=3或x=7C.3<x<7D.3≤x≤75.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5B.6C.12D.166.△ABC的边长均为整数,且最大边的长为7,那么这样的三角形共有个.7.已知三角形两边的长为4,8,则第三边的长可以是(写出一个即可).类型三三角形内角和定理及其推论的应用8.[2017·大庆]在△ABC中,∠A,∠B,∠C的度数之比为234,则∠B的度数为()A.120°B.80°C.60°D.40°9.将一副三角尺如图QM3-3放置,已知AE∥BC,则∠AFD的度数是()图QM3-3A.45°B.50°C.60°D.75°10.如图QM3-4,在△ABC中,∠ACB=∠ABC,∠A=40°,P是△ABC内一点,且∠1=∠2,求∠BPC 的度数.图QM3-4类型四命题与证明11.请写出一个原命题是真命题,逆命题是假命题的命题:.12.请举反例说明“对于任意实数x,x2+5x+4的值总是正数”是假命题,你举的反例是x= (写出一个x的值即可).13.对于同一平面内的三条直线a,b,c,给出下列5个论断:①a∥b;②b∥c;③a⊥b;④a∥c;⑤a⊥c.请以其中两个论断为条件,一个论断为结论,组成一个你认为正确的命题.14.如图QM3-5,在四边形ABCD中,∠B=∠D=90°,AE平分∠BAD,若AE∥CF,∠BCF=60°.请你求出∠DCF的度数,并说明你的理由.图QM3-5类型一分类讨论思想的应用15.已知等腰三角形两边的长分别为5和6,则这个等腰三角形的周长为.16.△ABC中,AB∶AC=3∶2,BC=AC+1,若△ABC的中线BD把△ABC的周长分成8∶7两部分,求边AB,AC的长.17.现在要设计一种三角形有两种方案:①三角形三边长分别为2x,3x,10,其中x为正整数,且周长不超过30;②有两边长分别是7分米,3分米,第三边长y为奇数(单位:分米).分别讨论满足条件的三角形各有几个.类型二解三角形问题常用辅助线18.如图QM3-6所示,已知a∥b,∠2=95°,∠3=150°,求∠1的度数.图QM3-619.如图QM3-7,若AB∥CD,求证:∠E+∠BAE-∠CDE=180°.图QM3-720.如图QM3-8,AD,BC相交于点E,∠1=∠2,∠3=∠4,∠C=32°,∠D=28°,求∠APB的度数.图QM3-8类型三创新问题展示21.在研究三角形内角和等于180°的证明方法时,小明和小虎分别给出了下列证法.小明:在△ABC中,延长BC到点D,∴∠ACD=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和).又∵∠ACD+∠ACB=180°(平角的定义),∴∠A+∠B+∠ACB=180°(等式的性质).小虎:在△ABC中,过点C作CD⊥AB于点D(如图QM3-9),∴∠ADC=∠BDC=90°(直角的定义),则∠A+∠ACD=90°,∠B+∠BCD=90°(直角三角形的两锐角互余),∴∠A+∠ACD+∠B+∠BCD=180°(等式的性质),即∠A+∠B+∠ACB=180°.请你判断上述两名同学的证法是否正确,如果不正确,写出一种你认为较简单的证明三角形内角和定理的方法,并与同伴交流.图QM3-922.已知:如图QM3-10①,在△ABC中,∠ABC,∠ACB的平分线相交于点O,则∠BOC=90°+∠A=×180°+∠A.请说明理由;如图QM3-10②,在△ABC中,∠ABC,∠ACB的两条三等分线分别对应交于点O1,O2,则∠BO1C=×180°+∠A,∠BO2C=×180°+∠A.请说明理由;根据以上阅读理解,猜想n等分时[内部有(n-1)个交点],用含n的代数式表示∠BO n-1C= (直接写出结果,不需说明理由).图QM3-10期末复习1.D2.(1)AB(2)CD3.解:(1)图中共有8个三角形,分别是△ABC,△ABE,△ACD,△BCD,△BCE,△BCO,△BDO,△CEO.(2)∠1是△BCD和△BDO的内角.(3)以CE为一条边的三角形有2个,分别是△BCE和△CEO.4.D5.C6.167.答案不唯一,如5,6等8.C9.D10.解:∵∠A=40°,∠ACB=∠ABC,∴∠ACB=∠ABC=70°.又∵∠1=∠2,∴∠BCP=∠ABP.∴∠2+∠BCP=∠2+∠ABP=∠ABC=70°,∴∠BPC=180°-(∠2+∠BCP)=110°.11.答案不唯一,如“对顶角相等”12.-3(答案不唯一)13.解:可能组成的正确命题有如下几种结果(前两个作为条件,后一个作为结论):①②④;②④①;①④②;②⑤③;③⑤②;②③⑤.14.解:∠DCF=60°.理由如下:如图,∵∠B=90°,∠BCF=60°,∴∠1=30°.∵AE∥CF,∴∠2=∠1=30°.∵AE平分∠BAD,∴∠3=∠2=30°.又∵∠D=90°,∴∠4=60°.∵AE∥CF,∴∠DCF=∠4=60°.15.16或1716.解:设AB=3x,AC=2x,则BC=2x+1,由题意得①3x+x=(3x+2x+2x+1)×,解得x=2,则AB=6,AC=4;②3x+x=(3x+2x+2x+1)×,解得x=,则AB=,AC=.答:边AB的长为6,边AC的长为4;或者边AB的长为,边AC的长为.17.解:①2x+3x+10≤30,解得x≤4,即x可取1,2,3,4.当x等于1时,三边长分别为2,3,10,构不成三角形;当x等于2时,三边长分别为4,6,10,构不成三角形;当x等于3时,三边长分别为6,9,10;当x等于4时,三边长分别为8,12,10.故满足条件的三角形共有2个.②三角形的第三边长y满足:7-3<y<3+7,即4<y<10.因为第三边长为奇数,因而第三边长可以为5,7或9.故满足条件的三角形共有3个.18.解:解法一:如图①,∠ABC=180°-∠2=85°.∵a∥b,∴∠CAB=180°-∠3=30°.∵∠1是△ABC的外角,∴∠1=∠CAB+∠ABC=115°;解法二:如图②,过∠2的顶点A作射线AB∥a,那么AB∥b,则∠CAB=180°-150°=30°,∴∠DAB=∠2-∠CAB=95°-30°=65°,∴∠1=180°-∠DAB=115°;解法三:如图③,连接AC,∵a∥b,∴∠DAC+∠ECA=180°.而∠DAC=∠1-∠BAC,∠ECA=∠3-∠ACB,∴(∠1-∠BAC)+(∠3-∠ACB)=180°,即∠1+∠3-(∠BAC+∠ACB)=180°.在△ABC中,∠BAC+∠ACB+∠2=180°,即∠BAC+∠ACB=180°-∠2,∴∠1+∠3-(180°-∠2)=180°,从而∠1=360°-∠2-∠3=360°-95°-150°=115°.19.证明:如图,连接AD.∵AB∥CD,∴∠BAD=∠CDA(两直线平行,内错角相等).又∵∠ADE+∠DAE+∠E=180°(三角形内角和定理),∴∠ADE+∠DAE+∠E+∠BAD=180°+∠CDA,∴∠ADE+∠DAE+∠E+∠BAD=180°+∠ADE+∠CDE,∴∠E+∠BAE=180°+∠CDE,∴∠E+∠BAE-∠CDE=180°.20.解:由三角形的外角等于和它不相邻的两个内角的和,得∠AEB=∠CAE+∠C=∠DBC+∠D,从而2∠AEB=∠1+∠2+∠3+∠4+∠C+∠D,即∠AEB=∠2+∠3+(∠C+∠D).连接PE并延长至点F,易知∠AEF=∠2+∠APF,∠BEF=∠3+∠BPF,∴∠AEB=∠2+∠3+∠APB,∴∠APB=(∠C+∠D)=30°.21.解:两名同学的证法都不对.因为“三角形的一个外角等于和它不相邻的两个内角的和”与“直角三角形的两锐角互余”都是由三角形内角和定理推导的.证明:如图,在△ABC中,过点A作EF∥BC,∴∠EAB=∠B,∠FAC=∠C(两直线平行,内错角相等).∵∠EAB+∠BAC+∠FAC=180°(平角的定义),∴∠B+∠BAC+∠C=180°.22.解:在题图①中,∵∠OBC=∠ABC,∠OCB=∠ACB,∴∠BOC=180°-∠OBC-∠OCB=180°-(∠ABC+∠ACB)=180°-(180°-∠A)=90°+∠A=×180°+∠A.在题图②中,∵∠O1BC=∠ABC,∠O1CB=∠ACB,∴∠BO1C=180°-∠O1BC-∠O1CB=180°-(∠ABC+∠ACB)=180°-(180°-∠A)=120°+∠A=×180°+∠A.同理,∵∠O2BC=∠ABC,∠O2CB=∠ACB,∴∠BO2C=180°-∠O2BC-∠O2CB=180°-(∠ABC+∠ACB)=180°-(180°-∠A)=60°+∠A=×180°+∠A.通过前两个结果的证明,从而猜想:∠BO n-1C=×180°+-∠A.。
八年级下册期末复习三角形的证明

