大学物理学下册标准答案第11章
大学物理习题答案第十一章

[习题解答]11-7 在磁感应强度大小为B = 0.50 T 的匀强磁场中,有一长度为l = 1.5 m 的导体棒垂直于磁场方向放置,如图11-11所示。
如果让此导体棒以既垂直于自身的长度又垂直于磁场的速度v 向右运动,则在导体棒中将产生动生电动势。
若棒的运动速率v = 4.0 m ⋅s -1 ,试求:(1)导体棒内的非静电性电场K ;(2)导体棒内的静电场E ;(3)导体棒内的动生电动势ε的大小和方向;(4)导体棒两端的电势差。
解(1)根据动生电动势的表达式,由于()的方向沿棒向上,所以上式的积分可取沿棒向上的方向,也就是d l 的方向取沿棒向上的方向。
于是可得.另外,动生电动势可以用非静电性电场表示为.以上两式联立可解得导体棒内的非静电性电场,为,方向沿棒由下向上。
图11-11(2)在不形成电流的情况下,导体棒内的静电场与非静电性电场相平衡,即,所以,E 的方向沿棒由上向下,大小为.(3)上面已经得到,方向沿棒由下向上。
(4)上述导体棒就相当一个外电路不通的电源,所以导体棒两端的电势差就等于棒的动生电动势,即,棒的上端为正,下端为负。
11-8 如图11-12所表示,处于匀强磁场中的导体回路ABCD ,其边AB 可以滑动。
若磁感应强度的大小为B = 0.5 T ,电阻为R = 0.2 Ω,AB 边长为 l = 0.5 m ,AB 边向右平移的速率为v = 4 m ⋅s -1 ,求:(1)作用于AB 边上的外力;(2)外力所消耗的功率;(3)感应电流消耗在电阻R 上的功率。
解(1)当将AB 向右拉动时,AB 中会有电流通过,流向为从B 到A 。
AB 中一旦出现电流,就将受到安培力F 的作用,安培力的方向为由右向左。
所以,要使AB 向右移动,必须对AB施加由左向右图11-12的力的作用,这就是外力F外。
在被拉动时,AB中产生的动生电动势为,电流为.AB所受安培力的大小为,安培力的方向为由右向左。
外力的大小为,外力的方向为由左向右。
大学物理第11章习题答案(供参考)

因此
即
又
表明 中电动势方向为 .
所以半圆环内电动势 方向沿 方向,
大小为
点电势高于 点电势,即
例2如图所示,长直导线通以电流 =5A,在其右方放一长方形线圈,两者共面.线圈长 =0.06m,宽 =0.04m,线圈以速度 =0.03m·s-1垂直于直线平移远离.求: =0.05m时线圈中感应电动势的大小和方向.
.
解: 设给两导线中通一电流 ,左侧导线中电流向上,右侧导线中电流向下.
在两导线所在的平面内取垂直于导线的坐标轴 ,并设其原点在左导线的中心,如图所示,由此可以计算通过两导线间长度为 的面积的磁通量.
两导线间的磁感强度大小为
取面积元 ,通过面积元的磁通量为
则穿过两导线间长度为 的矩形面积的磁通量为
故
2动生电动势:仅由导体或导体回路在磁场中的运动而产生的感应电动势。
3感生电场 :变化的磁场在其周围所激发的电场。与静电场不同,感生电场的电
场线是闭合的,所以感生电场也称有旋电场。
4感生电动势:仅由磁场变化而产生的感应电动势。
5自感:有使回路保持原有电流不变的性质,是回路本身的“电磁惯性”的量度。
自感系数 :
第11章 电磁感应
11.1 基本要求
1理解电动势的概念。
2掌握法拉第电磁感应定律和楞次定律,能熟练地应用它们来计算感应电动势的大小,判别感应电动势的方向。
3理解动生电动势的概念及规律,会计算一些简单问题中的动生电动势。
4理解感生电场、感生电动势的概念及规律,会计算一些简单问题中的感生电动势。
5理解自感现象和自感系数的定义及物理意义,会计算简单回路中的自感系数。
大学物理课后习题答案(第十一章) 北京邮电大学出版社

习题十一11-1 圆柱形电容器内、外导体截面半径分别为1R 和2R (1R <2R ),中间充满介电常数为ε的电介质.当两极板间的电压随时间的变化k t U =d d 时(k 为常数),求介质内距圆柱轴线为r 处的位移电流密度.解:圆柱形电容器电容12ln 2R R l C πε= 12ln 2R R lU CU q πε== 1212ln ln 22R R r U R R r lU S q D εππε=== ∴ 12ln R R r k t D j ε=∂∂=11-2 试证:平行板电容器的位移电流可写成t U C I d d d =.式中C 为电容器的电容,U 是电容器两极板的电势差.如果不是平板电容器,以上关系还适用吗?解:∵ CU q = S CU D ==0σ ∴ CU DS D ==Φ不是平板电容器时0σ=D 仍成立 ∴ t UC ID d d =还适用.