八年级下册期末复习三角形的证明01 各个击破命题点1 全等三角形的性质和判定 【例1】 (南充中考)已知△ABN 和△ACM 位置如图所示,AB =AC ,AD =AE ,∠1=∠2.(1)求证:BD =CE ;(2)求证:∠M=∠N.【思路点拨】 (1)要证BD =CE ,可通过转化证△ABD≌△ACE,根据题意由“SAS ”得证;(2)要证∠M=∠N,可通过转化证△ACM≌△ABN,由(1)可知∠C=∠B.因为∠2=∠1,所以∠CAM =∠BAN.再结合AB =AC ,即可根据“ASA ”得证.【解答】 证明:(1)在△ABD 和△ACE 中,⎩⎪⎨⎪⎧AB =AC ,∠1=∠2,AD =AE ,∴△ABD ≌△ACE(SAS).∴BD =CE.(2)∵∠1=∠2,∴∠1+∠DAE=∠2+∠DAE,即∠BAN=∠CAM.由(1),得△ABD≌△ACE,∴∠B =∠C.在△ACM 和△ABN 中,⎩⎪⎨⎪⎧∠C=∠B,AC =AB ,∠CAM =∠BAN,∴△ACM ≌△ABN(ASA).∴∠M =∠N.【方法归纳】 证明两条线段相等或者两个角相等时,常用的方法是证明这两条线段或者这两个角所在的三角形全等.当所证的线段或者角不在两个全等的三角形中时,可通过添加辅助线的方法构造全等三角形.1.已知△ABC≌△DEF,BC =EF =6 cm ,△ABC 的面积为18 cm 2,则EF 边上的高的长是6cm.2.(衡阳中考)如图,在△ABC 中,AB =AC ,BD =CD ,DE ⊥AB ,DF ⊥AC ,垂足分别为点E ,F.求证:△BED≌△CFD.证明:∵DE⊥AB,DF ⊥AC ,∴∠BED =∠CFD=90°.∵AB =AC ,∴∠B =∠C.在△BED 和△CFD 中,⎩⎪⎨⎪⎧∠B=∠C,∠BED =∠CFD,BD =CD ,∴△BED ≌△CFD(AAS).命题点2 等腰三角形的性质与判定【例2】 (北京中考)如图,在△ABC 中,AB =AC ,AD 是BC 边上的中线,BE ⊥AC 于点E.求证:∠CBE=∠BAD.【思路点拨】 由AB =AC 想到∠ABC=∠C,由AD 是BC 边上的中线想到等腰三角形“三线合一”的性质,进而得到AD⊥BC,AD 平分∠BAC,再结合BE⊥AC ,就可以建立角与角之间的数量关系,使问题得解.【解答】 证明:方法1:∵AB=AC ,∴△ABC 是等腰三角形.∵AD 是BC 边上的中线,∴AD ⊥BC ,∠BAD =∠CAD.∴∠CAD +∠C=90°.∵BE ⊥AC ,∴∠CBE +∠C=90°.∴∠CBE =∠CAD.∴∠CBE=∠BAD.方法2:∵AB=AC,∴∠ABC=∠C.又∵AD是BC边上的中线,∴AD⊥BC.∴∠BAD+∠ABC=90°.∵BE⊥AC,∴∠CBE+∠C=90°.∴∠CBE=∠BAD.【方法归纳】本题是一道利用等腰三角形三线合一的性质的证明题,解题的关键是利用等腰三角形“三线合一”灵活推导各角之间的数量关系.3.(滨州中考)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A =50°,则∠CDE的度数为(D)A.50°B.51°C.°D.°4.已知:如图,在△ABC中,∠ABC,∠BCA的平分线交于点O,过点O作EF∥BC交AB于点E,交AC于点F.写出图中相等的线段,并说明理由.解:BE=OE,CF=OF.理由:∵BO平分∠ABC,CO平分∠ACB,∴∠EBO=∠OBC,∠FCO=∠OCB.∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB.∴∠EBO=∠EOB,∠FOC=∠FCO.∴BE=OE,CF=OF.命题点3 勾股定理及其逆定理的应用【例3】如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处,已知AC=6,BC=8,求线段AD的长度.【思路点拨】由折叠的性质知CD=DE,AC=AE.在Rt△BDE中运用勾股定理求出CD,进而得出AD即可.【解答】在Rt△ABC中,由勾股定理,得AB=10.由折叠的性质知,AE=AC=6,DE=CD,∠AED=∠C=90°,∴BE=AB-AE=10-6=4.在Rt△BDE中,由勾股定理,得DE2+BE2=BD2,即CD2+42=(8-CD)2,解得CD=3.在Rt△ACD中,由勾股定理,得AC2+CD2=AD2,即62+32=AD2,解得AD=3 5.【方法归纳】折叠的问题,一定存在相等的线段或角的等量关系,要充分挖掘由折叠所隐含的数量关系.利用勾股定理建立等量关系列方程是一种常用的方法.5.下列长度的三条线段能组成直角三角形的是(B)A.3,4,4 B.1,2,3,3, 6 D.3,4,76.在寻找马航MH370航班过程中,两艘搜救舰艇接到消息,在海面上有疑似漂浮目标A,B.接到消息后,一艘舰艇以16海里/时的速度离开港口O(如图所示)向北偏东40°方向航行,另一艘舰艇同时以12海里/时的速度向北偏西一定角度的航向行驶,已知它们离港口一个半小时后相距30海里,问另一艘舰艇的航行方向是北偏西多少度解:由题意,得OB=12×=18(海里),OA=16×=24(海里).又∵AB=30海里,∵182+242=302,即OB 2+OA 2=AB 2,∴∠AOB =90°.∵∠DOA =40°,∴∠BOD =50°.∴另一艘舰艇的航行方向是北偏西50°.命题点4 线段的垂直平分线的性质与判定【例4】 如图,在四边形ABCD 中,AD ∥BC ,对角线AC 的中点为O ,过点O 作AC 的垂线分别与AD ,BC 相交于点E ,F ,连接AF.求证:AE =AF.【思路点拨】 由AD∥BC 及EF 垂直平分AC ,由AAS 证明△AOE≌△COF,得AE =FC.再由EF 是AC 的垂直平分线,可以证明AF =FC ,即可得AE =AF.【解答】 证明:∵AD∥BC,∴∠EAO =∠FCO,∠AEO =∠CFO.∵EF ⊥AC ,且O 是AC 的中点,∴AO =CO ,AF =CF.在△AOE 和△COF 中,⎩⎪⎨⎪⎧∠EAO=∠FCO,∠AEO =∠CFO,AO =CO ,∴△AOE ≌△COF(AAS).∴AE =CF.∴AE=AF.【方法归纳】 线段垂直平分线上的点到线段的两个端点距离相等,可以得到等腰三角形,进一步得到角相等.数学知识间有很多联系与递进关系.很多时候,解决数学题目,只是将条件往前推一步,结论再往深处推一步.7.(毕节中考)如图,等腰三角形ABC 的底角为72°,腰AB 的垂直平分线交另一腰AC 于点E ,垂足为D ,连接BE ,则∠EBC 的度数为36°.8.如图,在△ABC 中,AD 是∠BAC 的平分线,AD 的垂直平分线交BC 的延长线于点F.(1)求证:∠FAD=∠FDA;(2)若∠B=50°,求∠CAF 的度数.解:(1)证明:∵EF 是AD 的垂直平分线,∴AF =DF.∴∠FAD =∠FDA.(2)∵AD 平分∠BAC,∴∠BAD =∠DAC.∵∠FDA =∠BAD+∠B,∠FAD =∠DAC+∠CAF,由(1)知∠FAD=∠FDA,∴∠B =∠CAF.∵∠B =50°,∴∠CAF =50°.命题点5 角平分线的性质与判定【例5】 (黄冈中考)已知,如图,AB =AC ,BD =CD ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,求证:DE =DF.【思路点拨】 连接AD ,利用SSS 得到△ABD 与△ACD 全等,利用全等三角形对应角相等得到∠EAD=∠FAD,即AD 为角平分线,再由DE⊥AB,DF ⊥AC ,利用角平分线的性质定理即可得证.【解答】 证明:连接AD.在△ACD 和△ABD 中,⎩⎪⎨⎪⎧AC =AB ,CD =BD ,AD =AD ,∴△ACD ≌△ABD(SSS).∴∠EAD =∠FAD,即AD 平分∠EAF.∵DE ⊥AE ,DF ⊥AF ,∴DE=DF.【方法归纳】本题考查全等三角形的判定和性质,以及角平分线的性质,熟练掌握全等三角形的判定与性质,角平分线的基本性质,构造出基本图形,运用角平分线的性质是解题的关键.9.(1)填空:如图1,在Rt△ABC中,∠C=90°,∠B=45°,AD是△ABC的角平分线,过点D作辅助线DE⊥AB于点E,则可以得到AC,CD,AB三条线段之间的数量关系为AB=AC +CD;图1 图2(2)如图2,若将(1)中条件“在Rt△ABC中,∠C=90°,∠B=45°”改为“在△ABC中,∠C=2∠B”请问(1)中的结论是否仍然成立证明你的猜想.解:(1)中的结论仍然成立.理由:∵AD是∠CAB的平分线,∴将△CAB沿AD折叠,点C落在AB边上的C′处.∴△ACD≌△AC′D.∴AC=AC′,CD=C′D,∠C=∠AC′D=2∠B.又∵∠AC′D=∠C′DB+∠B,∴∠C′DB=∠B.∴C′D=C′B.∴AB=AC′+C′B=AC+CD.02 整合集训一、选择题(每小题3分,共24分)1.(南宁中考)如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为(A)A.35° B.40° C.45° D.50°2.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点.已知△PAB的周长为14,PA=4,则线段AB的长度为(A)A.6 B.5 C.4 D.33.用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC 的依据是(A)A .SSSB .ASAC .AASD .角平分线上的点到角两边距离相等4.已知直角三角形中,30°角所对的直角边长是2厘米,则斜边的长是(B)A .2厘米B .4厘米C .6厘米D .8厘米5.如图,在△ABC 中,∠B =60°,AB =AC ,BC =3,则△ABC 的周长为(B)A .12B .9C .8D .66.(宜昌中考)如图,在方格纸中,以AB 为一边作△ABP,使之与△ABC 全等,从P 1,P 2,P 3,P 4四个点中找出符合条件的点P ,则点P 有(C)A .1个B .2个C .3个D .4个7.如图,在△ABC 中,∠C =90°,∠1=∠2,CD =,BD =,则AC 的长为(C)A .5B .4C .3D .28.如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,过点O 作EF∥BC 交AB 于点E ,交AC 于点F ,过点O 作OD⊥AC 于点D ,下列四个结论:①EF =BE +CF ;②∠BOC =90°+12∠A; ③点O 到△ABC 各边的距离相等;④设OD =m ,AE +AF =n ,则S △AEF =mn.其中正确的结论是(A)A.①②③B.①②④C.②③④D.①③④二、填空题(每小题4分,共24分)9.(无锡中考)写出命题“如果a=b,那么3a=3b”的逆命题如果3a=3b,那么a=b.10.在△ABC中,AB=AC,点D是BC的中点,若∠B=50°,则∠DAC的度数是40°.11.如果三角形三边长分别为6 cm,8 cm,10 cm,那么它最短边上的高为8cm.12.如图,在锐角三角形ABC中,直线PL为BC的垂直平分线,射线BM为∠ABC的平分线,PL与BM相交于P点.若∠PBC=30°,∠ACP=20°,则∠A的度数为70°.13.如图,正方体的棱长为a,沿着共一个顶点的三个正方形的对角线裁截掉一个几何体之a2.后,截面△ABC214.已知Rt△ABC中,∠C=90°,AC=BC,直线m经过点C,分别过点A,B作直线m的垂线,垂足分别为点E,F,若AE=3,AC=5,则线段EF的长为1或7.三、解答题(共52分)15.(8分)已知:如图,在△ABC中,AB=AC,D为CA延长线上一点,DE⊥BC,交线段AB 于点F.请找出一组相等的线段(AB=AC除外)并加以证明.解:AD=AF.证明如下:∵AB=AC,∴∠B=∠C.∵DE⊥BC,∴∠BEF=∠DEC=90°.∴∠BFE=∠D.∵∠BFE=∠DFA,∴∠DFA=∠D.∴AF =AD.16.(8分)如图:已知等边三角形ABC 中,D 是AC 的中点,E 是BC 延长线上的一点,且CE =CD ,DM ⊥BC ,垂足为点M ,求证:M 是BE 的中点.证明:连接BD.∵三角形ABC 为等边三角形,且D 是AC 的中点,∴∠DBC =12∠ABC=12×60°=30°,∠ACB =60°. ∵CE =CD ,∴∠CDE =∠E.∵∠ACB =∠CDE+∠E,∴∠E =30°.∴∠DBC =∠E=30°.∴BD =ED ,△BDE 为等腰三角形.又∵DM⊥BC,∴M 是BE 的中点.17.(10分)如图所示,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD=90°,D 为AB 边上一点.(1)求证:△ACE≌△BCD;(2)若AD =5,BD =12,求DE 的长.解:(1)证明:∵△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD=90°,∴EC =DC ,AC =BC ,∠ACB -∠ACD=∠ECD-∠ACD.∴∠ACE =∠BCD.∴△ACE≌△BCD(SAS).(2)∵△ACE≌△BCD,∴∠EAC=∠B=45°,AE=BD=12.∴∠EAD=∠EAC+∠BAC=90°.在Rt△EAD中,DE2=AE2+AD2=122+52=169.∴DE=13.18.(12分)如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.(1)求证:△ABD是等腰三角形;(2)若∠A=40°,求∠DBC的度数;(3)若AE=6,△CBD的周长为20,求△ABC的周长.解:(1)证明:∵AB的垂直平分线MN交AC于点D,∴DB=DA.∴△ABD是等腰三角形.(2)∵△ABD是等腰三角形,∠A=40°,∴∠ABD=∠A=40°,∠ABC=∠C=(180°-40°)÷2=70°.∴∠DBC=∠ABC-∠ABD=70°-40°=30°.(3)∵AB的垂直平分线MN交AC于点D,AE=6,∴AB=2AE=12,BD=AD.∵△CBD的周长为20,∴BD+CD+BC=20.∴AC+BC=20.∴△ABC的周长为AB+AC+BC=12+20=32.19.(14分)已知点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在BC上,求证:AB=AC.(2)如图2,若点O在△ABC内部,求证:AB=AC.(3)猜想,若点O在△ABC的外部,AB=AC成立吗请说明理由.解:(1)证明:过点O作OD⊥AB于点D,OE⊥AC于点E,则OD=OE,∠ODB=∠OEC=90°.又∵OB=OC,∴Rt△BOD≌Rt△COE(HL).∴∠B=∠C.∴AB=AC.(2)证明:过点O作OD⊥AB于点D,OE⊥AC于点E,则OD=OE,∠ODB=∠OEC=90°.易证Rt△BOD≌Rt△COE(HL).∴∠DBO=∠ECO.∵OB=OC,∴∠OBC=∠OCB.∴∠ABC=∠ACB.∴AB=AC.(3)不一定成立.理由:如图3,过点O作OD⊥AB于点D,OE⊥AC于点E,则OD=OE,∠ODB=∠OEC=90°.易证Rt△BOD≌Rt△COE(HL).∴∠DBO=∠ECO.∵OB=OC,∴∠OBC=∠OCB.∴∠DBC=∠ECB.∴∠ABC=∠ACB.∴AB=AC.如图4,可知AB≠AC.∴若点O在△ABC的外部时,AB=AC不一定成立.。
人教版数学八年级全等三角形证明题精选20题

三角形全等专题训练1已知:如图,四边形ABCD 中,AC 平分角BAD ,CE 垂直AB 于E ,且∠B+∠D=180度,求证:AE=AD+BE2,已知,如图,AB ⊥AC ,AB =AC ,AD ⊥AE ,AD =AE 。
求证:BE =CD 。
3,如图,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,请你从下面三个条件中任选出两个作为已知条件,另一个为结论,推出一个正确的命题。
① AB=AC ② BD=CD ③ BE=CFAEDCBDCABDCE 124,如图,在四边形ABCD 中,AB=BC ,BF 是∠ABC 的平分线,AF ∥DC ,连接AC 、CF ,求证:CA 是∠DCF 的平分线。
FDAC B5、如图,△ABC 中,AB=AC ,过A 作GE ∥BC ,角平分线BD 、CF 交于点H ,它们的延长线分别交GE 于E 、G ,试在图中找出三对全等三角形,并对其中一对给出证明。
6、已知:如图,AB 、CD 交于O 点,CE//DF ,CE=DF ,AE=BF 。
求证:∠ACE=∠BDF 。
EGABCDEFO7. 已知:如图,△ABC 中,AD ⊥BC 于D ,E 是AD 上一点,BE 的延长线交AC 于F ,若BD=AD ,DE=DC 。
求证:BF ⊥AC 。
8.已知:如图,AB=CD ,AD=BC ,O 是AC 中点,OE ⊥AB 于E ,OF ⊥D 于F 。
求证:OE=OF 。
9.已知:如图,AC ⊥OB ,BD ⊥OA ,AC 与BD 交于E 点,若OA=OB ,求证:AE=BE 。
AB CDEFA BCD E F OO B AC D E10.已知:如图,AB//DE ,AE//BD ,AF=DC ,EF=BC 。
求证:△AEF ≌△DBC 。
A BCDEF11.已知:如图,PA 、PC 分别是△ABC 外角∠MAC 和∠NCA 的平分线,•它们交于点P ,PD ⊥BM 于D ,PF ⊥BN 于F .求证:BP 为∠MBN 的平分线.12.在△ABC 中,∠ACB =90°,AC =BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E . (1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE =AD +BE ; (2)当直线MN 绕点C 旋转到图2的位置时,求证:DE =AD -BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE ,AD ,BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.CBE D图1NMABC DEMN图2AC BEDN M 图313如图,已知AD 是△ABC 的中线, DE ⊥AB 于E , DF ⊥AC 于F , 且BE=CF , 求证:(1)AD 是∠BAC 的平分线;(2)AB=AC .14如图,等腰直角三角形ABC 中,∠ACB =90°,AD 为腰CB 上的中线,CE⊥AD 交AB 于E .求证∠CDA =∠EDB .15在Rt △ABC 中,∠A =90°,CE 是角平分线,和高AD 相交于F ,作FG ∥BC 交AB 于G ,求证:AE =BG .F A 1 2 E CDBCD12ABCDE16.如图,已知△ABC是等边三角形,∠BDC=120º,说明AD=BD+CD的理由17如图,在△ABC中,AD是中线,BE交AD于F,且AE=EF,说明AC=BF的理由18如图,在△ABC中,∠ABC=100º,AM=AN,CN=CP,求∠MNP的度数19如图,已知∠BAC=90º,AD⊥BC, ∠1=∠2,EF⊥BC,FM⊥AC,说明FM=FD的理由20如图,△ACB和△ECD都是等腰直角三角形,A,C,D三点在同一直线上,连结BD,AE,并延长AE交BD于F.求证:(1)△ACE≌△BCD(2)直线AE与BD互相垂直ABC D E F。
三角形全等证明专题dd

FDCBA三角形全等证明专题dd1、AB=AC ,DB=DC ,F 是AD 的延长线上的一点。
求证:BF=CF2、如图:AB=CD ,AE=DF ,CE=FB 。
求证:AF=DE 。