题11-3图11-3 如题11-3图所示,电荷+q 以速度v向O 点运动,+q 到O 点的距离为x ,在O 点处作半径为a 的圆平面,圆平面与v 垂直.求:通过此圆的位移电流.解:如题11-3图所示,当q 离平面x 时,通过圆平面的电位移通量 )1(222a x x q D +-=Φ[此结果见习题8-9(3)] t U C t I D D d d d d ==Φ∴ 23222)(2d d a x v qa tI D D +==Φ 题11-4图11-4 如题11-4图所示,设平行板电容器内各点的交变电场强度E =720sin t π510V ·m -1,正方向规定如图.试求:(1)电容器中的位移电流密度;(2)电容器内距中心联线r =10-2m 的一点P ,当t =0和t =51021-⨯s 时磁场强度的大小及方向(不考虑传导电流产生的磁场).解:(1)t Dj D ∂∂=,E D 0ε= ∴ t t t t E j D ππεπεε50550010cos 10720)10sin 720(⨯=∂∂=∂∂=2m A -⋅ (2)∵ ⎰∑⎰⋅+=⋅)(0d d S D l S j I l H取与极板平行且以中心连线为圆心,半径r 的圆周r l π2=,则D j r r H 22ππ=D j r H 2=0=t 时0505106.3107202πεπε⨯=⨯⨯=r H P 1m A -⋅ 51021-⨯=t s 时,0=P H11-5 半径为R =0.10m 的两块圆板构成平行板电容器,放在真空中.今对电容器匀速充电,使两极板间电场的变化率为t Ed d =1.0×1013 V ·m -1·s -1.求两极板间的位移电流,并计算电容器内离两圆板中心联线r (r <R )处的磁感应强度Br 以及r =R 处的磁感应强度BR .解: (1)t E t D j D ∂∂=∂∂=0ε 8.22≈==R j S j I D D D πA (2)∵ S j I l H S D l d d 0⋅+=⋅⎰∑⎰取平行于极板,以两板中心联线为圆心的圆周r l π2=,则202d d 2r t E r j r H D πεππ==∴t E r H d d 20ε=t E r H B r d d 2000εμμ==当R r =时,600106.5d d 2-⨯==t E R B R εμT *11-6 一导线,截面半径为10-2m ,单位长度的电阻为3×10-3Ω·m -1,载有电流25.1 A .试计算在距导线表面很近一点的以下各量:(1)H 的大小;(2)E 在平行于导线方向上的分量;(3)垂直于导线表面的S 分量.解: (1)∵ ⎰∑=I l H d取与导线同轴的垂直于导线的圆周r l π2=,则I r H =π2 21042⨯==rI H π1m A -⋅(2)由欧姆定律微分形式 E j σ=得 21053.7/1/-⨯====IR RS S I j E σ 1m V -⋅ (3)∵H E S ⨯=,E 沿导线轴线,H 垂直于轴线 ∴S 垂直导线侧面进入导线,大小1.30==EH S 2m W -⋅*11-7 有一圆柱形导体,截面半径为a ,电阻率为ρ,载有电流0I . (1)求在导体内距轴线为r 处某点的E 的大小和方向; (2)该点H 的大小和方向; (3)该点坡印廷矢量S的大小和方向;(4)将(3)的结果与长度为l 、半径为r 的导体内消耗的能量作比较. 解:(1)电流密度S I j 00=由欧姆定律微分形式E j σ=0得2000a I j j E πρρσ===,方向与电流方向一致(2)取以导线轴为圆心,垂直于导线的平面圆周r l π2=,则 由 ⎰⎰=⋅S l S j l H d d 0可得2202a r I r H =π∴202a rI H π=,方向与电流成右螺旋 (3)∵ H E S⨯= ∴ S垂直于导线侧面而进入导线,大小为 42202a r I EH S πρ==可见,电磁波的幅射压强(包括光压)是很微弱的.。
大学物理课后答案第十一章汇总

大学物理课后答案第十一章汇总第十一章机械振动一、基本要求1.掌握简谐振动的基本特征,学会由牛顿定律建立一维简谐振动的微分方程,并判断其是否谐振动。
2.掌握描述简谐运动的运动方程某Aco(t0),理解振动位移,振幅,初位相,位相,圆频率,频率,周期的物理意义。
能根据给出的初始条件求振幅和初位相。
3.掌握旋转矢量法。
4.理解同方向、同频率两个简谐振动的合成规律,以及合振动振幅极大和极小的条件。
二、基本内容1.振动物体在某一平衡位置附近的往复运动叫做机械振动。
如果物体振动的位置满足某(t)某(tT),则该物体的运动称为周期性运动。