3.如图,已知∠ABC=∠DBE=90°,DB=BE ,AB=BC .(1)求证:AD=CE ,AD ⊥CE. (2)若△DBE 绕点B 旋转到△ABC 外部,其他条件不变,则(1)中结论是否仍成立?请证明.4. 如图, 已知: 等腰Rt △OAB 中,∠AOB=900, 等腰Rt △EOF 中,∠EOF=90°, 连结AE 、BF. 求证: (1) AE=BF; (2) AE ⊥BF.5.如图:在△ABC 中,BE 、CF 分别是AC 、AB 两边上的高,在BE 上截取BD=AC ,在CF 的延长线上截取CG=AB ,连结AD 、AG 求证:(1)AD=AG (2)AD 与AG 的位置关系如何6.已知:如图,BF ⊥AC 于点F ,CE ⊥AB 于点E ,且BD=CD ,求证:(1)△BDE ≌△CDF (2) 点D 在∠A 的平分线上7.如图,在∠AOB 的两边OA,OB 上分别取OM=ON ,OD=OE ,DN 和EM 相交于点C .求证:点C 在∠AOB 的平分线上.8.如图,在Rt △ABC 中,∠ACB=45°,∠BAC=90°,AB=AC ,点D 是AB 的中点,AF ⊥CD 于H ,交BC 于F ,BE ∥AC 交AF 的延长线于E ,求证:BC 垂直且平分DE.9.如图所示,已知AE ⊥AB ,AF ⊥AC ,AE=AB ,AF=AC 。
求证:(1)BF=CE;(2)AM 平分∠BAC 。
DA CB FEAB DCE O M N AE BM CFH F B C AGE DFED C B ABAD CEH B ADCENMB AD CE10.△DAC 、△EBC 均是等边三角形,AF 、BD 分别与CD 、CE 交于点M 、N ,求证:(1)AE=BD (2)CM=CN (3)△CMN 为等边三角形 (4)MN ∥BC (5)∠EMN=∠CDB (6)BD 、AE 交于O,求证CO 平分∠AOB.NMABD EC11.如图,点A 、B 、C 在同一直线上,△ABD ,△BCE 都是等边三角形。
八年级上册数学三角形三边关系-命题与证明

⼋年级上册数学三⾓形三边关系-命题与证明三⾓形中的边⾓关系、命题与证明【学习⽬的】①理解与三⾓形有关的基本概念②命题与证明考点⼀:三⾓形中的边⾓关系知识点拨:1.三⾓形中的有关概念(1)三⾓形的概念:由不在同⼀直线上的三条线段⾸尾依次相接所组成的封闭图形叫做三⾓形.⽤符号“△”表⽰.(2)三⾓形的顶点、边和⾓:①边的表⽰;②⾓的表⽰;③对边、对⾓的概念.2.三⾓形按边的关系分类(1)不等边三⾓形:三条边互不相等;②等腰三⾓形:有两条边相等的三⾓形;(2)等边三⾓形:三条边都相等的三⾓形(等腰三⾓形的特例)3.三⾓形的三边关系:三⾓形中任何两条边的和⼤于第三边,两边的差(绝对值)⼩于第三边.4.三⾓形中⾓的关系(1)按⾓分类:①直⾓三⾓形;②斜三⾓形:锐⾓三⾓形和钝⾓三⾓形.(2)三⾓形的内⾓和等于180 .注意:①⽤Rt△ABC表⽰直⾓三⾓形;②任意⼀个三⾓形最多有三个锐⾓;最少有两个锐⾓;最多有⼀个钝⾓;最多有⼀个直⾓;③任何三⾓的最⼤内⾓不能⼩于60 ,最⼩内⾓不能⼤于60 .5.三⾓形中的⼏条重要线段(1)⾓平分线:⾓平分线把⾓分成两个相等的⾓.(三条⾓平分线的交点就是三⾓形的外⼼)(2)中线:三⾓形⼀顶点与它对边中点的线段叫中线.(三条中线的交点就是三⾓形的重⼼)(3)⾼线:三⾓形⼀顶点与它对边所在直线的垂线段叫三⾓形的⾼线.注意:三⾓形的中线所分得的两个三⾓形的⾯积相等.6.定义:能明确界定某个对象含义的语句叫做定义.例1:如图所⽰,以点A为顶点的三⾓形共有()A.6个B.7个C.8个D.9个A.20或16B.20C.60D.以上都不对例3:若四条线段的长分别为2cm、3cm、4cm、5cm,以其中的三条线段为边长,则可以构成三⾓形的个数有()A.1 B.2 C.3 D.4A.锐⾓三⾓形B.钝⾓三⾓形C.直⾓三⾓形D.⽆法确定例5:如图,CD、CE、CF分别是△ABC的⾼、⾓平分线、中线,则下列各式中错误的是()A.BA=2BFB.2∠ACE=∠ACBC.AE=BED.CD⊥BE例6:下列属于定义的是()A.两点确定⼀条直线B.两直线平⾏,同位⾓相等C.三⾓形的⾼、⾓平分线和中线都是线段D.有⼀个⾓是直⾓的三⾓形叫做直⾓三⾓形基础训练1、如图所⽰,AB=AC,BE=CD,AD=BD=DE=AE=CE,则图中共有个等腰三⾓形,有个等边三⾓形.第1题图第3题图第4题图2、⼀个等腰三⾓形中,⼀边长为9cm,另⼀边长为5cm,则等腰三⾓形的周长是.3、如图,AD、BE、CF分别是△ABC的⾼、中线、⾓平分线.则△ADC的⾼、中线、⾓平分线分别是.4、如图,图中以AB为边的三⾓形的个数是()A.3B.4C.5D.6A.等腰三⾓形B.等边三⾓形C.直⾓三⾓形D.不能确定6、三⾓形的两边长分别为3,8,则第三边长为()A.5B.6C.3D.117、以下各组长度的线段为边,组成的三⾓形是()A.2、3、5B.3、3、6C.5、8、2D.4、5、68、设三⾓形的三边长分别为2,9,1-2a,则a的取值范围是()A.3B.-5C.-5D.不能确定9、三⾓形的内⾓和等于()A.90B.180C.300D.36010、在△ABC中,若∠A=54 ,∠B=36 ,则△ABC是()A.锐⾓三⾓形B.钝⾓三⾓形C.直⾓三⾓形D.等腰三⾓形11、当三⾓形中⼀个内⾓α是另⼀个内⾓β的2倍时,我们称此三⾓形为“特征三⾓形”,其中α称为“特征⾓”.如果⼀个“特征三⾓形”的“特征⾓”为100°,那么这个“特征三⾓形”的最⼩内⾓的度数为()A.30°B.50°C.80°D.100°12、三⾓形的⾓平分线、中线和⾼()A.都是射线B.都是直线C.都是线段D.都在三⾓形内13、如图所⽰,已知∠1=∠2,∠3=∠4,则下列结论正确的个数为()①AD平分∠BAF;②AF平分∠DAC;③AE平分∠DAF;④AE平分∠BAC.A.②和③B.③和④C.①和④D.仅有③14、下⾯四个命题中属于定义的是()A.两点之间线段最短B.对顶⾓相等C.有两条边相等的三⾓形叫等腰三⾓形D.内错⾓相等强化训练1.在△ABC中,如果∠A:∠B:∠C=1:2:3,则△ABC⼀定是()A.锐⾓三⾓形B.直⾓三⾓形C.钝⾓三⾓形D.等腰三⾓形2.如图,AE是△ABC的中线,D是BE上⼀点,若BE=5,DE=2,则CD的长为()A.7B.6C.5D.43.如图,过△ABC的顶点A,作BC边上的⾼,以下作法正确的是()4.下列每组数分别是三根⼩⽊棒的长度,⽤它们能摆成三⾓形的是()A.3cm,4cm,8cmB.8cm ,7cm,15cmC.5cm ,5cm,11cmD.13cm ,12cm,20cm5.如图,在△ABC中,点D是边AB上的⼀点,点E是边AC上⼀点,且DE∥BC,∠B=40 ,∠AED=60 ,则∠A的度数是()A.100 B.90 C.80 D.70第5题图第7题图第8题图6.⼀个三⾓形的两边长为8和10,则它的最短边a的取值范围是.7.如图,AD是△ABC的BC边上的⾼,AE是∠BAC的平分线.(1)若∠B=47°,∠C=53°,则∠DAE=度;(2)若∠B=α,∠C=β(α<β),则∠DAE=度.(⽤α、β含的代数式表⽰)8.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的⼤⼩是.9.已知⼀个等腰三⾓形的两边长分别为2和4,则该等腰三⾓形的周长是_____.10.如图,在△ABC中,∠A=40 ,D点是∠ABC和∠ACB⾓平分线的交点,则∠BDC=_____.11.如图,AD为△ABC的中线,BE为△ABD的中线.(1)若∠ABE=15 ,∠BAD=40 ,求∠BED的度数;(2)在△BED 中,作BD 边上的⾼;(3)若△ABC 的⾯积为40,BD=5,求△BDE 中BD 边上的⾼为多少?12.如图,在△ABC 中,AD 是BC 边上的⾼,AE 、BF 是⾓平分线,它们相交于点O ,∠BAC =50°,∠C =70°,求∠DAC ,∠BOA.能⼒提升1.各边长度都是正整数且最⼤边长为8的三⾓形共有个.2.三⾓形的三边长分别为a 、b 、c ,且(a -b-c)?(b-c)=0,则此三⾓形为________三⾓形.3.如图所⽰,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12=?ABC S ,则图中阴影部分⾯积是_____.4.如图所⽰,在△ABC 中,已知点D 、E 、F 分别为边BC 、AD 、CE 的中点,且24cm S ABC =?,则阴影S 等于()5.如图,⽤钢筋做⽀架,要求BA 、DC 相交所成的锐⾓为32 ,现测得∠BAC=∠DCA=115 ,则这个⽀架符合设计要求吗?为什么?6.设三⾓形的三条边为整数a 、b 、c 且c b a ≤≤,当b=4时,符合条件的a 、b 、c 的取值若下表:(1)将表格补充完整;(2)满⾜条件的三⾓形共有多少个?其中等腰三⾓形有多少个?等边三⾓形⼜有多少个? 考点⼆:命题与证明例1:下列语句不是命题的是()A.直⾓都等于90 B.对顶⾓相等 C.互补的两个⾓不相等 D.作线段AB例2:把下例命题改写成“如果......那么.....”的形式,并分别指出它们的题设和结论.(1)整数⼀定是有理数;(2)同⾓的补⾓相等;(3)两个锐⾓互余.例3:写出下列命题的逆命题,并判断真假(1)两直线平⾏,同位⾓相等;(2)若a=0,则a b=0;(3)对顶⾓相等.例4:请举反例说明命题“对于任意实数x ,552++x x 的值总是正数”是假命题,你举的反例是_____(写出⼀个的值即可).例5:在下列证明中,填上推理依据:如图,CD ∥EF ,∠1=∠2,求证:∠3=∠ACB.例6:如图,在△ABC 中,∠ABC=66 ,∠ACB=54 ,BE 、CF 是两边AC 、AB 上的⾼,它们交于点H.求∠ABE 和∠BHC 的度数.基础训练1、下列语句中,不是命题的是() A.两点之间线段最短B.对顶⾓相等C.不是对顶⾓的两个⾓不相等D.过直线AB 外⼀点P 作直线AB 的垂线2、下列命题中,是真命题的是() A.三⾓形的⼀个外⾓⼤于任何⼀个内⾓ B.三⾓形的⼀个外⾓等于两个内⾓之和 C.三⾓形的两边之和⼀定不⼩于第三边D.三⾓形的三条中线交于⼀点,这个交点就是三⾓形的重⼼3、“两条直线相交只有⼀个交点”的题设是()A.两条直线B.相交C.只有⼀个交点D.两条直线相交4、已知命题A:“任何偶数都是8的整数倍”.在下列选项中,可以作为“命题A是假命题”的反例的是()A.2kB.15C.24D.425、如图,下列说法中错误的是()A.∠1不是△ABC的外⾓B.∠B<∠1+∠2C.∠ACD是△ABC的外⾓D.∠ACD>∠A+∠B第5题图第6题图第7题图6、⼀副三⾓板有两个直⾓三⾓形,如图叠放在⼀起,则∠α的度数是()A.165B.120C.150D.1357、如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为()A.40°B.50°C.60°D.70°8、命题“有两边相等的三⾓形是等腰三⾓形”的题设是,结论是,它的逆命题是.9、完成以下证明,并在括号内填写理由:已知:如图所⽰∠1=∠2,∠A=∠3.求证:AC∥DE.证明:因为∠1=∠2,所以AB∥.()所以∠A=∠4.()⼜因为∠A=∠3,所以∠3=.()所以AC∥DE. ()10、将下列命题改写成“如果......那么......”的形式,并分别指出命题的题设与结论:(1)直⾓都相等;(2)末位数字是5的整数能被5整除;(3)同⾓的余⾓相等.11、分析下列所举反例的正确性,若不正确,请写出正确的反例.(1)若|x|=|y|,则x=y;反例:取x=3,y=-3,则|x|=|y|,所以此命题是假命题;(2)两个锐⾓的和⼀定是钝⾓;反例:取∠1=30°,∠2=100°,则∠1+∠2=130°,不符合命题的结论,所以此命题是假命题;(3)若|a|=a,则a>0.12、如图,已知AC∥DE,∠1=∠2.求证:AB∥CD.13、如图,在△ABC中,∠A=62°,∠ABD=∠DCE=36°,求∠BEC的度数.14、如图,点E是△ABC中AC边上的⼀点,过E作ED⊥AB,垂⾜为D,若∠1=∠2,,则△ABC 是直⾓三⾓形吗?为什么?强化训练1.如图,在锐⾓三⾓形ABC中,CD、BE分别是AB、AC边上的⾼,且CD、BE相交于点P.若∠A =50°,则∠BPC的度数是()A.150B.130C.120D.1002.如图,从①∠1=∠2;②∠C=∠D;③∠A=∠F三个条件中选出两个作为已知条件,另⼀个作为结论所组成的命题中,正确命题的个数为()A.0 B.1 C.2 D.3第2题图第6题图3.⼀个三⾓形的三个外⾓之⽐为3:4:5,则这个三⾓形三个内⾓之⽐是()A.5:4:3B.4:3:2C.3:2:1D.5:3:14.能说明命题“对于任何实数a ,a a ->”是假命题的⼀个反例可以是() A.a =-2 B.31=a C. a =1 D.2=a 5.下列命题:①对顶⾓相等;②同位⾓相等,两直线平⾏;③若b a =,则b a =;④若0=x ,则022=-x x .它们的逆命题⼀定成⽴的有() A.①②③④ B.①④ C.②④ D.②6.如图,CE 是△ABC 的外⾓∠ACD 的平分线,若∠B=35 ,∠ACE=60 ,则∠A= () A.35 B.95 C.85 D.757.如图,在△ABC 中,∠B=40 ,三⾓形的外⾓∠DAC 和∠ACF 的平分线交于点E ,则∠AEC=.8.直⾓三⾓形中两个锐⾓的平分线相交所成的锐⾓的度数是. 9.写出命题“如果b a =,那么b a 33=”的逆命题:.10.如图,AD 是△ABC 的⾼,BE 平分∠ABC 交AD 于E.若∠C =60°,∠BED =54°,求∠BAC 的度数.11.如图,AD 是△ABC 的外⾓平分线,交BC 的延长线于D 点,若∠B=30°,∠ACD=100°,求∠DAE 的度数.12.如图,D是△ABC内的任意⼀点.求证:∠BDC=∠1+∠A+∠2.13.⽤两种⽅法证明“三⾓形的外⾓和等于360 ”.如图,∠BAE、∠CBF、∠ACD是△ABC的三个外⾓.求证:∠BAE+∠CBF+∠ACD=360 .证法1:,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180? 3=540 .∴∠BAE+∠CBF+∠ACD=540 -(∠1+∠2+∠3).,∴∠BAE+∠CBF+∠ACD=540 -180 =360 .请把证法1补充完整,并⽤不同的⽅法完成证法2.能⼒提升1.如图,∠A+∠B+∠C+∠D=.2.观察下列各式:想⼀想:什么样的两个数之积等于这两个数的和?设n 表⽰正整数,⽤关于n 的代数式表⽰这个规律:_______×_______=_______+________.3.如图,在△ABC 中,AD 是BC 边上的中线,且AD=12BC .2224,24;1139393,3;22224164164,4;33335255255,5.4444?=+=?=+=?=+=?=+=(1)求证:∠BAC=90°;(2)直接运⽤这个结论解答题⽬:⼀个三⾓形⼀边长为2,这边上的中线长为1,另两边之和为4.如图在△ABC中AB=AC,∠BAC=900,直⾓∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于E、F.(1)求证:AE=CF(2)是否还有其他结论,不要求证明(⾄少2个)。
沪科版八年级数学上册 13.2命题与证明专题训练(含答案)

沪科版八年级数学上册 13.2 命题与证明专题一 三角形中的计算与证明题1.已知△ABC 的高为AD ,∠BAD =70º,∠CAD =20º,求∠BAC 的度数。
2.如图,已知AB ∥DE ,试求证:∠A +∠ACD +∠D =3600(你有几种证法?)3.在研究三角形内角和等于180°的证明方法时,小明和小虎分别给出了下列证法. 小明:在△ABC 中,延长BC 到D ,∴∠ACD =∠A +∠B (三角形一个外角等于和它不相邻的两个内角的和).又∵∠ACD +∠ACB =180°(平角定义), ∴∠A +∠B +∠ACB =180°(等式的性质).小虎:在△ABC 中,作CD ⊥AB (如图9), ∵CD ⊥AB (已知),∴∠ADC =∠BDC =90°(直角定义).∴∠A +∠ACD =90°,∠B +∠BCD =90°(直角三角形两锐角互余). ∴∠A +∠ACD +∠B +∠BCD =180°(等式的性质). ∴∠A +∠B +∠ACB =180°.请你判断上述两名同学的证法是否正确,如果不正确,写出一种你认为较简单的证明三角形内角和定理的方法,与同伴交流.专题二 证明中的探究题4.(1)如图①∠1+∠2与∠B +∠C 有什么关系?为什么?(2)把图①△ABC 沿DE 折叠,得到图②,填空:∠1+∠2_______∠B +∠C (填“>”A B CD“<”“=”),当∠A =40°时,∠B +∠C +∠1+∠2=______.(3)如图③,是由图①的△ABC 沿DE 折叠得到的,如果∠A =30°,则x +y =360°-(∠B +∠C +∠1+∠2)=360°- = ,猜想∠BDA+∠CEA 与∠A 的关系为 .5.如图,已知AB CD ∥,探究123∠,∠,∠之间的关系,并写出证明过程.【知识要点】1.判断一件事情的语句叫命题,命题都由题设和结论两部分构成,分为真命题和假命题,都可以改写成“如果……那么……”的形式,任何一个命题都有逆命题.2.三角形内角和等于180°,可利用平行线的有关知识证明.三角形三个外角的和等于360°,每个外角等于和其不相邻的两个内角的和,因此三角形的外角大于和它不相邻的任一个内角.【温馨提示】1.命题有逆命题,但定理不一定有逆定理.2.要说明一个命题不成立,只要举出一个反例即可,反例满足命题的题设,但不满足结论.3.“三角形的一个外角大于与它不相邻的任何一个内角”不能说成“三角形的一个外角大于一个内角”.4.在证明一个命题的正确性时,每步都要有根据,根据可以是公理、定义、已知条件或已经证明的定理等.【方法技巧】1.要会判断一个语句是否为命题,需注意两点:(1)命题必须是一个完整的语句,通常是陈述句(包括肯定句和否定句);(2)必须对某件事情做出肯定或否定的判断.两者缺一不可.2.在证明或计算三角形的角度大小关系时,要注意“三角形三个内角的和等于180°”这一隐含条件,合理地构造方程或方程组,以便正确求解.y°x°AD CB E12AD CB E12A DCBE图① 图② 图③3.要证明角的不等关系时,经常用三角形的外角性质来证明,在证明时,如果直接证明有难度,可连接两点,或延长某边,构造三角形,使求证的大角(或它的一部分)处于某个三角形的外角的位置上,小角处在内角的位置上,再结合不等式的性质证明.参考答案1.(1)当高AD 在△ABC 的内部时,因为∠BAD =70º,∠CAD =20º,所以∠BAC =∠BAD +∠CAD =70º+20º=90º;(2)当高AD 在△ABC 的外部时,因为∠BAD =70º,∠CAD =20º,所以∠BAC =∠BAD -∠CAD =70º-20º=50º.综合(1)、(2)可知∠BAC 的度数为90º或50º.2.证法一:如图1,过点C 作CF ∥AB 。