否则称为非周期运动。
但是一切复杂的非周期性的运动,都可以分解成许多不同频率的简谐振动(周期性运动)的叠加。
振动不仅限于机械运动中的振动过程,分子热运动,电磁运动,晶体中原子的运动等虽属不同运动形式,各自遵循不同的运动规律,但是就其中的振动过程讲,都具有共同的物理特征。
一个物理量,例如电量、电流、电压等围绕平衡值随时间作周期性(或准周期性)的变化,也是一种振动。
2.简谐振动简谐振动是一种周期性的振动过程。
它可以是机械振动中的位移、速度、加速度,也可以是电流、电量、电压等其它物理量。
简谐振动是最简单,最基本的周期性运动,它是组成复杂运动的基本要素,所以简谐运动的研究是本章一个重点。
(1)简谐振动表达式某Aco(t0)反映了作简谐振动的物体位移随时间的变化遵循余弦规律,这也是简谐振动的定义,即判断一个物体是否作简谐振动的运动学根据。
但是简谐振动表达式更多地用来揭示描述一个简谐运动必须涉及到的物理量A、、0(或称描述简谐运动的三个参量),显然三个参量确定后,任一时刻作简谐振动的物体的位移、速度、加速度都可以由t对应地得到。
vAin(t0)Aco(t02)a2Aco(t0)2Aco(t0)(2)简谐运动的动力学特征为:物体受到的力的大小总是与物体对其平衡位置的位移成正比、而方向相反,即Fk某,它是判定一个系统的运动过程是否作简谐运动的动力学根据,只要受力分析满足动力学特征的,毫无疑问地系统的运动是简谐运动。
大学物理(机械工业出版社)下册-课后练习标准答案

第11章 热力学基础11-1 在水面下50.0 m 深的湖底处(温度为4.0℃),有一个体积为1.0×10-5 m 3的空气泡升到湖面上来,若湖面的温度为17.0℃,求气泡到达湖面的体积。
(大气压P 0 = 1.013×105 Pa ) 分析:将气泡看成是一定量的理想气体,它位于湖底和上升至湖面代表两个不同的平衡状态。
利用理想气体物态方程即可求解本题。
位于湖底时,气泡内的压强可用公式gh p p ρ+=0求出,其中ρ为水的密度(常取ρ = 1.0⨯103 kg·m -3)。
解:设气泡在湖底和湖面的状态参量分别为(p 1,V 1,T 1)和(p 2,V 2,T 2)。
由分析知湖底处压强为gh p gh p p ρρ+=+=021。
利用理想气体的物态方程可得空气泡到达湖面的体积()3510120121212m 1011.6-⨯=+==T p V T gh p T p V T p V ρ11-2 氧气瓶的容积为3.2×10-2 m 3,其中氧气的压强为1.30×107 Pa ,氧气厂规定压强降到1.00×106 Pa 时,就应重新充气,以免经常洗瓶。
某小型吹玻璃车间,平均每天用去0.40 m 3 压强为1.01×105 Pa 的氧气,问一瓶氧气能用多少天?(设使用过程中温度不变) 分析:由于使用条件的限制,瓶中氧气不可能完全被使用。
从氧气质量的角度来分析。
利用理想气体物态方程pV = mRT /M 可以分别计算出每天使用氧气的质量m 3和可供使用的氧气总质量(即原瓶中氧气的总质量m 1和需充气时瓶中剩余氧气的质量m 2之差),从而可求得使用天数321/)(m m m n -=。
解:根据分析有RT V Mp m RT V Mp m RT V Mp m 333122111===;;则一瓶氧气可用天数()()5.933121321=-=-=V p V p p m m m n11-3 一抽气机转速ω=400rּmin -1,抽气机每分钟能抽出气体20升。
【大学】大学物理第11章习题答案供参考

【关键字】大学第11章电磁感应11.1基本要求1理解电动势的概念。
2掌握法拉第电磁感应定律和楞次定律,能熟练地应用它们来计算感应电动势的大小,判别感应电动势的方向。
3理解动生电动势的概念及规律,会计算一些简单问题中的动生电动势。
4理解感生电场、感生电动势的概念及规律,会计算一些简单问题中的感生电动势。
5理解自感现象和自感系数的定义及物理意义,会计算简单回路中的自感系数。
6理解互感现象和互感系数的定义及物理意义,能计算简单导体回路间的互感系数。
7理解磁能(磁场能量)和磁能密度的概念,能计算一些简单情况下的磁场能量。
8了解位移电流的概念以及麦克斯韦方程组(积分形式)的物理意义。
11.2基本概念1电动势ε:把单位正电荷从负极通过电源内部移到正极时,非静电力所作的功,即2动生电动势:仅由导体或导体回路在磁场中的运动而产生的感应电动势。
3感生电场:变化的磁场在其周围所激发的电场。
与静电场不同,感生电场的电场线是闭合的,所以感生电场也称有旋电场。