三角形中的边角关系、命题与证明

高效学案4、三角形中的重要线段(1)三角形的角平分线:三角形的一个内角的平分线与它的对边相交,连接这个角的顶点和交点之间的线段.(2)三角形的中线:三角形中,连接一个顶点和它所对边的中点的线段叫做三角形的中线.(3)三角形的高:从三角形一个顶点向它的对边作一条垂线,三角形顶点和垂足之间的线段称三角形这条边上的高.三、经典例题【例1】以下列各组线段长为边,能组成三角形的是( )A .1cm ,2cm ,4cmB .8cm ,6cm ,4cmC .12cm ,5cm ,6cmD .2cm ,3cm ,6cm【变式1】两根木棒的长分别为7cm 和10cm ,要选择第三根棒,将它钉成一个三角形框架,那么第三根木棒长x cm 的范围是__________.【变式2】若a 、b 、c 是△ABC 的三边,化简c b a a c b c b a +--+--+--.【变式3】如图,已知P 是△ABC 内一点,连结AP ,PB ,PC .求证:PA+PB+PC >21(AB+AC+BC).【例2】等腰三角形的两边长分别为5 cm 和10 cm ,则此三角形的周长是( )A .15cmB .20cmC .25 cmD .20 cm 或25 cm【例3】已知△ABC 中:(1)∠A=20°,∠B ﹣∠C=40°,则∠B=______;(2)∠A=120°,2∠B+∠C=80°,则∠B=_______;(3)∠B=∠A+40°,∠C=∠B ﹣50°,则∠B=_______;(4)∠A :∠B :∠C=1:3:5,则∠B=_______.E DA 2 1 ABC 【变式】如图把△ABC 纸片沿DE 折叠,当点A 在四边形BCDE 的内部时,则∠A 与∠1、∠2之间有一种数量关系始终保持不变.请试着找出这个规律,你发现的规律是( )A.∠A=∠2+∠1B.2∠A=∠2+∠1C.3∠A=2∠1+∠2D.3∠A=2∠1+2∠2【例4】如图,α、β、γ分别是△ABC 的外角,且α:β:γ= 2:3:4,则α =__________.【变式1】如图,五角星ABCDE ,求E D C B A ∠+∠+∠+∠+∠的度数.【变式2】已知:如图1,线段AB 、CD 相交于点O ,连接AD 、CB ,我们把形如图1的图形称之为“8字形”.试解答下列问题:(1)在图1中,请直接写出∠A 、∠B 、∠C 、∠D 之间的数量关 ;(2)在图2中,若∠D=40°,∠B=36°,∠DAB 和∠BCD 的平分线AP 和CP 相交于点P ,并且与CD 、AB 分别相交于M 、N .利用(1)的结论,试求∠P 的度数;(3)如果图2中∠D 和∠B 为任意角时,其他条件不变,试问∠P 与∠D 、∠B 之间存在着怎样的数量关系?【例5】如图,∆ABC 中,AD 是BC 上的中线,BE 是∆ABD 中AD 边上的中线,若∆ABC 的面积是24,则∆ABE 的面积是________.【例6】如图,在△ABC 中,BE ⊥AC ,BC=5cm ,AC=8cm ,BE=3cm .(1)求△ABC 的面积;(2)画出△ABC 中的BC 边上的高AD ,并求出AD 的值.【例7】已知:如图AB//CD 直线EF 分别交AB 、CD 于点E 、F ,BEF ∠的平分线与DFE ∠的平分线相交于P ,求证 90=∠P .【变式】如图,∠MON=90°,点A ,B 分别在射线OM ,ON 上运动,BE 平分∠NBA ,BE 的反向延长线与∠BAO 的平分线交于点C .∠BAO=45°则∠C 的度数是( )A .30°B .45°C .55°D .60°【例8】如图,△ABC 中,∠B 和∠C 的平分线交于点O ,若∠A=70°,则∠BOC= 度.【变式】认真阅读下面关于三角形内外角平分线所夹的探究片段,完成所提出的问题.探究1:如图1,在△ABC 中,O 是∠ABC 与∠ACB 的平分线BO 和CO 的交点,试分析∠BOC 与∠A 有怎样的关系? 探究2:如图2中,O 是∠ABC 与外角∠ACD 的平分线BO 和CO 的交点,试分析∠BOC 与∠A 有怎样的关系? 探究3:如图3中,O 是外角∠DBC 与外角∠ECB 的平分线BO 和CO 的交点,则∠BOC 与∠A 有怎样的关系?四、方法归纳1、三角形的边的关系,只需验证:两个较短的边之和大于第三边即可.2、三角形的两边长分别为b a ,,则第三边长c 的取值范围是:b a c b a +<<-.3、三角形的几种“心”.(1)重心:三条中线的交点.(2)外心:三边垂直平分线的交点.(3)内心:三条内角平分线的交点.(4)垂心:三条高线的交点.五、课后作业【作业1】1.如图所示,共有_______个三角形,以AD 为一边的三角形有___________________,∠C 是△ADC 的________边的对角,AE 是△ABE 中∠_____的对边.2.一个三角形周长为27cm ,三边长为2:3:4,则最长边为______cm.3.已知在△ABC 中,5=a ,3=b ,那么第三边c 的取值范围是_____________.4.在△ABC 中,2∠A=3∠B=6∠C ,则△ABC 是________三角形.5.在△ABC 中,已知∠B -∠A=5°,∠C -∠B=20°,则∠A=_______.6.如图,在△ABC 中,∠ACB=90°,∠ABC=25°,CD ⊥AB 于D ,则∠ACD =_________.7.等腰三角形周长为14,其中一边长为3,则腰长为________.8.一个三角形有两条边相等,一边长为4cm ,另一边长为9cm ,那么这个三角形的周长是__________.9.在△ABC 中,∠B ,∠C 的平分线交与点O ,若∠BOC=132°,则∠A=________.10.如图,在△ABC 中,D 、E 分别是AB 、AC 边上的点,DE ∥BC ,∠ADE=30°,∠C=120°,则∠A 等于( )A.60°B.45°C.30°D.20°11.如果三角形的一个角等于其他两个角的差,那么这个三角形一定是( )A.锐角三角形B.直角三角形C.钝角三角形D.不确定12.一个三角形的两边长分别为3和7,若第三边长为偶数,则第三边为( )A.4,6B.4,6,8C.6,8D.6,8,1013.能将三角形的面积分成相等的两部分的是( )A.三角形的角平分线B.三角形的中线C.三角形的高线D.以上都不对14.在△ABC 中,若∠A :∠B :∠C=1:2:3,则△ABC 是( )A.锐角三角形B.直角三角形C.钝角三角形D.正三角形15.如图,AD 、AF 分别是△ABC 的高和角平分线,已知∠B=36°,∠C=76°,求∠DAF 数.(提示:先证明∠DAF=21(∠C -∠B ))16.如图,已知I 为△ABC 的内角平分线的交点.求证:∠BIC=90°+21∠A.17.如图,在△ABC 中,∠B = 60°,∠C = 50°,AD 是∠BAC 的平分线,DE 平分∠ADC 交AC 于E ,求∠BDE 的度数.18.如图,在△ABC 中,∠B=∠C ,FD ⊥BC ,DE ⊥AB ,垂足分别为D 、E ,已知∠AFD=150°,求∠EDF 等于多少度?【作业2】1.如图,AD ,BE ,CF 是△ABC 的中线、高、角平分线.则:BD=___=21___;∠___=∠___=90°;∠___=∠___=21∠___. 2.如图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,已知AB=6,BC=4,AD=5,则CE=______.3.如图,AD 、AE 分别是△ABC 的中线、高,且AB=5,AC=3,则△ABD 与△ACD 的周长的差是_________,△ACD 与△ABD 的面积关系为__________.第1题 第2题 第3题 第4题 第5题4.如图,△ABC 的周长是21cm ,AB=AC ,中线BD 分△ABC 为两个三角形,且△ABD 的周长比△BCD 的周长大6cm ,则AB= ,BC=_________.5.如图,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且2ABC cm 8=∆S ,则阴影部分的面积等于_________.6.在△ABC 中,若AB=5,AC=2,且三角形周长为偶数,则BC=________.7.△ABC 的三边长是a ,b ,c ,则c b a a c b c b a +++-----=________.第8题 第9题 第10题8.如图,在Rt △ABC 中,∠C=90°,点B 沿CB 所在直线远离C 点移动,下列说法不正确的是( )A.三角形面积随之增大B.∠CAB 的度数随之增大C.边AB 的长度随之增大D.BC 边上的高随之增大9.如图,在△ABC 中,∠B 、∠C 的平分线BE ,CD 相交于点F ,∠ABC=42°,∠A=60°,则∠BFC=( )A.118°B.119°C.120°D.121°10.如图,在△ABC 中,BO ,CO 分别平分∠ABC 和∠ACB ,则∠BOC 与∠A 的大小关系是( )A.∠BOC=2∠AB.∠BOC=90°+∠AC.∠BOC=90°+21∠A D.∠BOC=90°21-∠A11.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④∠BDC=∠BAC.其中正确的结论有()A.1个B.2个C.3个D.4个12.如图,在△ABC中,∠ABC与∠ACB的平分线相交于D,已知∠A=50°,求∠BDC的度数.13.如图,已知BD为∠ABC的平分线,CD为△ABC的外角∠ACE的平分线,CD与BD交于点D,试说明∠A=2∠D.14.如图,已知AB∥CD,EF与AB、CD分别相交于点E、F,∠BEF与∠EFD的平分线相交于点P,求证:EP⊥FP.15.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.16.已知:∠MON=40°,OE 平分∠MON ,点A 、B 、C 分别是射线OM 、OE 、ON 上的动点(A 、B 、C 不与点O 重合),连接AC 交射线OE 于点D .设∠OAC x =°.21(1)如图1,若AB ∥ON ,则①∠ABO 的度数是 ;②当∠BAD=∠ABD 时,=x ;当∠BAD=∠BDA 时,=x .(2)如图2,若AB ⊥OM ,则是否存在这样的x 的值,使得△ADB 中有两个相等的角?若存在,求出x 的值;若不存在,说明理由.第二节:命题与证明一、课堂导入有个学生请教爱因斯坦逻辑学有什么用。
初中数学命题与证明的真题汇编附答案

初中数学命题与证明的真题汇编附答案一、选择题1.已知命题:等边三角形是等腰三角形.则下列说法正确的是( )A .该命题为假命题B .该命题为真命题C .该命题的逆命题为真命题D .该命题没有逆命题【答案】B【解析】分析:首先判断该命题的正误,然后判断其逆命题的正误后即可确定正确的选项.详解:等边三角形是等腰三角形,正确,为真命题;其逆命题为等腰三角形是等边三角形,错误,为假命题,故选:B .点睛:本题考查了命题与定理的知识,解题的关键是能够写出该命题的逆命题,难度不大.2.下列命题中:①等腰三角形底边的中点到两腰的距离相等;②等腰三角形的高、中线、角平分线互相重合; ③若ABC V 与'''A B C V 成轴对称,则ABC V 一定与'''A B C V 全等;④有一个角是60度的三角形是等边三角形;⑤等腰三角形的对称轴是顶角的平分线.正确命题的个数是( )A .2B .3C .4D .5【答案】A【解析】【分析】利用轴对称的性质、等腰三角形的性质、等边三角形的判定等知识分别判断后即可确定正确的选项.【详解】解:①等腰三角形底边的中点到两腰的距离相等;正确; ②等腰三角形的底边上的高、底边上的中线、顶角的平分线互相重合;不正确: ③若ABC V 与'''A B C V 成轴对称,则ABC V 一定与'''A B C V 全等;正确; ④有一个角是60度的等腰三角形是等边三角形;不正确;⑤等腰三角形的对称轴是顶角的平分线所在的直线,不正确.正确命题为:2①③,个; 故选:A【点睛】本题考查了命题与定理的知识,解题的关键是了解轴对称的性质、等腰三角形的性质、等边三角形的判定等知识,属于基础知识,难度不大.3.下列定理中,逆命题是假命题的是( )A .在一个三角形中,等角对等边B.全等三角形对应角相等C.有一个角是60度的等腰三角形是等边三角形D.等腰三角形两个底角相等【答案】B【解析】【分析】先把一个命题的条件和结论互换就得到它的逆命题,再进行判断即可.【详解】解:A、逆命题为:在一个三角形中等边对等角,逆命题正确,是真命题;B、逆命题为:对应角相等的三角形是全等三角形,逆命题错误,是假命题;C、逆命题为:如果一个三角形是等边三角形,那么它是一个等腰三角形而且有一个内角等于60°,逆命题正确,是真命题;D、逆命题为:两个角相等的三角形是等腰三角形,逆命题正确,是真命题;故选:B.【点睛】本题考查了命题与定理的知识,解题的关键是能够正确的写出原命题的逆命题.4.下列命题是假命题的是()A.有一个角为60︒的等腰三角形是等边三角形B.等角的余角相等C.钝角三角形一定有一个角大于90︒D.同位角相等【答案】D【解析】【分析】【详解】解:选项A、B、C都是真命题;选项D,两直线平行,同位角相等,选项D错误,是假命题,故选:D.5.下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形【答案】C【解析】试题分析:A.四个角相等的四边形是矩形,为真命题,故A选项不符合题意;B.对角线相等的平行四边形是矩形,为真命题,故B选项不符合题意;C .对角线垂直的平行四边形是菱形,为假命题,故C 选项符合题意;D .对角线垂直的平行四边形是菱形,为真命题,故D 选项不符合题意.故选C .考点:命题与定理.6.已知:ABC ∆中,AB AC =,求证:90O B ∠<,下面写出可运用反证法证明这个命题的四个步骤:①∴180O A B C ∠+∠+∠>,这与三角形内角和为180O 矛盾,②因此假设不成立.∴90O B ∠<,③假设在ABC ∆中,90O B ∠≥,④由AB AC =,得90O B C ∠=∠≥,即180O B C ∠+∠≥.这四个步骤正确的顺序应是( )A .③④②①B .③④①②C .①②③④D .④③①②【答案】B【解析】【分析】根据反证法的证明步骤“假设、合情推理、导出矛盾、结论”进行分析判断即可.【详解】题目中“已知:△ABC 中,AB=AC ,求证:∠B <90°”,用反证法证明这个命题过程中的四个推理步骤:应该为:(1)假设∠B ≥90°,(2)那么,由AB=AC ,得∠B=∠C ≥90°,即∠B+∠C ≥180°,(3)所以∠A+∠B+∠C >180°,这与三角形内角和定理相矛盾,(4)因此假设不成立.∴∠B <90°,原题正确顺序为:③④①②,故选B .【点睛】本题考查反证法的证明步骤,弄清反证法的证明环节是解题的关键.7.下列命题中是真命题的是( )A .多边形的内角和为180°B .矩形的对角线平分每一组对角C .全等三角形的对应边相等D .两条直线被第三条直线所截,同位角相等【答案】C【解析】【分析】根据多边形内角和公式可对A 进行判定;根据矩形的性质可对B 进行判定;根据全等三角形的性质可对C 进行判定;根据平行线的性质可对D 进行判定.【详解】A.多边形的内角和为(n-2)·180°(n≥3),故该选项是假命题,B.矩形的对角线不一定平分每一组对角,故该选项是假命题,C.全等三角形的对应边相等,故该选项是真命题,D.两条平行线被第三条直线所截,同位角相等,故该选项是假命题,故选:C .【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.熟练掌握矩形的性质、平行线的性质、全等三角形的性质及多边形的内角和公式是解题关键.8.下列命题是真命题的个数是( ).①64的平方根是8±;②22a b =,则a b =;③三角形三条内角平分线交于一点,此点到三角形三边的距离相等;④三角形三边的垂直平分线交于一点.A .1个B .2个C .3个D .4个【答案】C【解析】【分析】分别根据平方根、等式性质、三角形角平分线、线段垂直平分线性质进行分析即可.【详解】①64的平方根是8±,正确,是真命题;②22a b =,则不一定a b =,可能=-a b ;故错误;③根据角平分线性质,三角形三条内角平分线交于一点,此点到三角形三边的距离相等;是真命题;④根据三角形外心定义,三角形三边的垂直平分线交于一点,是真命题;故选:C【点睛】考核知识点:命题的真假.理解平方根、等式性质、三角形角平分线、线段垂直平分线性质是关键.9.下列命题是真命题的是( )A .中位数就是一组数据中最中间的一个数B .一组数据的众数可以不唯一C .一组数据的标准差就是这组数据的方差的平方根D .已知a 、b 、c 是Rt △ABC 的三条边,则a 2+b 2=c 2【答案】B【解析】【分析】正确的命题是真命题,根据定义判断即可.解:A 、中位数就是一组数据中最中间的一个数或着是中间两个数的平均数,故错误; B 、一组数据的众数可以不唯一,故正确;C 、一组数据的标准差是这组数据的方差的算术平方根,故此选项错误;D 、已知a 、b 、c 是Rt △ABC 的三条边,当∠C =90°时,则a 2+b 2=c 2,故此选项错误; 故选:B .【点睛】此题考查真命题的定义,掌握定义,准确理解各事件的正确与否是解题的关键.10.以下说法中:(1)多边形的外角和是360︒;(2)两条直线被第三条直线所截,内错角相等;(3)三角形的3个内角中,至少有2个角是锐角.其中真命题的个数为() A .0B .1C .2D .3【答案】C【解析】【分析】利用多边形的外角和定理、平行线的性质及三角形的内角和定理分别判断后即可确定正确的选项.【详解】解:(1)多边形的外角和是360°,正确,是真命题;(2)两条平行线被第三条直线所截,内错角相等,故错误,是假命题;(3)三角形的3个内角中,至少有2个角是锐角,正确,是真命题,真命题有2个,故选:C .【点睛】考查了命题与定理的知识,解题的关键是了解多边形的外角和定理、平行线的性质及三角形的内角和定理,难度不大.11.下面说法正确的个数有( )①方程329x y +=的非负整数解只有13x y ==,;②由三条线段首尾顺次连接所组成的图形叫做三角形;③如果1122A B C ∠=∠=∠,那么ABC V 是直角三角形;④各边都相等的多边形是正多边形;⑤如果一个三角形只有一条高在三角形的内部,那么这个三角形一定是钝角三角形.A .0个B .1个C .2个D .3个【解析】【分析】根据二元一次方程的解的定义可对①进行判断;根据三角形的定义对②进行判断;根据直角三角形的判定对③进行判断;根据正多边形的定义对④进行判断;根据钝角三角形的定义对⑤进行判断.