4感生电动势:仅由磁场变化而产生的感应电动势。
5自感:有使回路保持原有电流不变的性质,是回路本身的“电磁惯性”的量度。
自感系数:6自感电动势:当通过回路的电流发生变化时,在自身回路中所产生的感应电动势。
7互感系数:8互感电动势:当线圈2的电流发生变化时,在线圈1中所产生的感应电动势。
9磁场能量:贮存在磁场中的能量。
自感贮存磁能:磁能密度:单位体积中贮存的磁场能量10位移电流:,位移电流并不表示有真实的电荷在空间移动。
但是,位移电流的量纲和在激发磁场方面的作用与传导电流是一致的。
11位移电流密度:11.3基本规律1电磁感应的基本定律:描述电磁感应现象的基本规律有两条。
(1)楞次定律:感生电流的磁场所产生的磁通量总是反抗回路中原磁通量的改变。
楞次定律是判断感应电流方向的普适定则。
(2)法拉第电磁感应定律:不论什么原因使通过回路的磁通量(或磁链)发生变化,回路中均有感应电动势产生,其大小与通过该回路的磁通量(或磁链)随时间的变化成正比,即2动生电动势:,若,则表示电动势方向由;若,则表示电动势方向3感生电动势:(对于导体回路)(对于一段导体)4自感电动势:5互感电动势:6麦克斯韦方程组== -11.4 学习指导学习法拉第电磁感应定律要注意,公式中的电动势是整个回路的电动势,式中负号是楞次定律的要求,用以判断电动势的方向。
大学物理学第三版修订版下册第11章答案

习题 11选择题(1 )一圆形线圈在磁场中作以下运动时,那些状况会产生感觉电流()(A)沿垂直磁场方向平移;( B)以直径为轴转动,轴跟磁场垂直;(C)沿平行磁场方向平移;( D)以直径为轴转动,轴跟磁场平行。
[ 答案: B](2)以下哪些矢量场为守旧力场()(A)静电场;( B)稳恒磁场;( C)感生电场;(D)变化的磁场。
[ 答案: A](3)用线圈的自感系数L 来表示载流线圈磁场能量的公式W m 1LI2()2( A )只合用于无穷长密绕线管;( B )只合用于一个匝数好多,且密绕的螺线环;( C )只合用于单匝圆线圈;( D ) 合用于自感系数 L必定的随意线圈。
[ 答案: D](4) 关于涡旋电场,以下说法不正确的选项是():( A)涡旋电场对电荷有作使劲;(B)涡旋电场由变化的磁场产生;( C)涡旋场由电荷激发;( D)涡旋电场的电力线闭合的。
[ 答案: C]11.2填空题(1) 将金属圆环从磁极间沿与磁感觉强度垂直的方向抽出时,圆环将遇到。
[答案:磁力 ](2) 产生动生电动势的非静电场力是,产生感生电动势的非静电场力是,激发感生电场的场源是。
[答案:洛伦兹力,涡旋电场力,变化的磁场](3)长为 l的金属直导线在垂直于平均的平面内以角速度ω 转动,假如转轴的地点在,这个导线上的电动势最大,数值为;假如转轴的地点在,整个导线上的电动势最小,数值为。
[ 答案:端点,1 B l 2;中点,0]2一半径 r =10cm的圆形回路放在 B =的平均磁场中.回路平面与 B 垂直.当回路半径以恒定速率dr=80cm·s-1缩短时,求回路中感觉电动势的大小.dt解 :回路磁通m BS Bπr 2感觉电动势大小d m d(B πr 2)B2πrdr0.40 Vdtdt dt一对相互垂直的相等的半圆形导线组成回路,半径R =5cm ,如题图所示.平均磁场-3T , B 的方向与两半圆的公共直径( 在 Oz 轴上 ) 垂直,且与两个半圆组成相等的B =80× 10 角 当磁场在 5ms 内平均降为零时,求回路中的感觉电动势的大小及方向.解 :取半圆形 cba 法向为 i ,题图πR 2则mB cos12同理,半圆形adc 法向为 j ,则πR 2m 2B cos2∵B 与 i 夹角和 B 与 j 夹角相等,∴ 45则π 2 cosm B Rd m πR 2 cosdB 8 .8910 2Vd td t方向与 cbadc 相反,即顺时针方向.题图如题图所示,载有电流I 的长直导线邻近,放一导体半圆环MeN 与长直导线共面,且端点 MN 的连线与长直导线垂直.半圆环的半径为 b ,环心 O 与导线相距 a .设半圆环以速 度 v 平行导线平移.求半圆环内感觉电动势的大小和方向及 MN 两头的电压U MU N .解 : 作协助线 MN ,则在 MeNM 回路中,沿 v 方向运动时 dm∴MeNM即MeNMNa b dl0 Iv ln a b又∵MNvBcosa b2a b因此 MeN 沿 NeM 方向,大小为Ivlnab2a bM 点电势高于 N 点电势,即U M0 Iva bU Nlnb2 a 题图如题所示,在两平行载流的无穷长直导线的平面内有一矩形线圈. 两导线中的电流方向相反、大小相等,且电流以dI的变化率增大,求:dt(1) 任一时辰线圈内所经过的磁通量;(2) 线圈中的感觉电动势. 解 : 以向外磁通为正则 (1)(2)mb a 0 Il drd a 0 Ildr0Il[ln b a lnd a]b2πrd2πr2πbdd 0l[lndalnba ] dIt πdbdtd2如题图所示, 用一根硬导线弯成半径为r 的一个半圆. 令这半圆形导线在磁场中以频次 f绕图中半圆的直径旋转.整个电路的电阻为R .求:感觉电流的最大值.题图解 :B S Bπr2t 0 )m2 cos(dmπ 2iB rsin( t 0 )dt2∴π2 π 22πf π2 r 2 BfmB rB r 2222 Bf∴ImπrRR如题图所示,长直导线通以电流 I =5A ,在其右方放一长方形线圈,二者共面.线圈长-1垂直于直线平移远离.求:d =0.05mb =0.06m ,宽 a =0.04m ,线圈以速度 v =0.03m ·s 时线圈中感觉电动势的大小和方向.题图解 : AB 、 CD 运动速度 v 方向与磁力线平行,不产生感觉电动势.DA 产生电动势A B) dlvBb vb0 I1(vD2 dBC 产生电动势C B) dlvb0 I2(v 2π(a d )B∴回路中总感觉电动势120Ibv( 1 1 ) 1.6 10 8V π d d a2方向沿顺时针.长度为 l 的金属杆 ab 以速率 v 在导电轨道 abcd 上平行挪动.已知导轨处于平均磁场B 中,B 的方向与回路的法线成60°角 (如题图所示 ), B 的大小为B = kt (k 为正常 ).设时杆t =0位于 cd 处,求:任一时辰 t 导线回路中感觉电动势的大小和方向.解 :mB dS Blvt cos60kt 2lv11klvt 22 2∴dmklvtdt即沿 abcd 方向顺时针方向.题图一矩形导线框以恒定的加快度向右穿过一平均磁场区, B 的方向如题图所示.取逆时针方向为电流正方向,画出线框中电流与时间的关系( 设导线框刚进入磁场区时 t =0) .解 : 如图逆时针为矩形导线框正向,则进入时d0, 0 ;dt题图 (a) 题图 (b)在磁场中时d0 , 0;dt出场时d0 , 0,故 I t 曲线如题 10-9 图(b) 所示 .dt题图导线 ab 长为 l ,绕过 O 点的垂直轴以匀角速转动, aO = l磁感觉强度 B 平行于转轴,3如下图.试求:( 1) ab 两头的电势差;( 2) a,b 两头哪一点电势高 ?解: (1)在 Ob 上取 rr dr 一小段2l2B则Ob3 rB drl 29l1 B 同理Oa3rB drl 20 18∴abaO Ob(12)B l 21 B l 21896(2) ∵ab0 即 U a U b∴ b 点电势高.题图如题图所示,长度为 2b 的金属杆位于两无穷长直导线所在平面的正中间,并以速度 v 平行于两直导线运动.两直导线通以大小相等、方向相反的电流 I ,两导线相距 2 a .试求:金属杆两头的电势差及其方向.解:在金属杆上取dr 距左侧直导线为r ,则B dla b 0 Iv 11)dr0 Iv a bAB(v B)a b(lnA2r2a r a b∵AB∴实质上感觉电动势方向从 BA ,即从图中从右向左,∴U ABIvlnaba b题图磁感觉强度为B 的平均磁场充满一半径为 R 的圆柱形空间, 一金属杆放在题图中地点,杆长为2 R ,此中一半位于磁场内、另一半在磁场外.当dB>0时,求:杆两头的感觉电动势的大小dt和方向.解:∵acabbcdabdtdabdt ∴∵1d [3R2 B]3R dBdt44dtd [π2B]π2dB 2R Rdt1212dt[ 3R2π2ac R ] dB412dtdBdt∴ac0 即从a c半径为 R的直螺线管中,有dB>0的磁场,一随意闭合导线abca ,一部分在螺线管内绷直dt成 ab 弦, a , b 两点与螺线管绝缘,如题10-13 图所示.设ab= R,试求:闭合导线中的感觉电动势.解:如图,闭合导线 abca 内磁通量B S π 23R2m B(R)64(π23 R2) dB∴i R64dt∵dB0 dt∴i 0 ,即感觉电动势沿acba ,逆时针方向.题图题图如题图所示,在垂直于直螺线管管轴的平面上搁置导体 ab 于直径地点,另一导体 cd 在一弦上,导体均与螺线管绝缘.当螺线管接通电源的一瞬时管内磁场如题图示方向.试求:(1)ab两头的电势差;(2)cd两点电势高低的状况.