【详解】解:①二元一次方程329x y +=的非负整数解是x=3,y=0或x=1,y=3,原来的说法错误;②由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形叫做三角形,原来的说法错误;③如果3672=72A B C ∠=︒∠=︒∠︒,,,那么ABC V 不是直角三角形,故错误; ④各边都相等,各角也相等的多边形是正多边形,故错误.⑤如果一个三角形只有一条高在三角形的内部,那么这个三角形是钝角三角形或直角三角形,故错误,故选A.【点睛】此题考查命题与定理的知识,解题的关键是了解二元一次方程的解的定义、三角形的定义、直角三角形的判定、正多边形的定义及钝角三角形的定义等知识,难度不大.12.下列命题中是真命题的是( )A .两个锐角的和是锐角B .两条直线被第三条直线所截,同位角相等C .点(3,2)-到x 轴的距离是2D .若a b >,则a b ->-【答案】C【解析】【分析】根据角的定义、平行线的性质、点的坐标及不等式的性质对各选项进行分析判断,即可得解.【详解】A. 两个锐角的和是锐角是假命题,例如80°+80°=160°,是钝角,不是锐角,故本选项错误;B. 两条直线被第三条直线所截,同位角相等是假命题,两条平行线被第三条直线所截,同位角才相等,故本选项错误;C. 点(3,2)-到x 轴的距离是2是真命题,故本选项正确;D. 若a b >,则a b ->-是假命题,正确结果应为a b -<-,故本选项错误.故选:C .【点睛】本题考查真假命题的判断,解题关键是认真判断由条件是否能推出结论,如果能举出一个反例,或由条件推出的结论与题干结论不一致,则为假命题.13.用三个不等式,0,a b ab a b >>>中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为( )A .0B .1C .2D .3 【答案】A【解析】【分析】由题意得出三个命题,根据不等式的性质判断命题的真假.【详解】若,0a b ab >>,则a b >为假命题.反例:a=-1,b=-2 若,a b a b >>,则0ab >为假命题.反例:a=2,b=-1 若0,ab a b >>,则a b >为假命题.反例:a=-2,b=-1 故选:A【点睛】本题考查了命题与不等式的性质,解题的关键在于根据题意得出命题,根据不等式的性质判断真假.14.下列命题为真命题的是()A .三角形的一个外角大于任何一个和它不相邻的内角B .两直线被第三条直线所截,同位角相等C .垂直于同一直线的两直线互相垂直D .三角形的外角和为180o【答案】A【解析】【分析】根据三角形的外角性质、平行线的性质、平行公理的推论、三角形外角和定理判断即可.【详解】三角形的一个外角大于任何一个和它不相邻的内角,A 是真命题;两条平行线被第三条直线所截,同位角相等,B 是假命题;在同一平面内,垂直于同一直线的两直线互相平行,C 是假命题;三角形的外角和为360°,D 是假命题;故选A .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.15.下列命题中是假命题的是( )A.一个三角形中至少有两个锐角B.在同一平面内,垂直于同一直线的两条直线平行C.同角的补角相等aD.如果a为实数,那么0【答案】D【解析】A. 一个三角形中至少有两个锐角,是真命题;B. 在同一平面内,垂直于同一直线的两条直线平行,是真命题;C. 同角的补角相等,是真命题;D. 如果a为实数,那么|a|>0,是假命题;如:0是实数,|0|=0,故D是假命题;故选:D.16.下列命题是假命题的是()A.有一个角是60°的等腰三角形是等边三角形B.等边三角形有3条对称轴C.有两边和一角对应相等的两个三角形全等D.线段垂直平分线上的点到线段两端的距离相等【答案】C【解析】【分析】根据等边三角形的判定方法、等边三角形的性质、全等三角形的判定、线段垂直平分线的性质一一判断即可.【详解】A.正确;有一个角是60°的等腰三角形是等边三角形;B.正确.等边三角形有3条对称轴;C.错误,SSA无法判断两个三角形全等;D.正确.线段垂直平分线上的点到线段两端的距离相等.故选:C.【点睛】本题考查了命题与定理,等边三角形的判定方法、等边三角形的性质、全等三角形的判定、线段垂直平分线的性质等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.17.下列命题的逆命题是真命题的是()A.直角都相等 B.钝角都小于180° C.如果x2+y2=0,那么x=y=0 D.对顶角相等【答案】C【解析】【分析】根据逆命题是否为真命题逐一进行判断即可.【详解】相等的角不都是直角,故A选项不符合题意,小于180°的角不都是钝角,故B选项不符合题意,如果x=y=0,那么x2+y2=0,正确,是真命题,符合题意,相等的角不一定都是对顶角,故D选项不符合题意,故选C【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.18.交换下列命题的题设和结论,得到的新命题是假命题的是()A.两直线平行,同位角相等B.相等的角是对顶角C.所有的直角都是相等的D.若a=b,则a﹣3=b﹣3【答案】C【解析】【分析】写出原命题的逆命题,根据相关的性质、定义判断即可.【详解】解:交换命题A的题设和结论,得到的新命题是同位角相等,两直线平行是真命题;交换命题B的题设和结论,得到的新命题是对顶角相等是真命题;交换命题C的题设和结论,得到的新命题是所有的相等的角都是直角是假命题;交换命题D的题设和结论,得到的新命题是若a-3=b-3,则a=b是真命题,故选C.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.19.下列命题错误的是()A.平行四边形的对角线互相平分B.两直线平行,内错角相等C.等腰三角形的两个底角相等D.若两实数的平方相等,则这两个实数相等【答案】D【解析】【分析】根据平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,分别进行判断,即可得到答案.【详解】解:A、平行四边形的对角线互相平分,正确;B、两直线平行,内错角相等,正确;C、等腰三角形的两个底角相等,正确;D、若两实数的平方相等,则这两个实数相等或互为相反数,故D错误;故选:D.【点睛】本题考查了判断命题的真假,以及平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,解题的关键是熟练掌握所学的性质进行解题.20.下列命题中是假命题的是()A.一个锐角的补角大于这个角B.凡能被2整除的数,末位数字必是偶数C.两条直线被第三条直线所截,同旁内角互补D.相反数等于它本身的数是0【答案】C【解析】试题分析:利用锐角的性质、偶数的定义、平行线的性质及相反数的定义分别判断后即可确定正确的选项.A、一个锐角的补角大于这个角,正确,是真命题,不符合题意;B、凡能被2整除的数,末尾数字必是偶数,正确,是真命题,不符合题意;C、两条平行直线被第三条直线所截,同旁内角才互补,故错误,是假命题,符合题意;D、相反数等于他本身的数是0,正确,是真命题,不符合题意考点:命题与定理.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴S阴影=S△CGE+S△BGF=20.
课堂小结 证明题要注意解题步骤要规范,解题思路要清晰;三角 形内角和定理、外角性质,三角形中几条重要的线段的特点 ,相关各个知识点要综合起来灵活应用,且整体思想的利用 也是解题的关键.
谢谢!
优翼微课
初中数学知识点精讲课程
三角形边角关系常用定理、推论及几条重要线段:
(1)三角形三个内角的和为180°;
(2)三角形的一个外角等于与它不相邻的两个内角的和; (3)直角三角形两个锐角互余; (4)三角形角平分线、中线、高。
典例精解
类型一:八字模型
证明:∠A+∠B=∠C+∠D
证明:∵∠A+∠B + ∠AOB =∠C+∠D +∠COD=180° ∠AOB =∠COD ∴∠A+∠B =∠C+∠D
典例精解
类型二:八字模型的应用
(1)如图1的图形我们把它称为“8字形”,请说明∠A+∠B=∠C+∠D; (2)如图2,AP、CP分别平分∠BAD、∠BCD, 猜想图2中∠P与∠B+∠D的数量关系,并说明理由。
M O
N
典例精解
类型三:利用三角形中线证明面积 (1)如图1,AD是△ABC的一条中线,求证:S△ABD=S△ACD; (2)请运用第(1)题的结论解答下列问题:
如图2,△ABC三边的中线AD、BE、CF交于一点G,若S△ABC=60,
求图中阴影部分的面积.证明:(1)如图1,Fra bibliotek点A作AM⊥BC,
∵AD是△ABC的中线,
∴BD=CD= BC, ∵S△ABD= BD×AM,S△ACD= CD×AM ∴S△ABD=S△ACD;
△ABC三边的中线AD、BE、CF交于一点G,若S△ABC=60,求图中阴影部 分的面积. (2)解:∵△ABC的三条中线AD、BE,CF交于点G,
∴S△CGE=S△AGE=S△BGF=S△BGD=S△BDG=S△CDG,
如图2,AP、CP分别平分∠BAD、∠BCD, 猜想图2中∠P与∠B+∠D的数量关系,并说明理由。 解:由8字模型数量关系,得 ∠BAM+∠B=∠BCP+∠P; ∠PAN+∠P=∠NCD+∠D ∵AP、CP分别平分∠BAD、∠BCD ∴ ∠BAM=∠ PAN ;∠BCP=∠NCD ∴ ∠B- ∠P=∠P- ∠D ∴ 2∠P =∠B+∠D