解:由E旋 dl dBdS 知,此时 E旋以 O 为中心沿逆时针方向.l dt(1)∵ ab 是直径,在 ab 上到处 E旋与 ab 垂直∴旋 dl 0l∴ ab 0, 有 U a U b(2) 同理,cE dldcd旋∴U d U c 0 即 U c U d题图一无穷长的直导线和一正方形的线圈如题图所示搁置 ( 导线与线圈接触处绝缘 ) .求:线圈与导线间的互感系数. 解: 设长直电流为I ,其磁场经过正方形线圈的互感磁通为2a 0 Ia0 Ia3dr12ln 23a2πr2π∴M12aln 2I 2π两线圈顺串连后总自感为, 在它们的形状和地点都不变的状况下,反串连后总自感为. 试求:它们之间的互感.解: ∵顺串时 LL 1 L 2 2M反串连时 L L 1 L 22M∴L L 4MM L L4 0.15 H题图一矩形截面的螺绕环如题图所示,共有 N 匝.试求:(1) 此螺线环的自感系数;(2) 若导线内通有电流 I ,环内磁能为多少 ? 解:如题图示(1) 经过横截面的磁通为0 NI hdrNIhlnbba2r π2πa磁链N0 N 2Ihb2πlna∴L0 N2hb2πlnIa(2) ∵W m 1LI 22∴0 N 2 I 2hln bW m4πa一无穷长圆柱形直导线,其截面各处的电流密度相等,总电流为 I .求:导线内部单位长度上所储藏的磁能.解:在 rR 时B0 Ir2πR2B 20 I2r 2∴w m2 428 π R取dV 2πrdr ( ∵导线长 l 1 )0 I 2 3 0I2RRr dr则Ww m 2 r dr4πR4 16π。
大学物理学第三版修订版下册第11章答案

习题1111.1选择题(1)一圆形线圈在磁场中作下列运动时,那些情况会产生感应电流() (A )沿垂直磁场方向平移;(B )以直径为轴转动,轴跟磁场垂直; (C )沿平行磁场方向平移;(D )以直径为轴转动,轴跟磁场平行。
[答案:B](2)下列哪些矢量场为保守力场() (A ) 静电场;(B )稳恒磁场;(C )感生电场;(D )变化的磁场。
[答案:A](3) 用线圈的自感系数 L 来表示载流线圈磁场能量的公式221LI W m=()( A )只适用于无限长密绕线管; ( B ) 只适用于一个匝数很多,且密绕的螺线环; ( C ) 只适用于单匝圆线圈; ( D )适用于自感系数L 一定的任意线圈。
[答案:D](4)对于涡旋电场,下列说法不正确的是():(A )涡旋电场对电荷有作用力; (B )涡旋电场由变化的磁场产生; (C )涡旋场由电荷激发; (D )涡旋电场的电力线闭合的。
[答案:C]11.2 填空题(1)将金属圆环从磁极间沿与磁感应强度垂直的方向抽出时,圆环将受到 。
[答案:磁力](2)产生动生电动势的非静电场力是 ,产生感生电动势的非静电场力是 ,激发感生电场的场源是 。
[答案:洛伦兹力,涡旋电场力,变化的磁场](3)长为l 的金属直导线在垂直于均匀的平面内以角速度ω转动,如果转轴的位置在 ,这个导线上的电动势最大,数值为 ;如果转轴的位置在 ,整个导线上的电动势最小,数值为 。
[答案:端点,221l B ω;中点,0]11.3一半径r =10cm 的圆形回路放在B =0.8T 的均匀磁场中.回路平面与B ϖ垂直.当回路半径以恒定速率tr d d =80cm ·s -1收缩时,求回路中感应电动势的大小. 解: 回路磁通 2πr B BS m ==Φ感应电动势大小40.0d d π2)π(d d d d 2====trr B r B t t m Φε V11.4 一对互相垂直的相等的半圆形导线构成回路,半径R =5cm ,如题11.4图所示.均匀磁场B =80×10-3T ,B 的方向与两半圆的公共直径(在Oz 轴上)垂直,且与两个半圆构成相等的角α当磁场在5ms 内均匀降为零时,求回路中的感应电动势的大小及方向.解: 取半圆形cba 法向为i ϖ, 题11.4图则 αΦcos 2π21B R m =同理,半圆形adc 法向为j ϖ,则αΦcos 2π22B R m=∵ B ϖ与i ϖ夹角和B ϖ与j ϖ夹角相等,∴ ︒=45α 则 αΦcos π2R B m =221089.8d d cos πd d -⨯-=-=Φ-=tBR t m αεV 方向与cbadc 相反,即顺时针方向.题11.5图 11.5 如题11.5图所示,载有电流I 的长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度v 平行导线平移.求半圆环内感应电动势的大小和方向及MN 两端的电压N M U U -.解: 作辅助线MN ,则在MeNM 回路中,沿v ϖ方向运动时0d =m Φ∴ 0=MeNM ε 即 MN MeN εε= 又∵ ⎰+-<+-==ba ba MN ba ba Iv l vB 0ln 2d cos 0πμπε 所以MeN ε沿NeM 方向,大小为ba ba Iv -+ln 20πμ M 点电势高于N 点电势,即b a ba Iv U U N M -+=-ln 20πμ题11.6图11.6如题11.6所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导线中的电流方向相反、大小相等,且电流以tId d 的变化率增大,求: (1)任一时刻线圈内所通过的磁通量; (2)线圈中的感应电动势. 解: 以向外磁通为正则 (1) ]ln [lnπ2d π2d π2000dad b a b Ilr l rIr l rIab bad dm +-+=-=⎰⎰++μμμΦ (2) tIb a b d a d l t d d ]ln [ln π2d d 0+-+=-=μΦε11.7 如题11.7图所示,用一根硬导线弯成半径为r 的一个半圆.令这半圆形导线在磁场中以频率f 绕图中半圆的直径旋转.整个电路的电阻为R .求:感应电流的最大值.题11.7图解: )cos(2π02ϕωΦ+=⋅=t r B S B m ϖϖ ∴ Bfr f r B r B t r B t m m i 222202ππ22π2π)sin(2πd d ===+=-=ωεϕωωΦε ∴ RBfr R I m22π==ε11.8 如题11.8图所示,长直导线通以电流I =5A ,在其右方放一长方形线圈,两者共面.线圈长b =0.06m ,宽a =0.04m ,线圈以速度v =0.03m ·s -1垂直于直线平移远离.求:d =0.05m 时线圈中感应电动势的大小和方向.题11.8图解: AB 、CD 运动速度v ϖ方向与磁力线平行,不产生感应电动势. DA 产生电动势⎰==⋅⨯=AD I vb vBb l B v d2d )(01πμεϖϖϖBC 产生电动势)(π2d )(02d a Ivbl B v CB+-=⋅⨯=⎰μεϖϖϖ∴回路中总感应电动势8021106.1)11(π2-⨯=+-=+=ad d Ibv μεεε V 方向沿顺时针.11.9 长度为l 的金属杆ab 以速率v 在导电轨道abcd 上平行移动.已知导轨处于均匀磁场Bϖ中,B ϖ的方向与回路的法线成60°角(如题11.9图所示),B ϖ的大小为B =kt (k 为正常).设t =0时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向. 解: ⎰==︒=⋅=22212160cos d klvt lv kt Blvt S B m ϖϖΦ∴ klvt tm-=-=d d Φε 即沿abcd 方向顺时针方向.题11.9图11.10 一矩形导线框以恒定的加速度向右穿过一均匀磁场区,B ϖ的方向如题11.10图所示.取逆时针方向为电流正方向,画出线框中电流与时间的关系(设导线框刚进入磁场区时t =0). 解: 如图逆时针为矩形导线框正向,则进入时0d d <Φt,0>ε; 题11.10图(a)题11.10图(b)在磁场中时0d d =tΦ,0=ε; 出场时0d d >tΦ,0<ε,故t I -曲线如题10-9图(b)所示. 题11.11图11.11 导线ab 长为l ,绕过O 点的垂直轴以匀角速ω转动,aO =3l磁感应强度B 平行于转轴,如图11.11所示.试求: (1)ab 两端的电势差;(2)b a ,两端哪一点电势高? 解: (1)在Ob 上取dr r r +→一小段 则 ⎰==320292d l Ob l B r rB ωωε 同理 ⎰==302181d l Oa l B r rB ωωε ∴ 2261)92181(l B l B Ob aO ab ωωεεε=+-=+= (2)∵ 0>ab ε 即0<-b a U U ∴b 点电势高.题11.12图11.12 如题11.12图所示,长度为b 2的金属杆位于两无限长直导线所在平面的正中间,并以速度v ϖ平行于两直导线运动.两直导线通以大小相等、方向相反的电流I ,两导线相距2a .试求:金属杆两端的电势差及其方向.解:在金属杆上取r d 距左边直导线为r ,则 ba b a Iv r r a r Iv l B v b a b a BA AB-+-=-+-=⋅⨯=⎰⎰+-ln d )211(2d )(00πμπμεϖϖϖ ∵ 0<AB ε ∴实际上感应电动势方向从A B →,即从图中从右向左, ∴ ba ba Iv U AB -+=ln 0πμ题11.13图11.13 磁感应强度为B ϖ的均匀磁场充满一半径为R 的圆柱形空间,一金属杆放在题11.13图中位置,杆长为2R ,其中一半位于磁场内、另一半在磁场外.当tBd d >0时,求:杆两端的感应电动势的大小和方向.解: ∵ bc ab ac εεε+=tBR B R t t ab d d 43]43[d d d d 21=--=-=Φε =-=tabd d 2Φεt BR B R t d d 12π]12π[d d 22=-- ∴ tB R R acd d ]12π43[22+=ε∵0d d >tB∴ 0>ac ε即ε从c a →11.14 半径为R 的直螺线管中,有dtdB>0的磁场,一任意闭合导线abca ,一部分在螺线管内绷直成ab 弦,a ,b 两点与螺线管绝缘,如题10-13图所示.设ab =R ,试求:闭合导线中的感应电动势.解:如图,闭合导线abca 内磁通量)436π(22R R B S B m -=⋅=ϖϖΦ∴ tB R R i d d )436π(22--=ε ∵0d d >tB∴0<i ε,即感应电动势沿acba ,逆时针方向.题11.14图题11.15图11.15 如题11.15图所示,在垂直于直螺线管管轴的平面上放置导体ab 于直径位置,另一导体cd 在一弦上,导体均与螺线管绝缘.当螺线管接通电源的一瞬间管内磁场如题11.15图示方向.试求:(1)ab 两端的电势差;(2)cd 两点电势高低的情况.解: 由⎰⎰⋅-=⋅l S t B l E ϖϖϖϖd d d d 旋知,此时旋E ϖ以O 为中心沿逆时针方向. (1)∵ab 是直径,在ab 上处处旋E ϖ与ab 垂直∴ ⎰=⋅ll 0d ϖ旋∴0=ab ε,有b a U U =(2)同理, 0d >⋅=⎰l E cddc ϖϖ旋ε∴ 0<-c d U U 即d c U U >题11.16图11.16 一无限长的直导线和一正方形的线圈如题11.16图所示放置(导线与线圈接触处绝缘).求:线圈与导线间的互感系数.解: 设长直电流为I ,其磁场通过正方形线圈的互感磁通为⎰==32300122ln π2d π2a a Iar rIaμμΦ∴ 2ln π2012aIM μΦ==11.17两线圈顺串联后总自感为1.0H ,在它们的形状和位置都不变的情况下,反串联后总自感为0.4H .试求:它们之间的互感. 解: ∵顺串时 M L L L 221++= 反串联时M L L L 221-+='∴ M L L 4='-15.04='-=L L M H题11.18图11.18 一矩形截面的螺绕环如题11.18图所示,共有N 匝.试求: (1)此螺线环的自感系数;(2)若导线内通有电流I ,环内磁能为多少? 解:如题11.18图示 (1)通过横截面的磁通为 ⎰==baab NIhr h r NIlnπ2d π200μμΦ 磁链 ab IhN N lnπ220μΦψ== ∴ ab hN IL lnπ220μψ==(2)∵ 221LI W m =∴ ab hI N W m ln π4220μ=11.19 一无限长圆柱形直导线,其截面各处的电流密度相等,总电流为I .求:导线内部单位长度上所储存的磁能. 解:在R r <时 20π2RI B rμ=∴ 4222002π82Rr I B w m μμ== 取 r r V d π2d =(∵导线长1=l ) 则 ⎰⎰===RRm I Rrr I r r w W 0204320π16π4d d 2μμπ(资料素材和资料部分来自网络,供参考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第11章 稳恒磁场习 题一 选择题11-1 边长为l 的正方形线圈,分别用图11-1中所示的两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感应强度的大小分别为:[ ](A )10B =,20B = (B )10B =,02IB lπ= (C)01IB lπ=,20B = (D)01I B l π=,02IB lπ=答案:C解析:有限长直导线在空间激发的磁感应强度大小为012(cos cos )4IB dμθθπ=-,并结合右手螺旋定则判断磁感应强度方向,按照磁场的叠加原理,可计算01IB lπ=,20B =。
故正确答案为(C )。
11-2 两个载有相等电流I 的半径为R 的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,如图11-2所示,则在圆心O 处的磁感应强度大小为多少? [ ](A )0 (B )R I 2/0μ (C )R I 2/20μ (D )R I /0μ 答案:C解析:圆线圈在圆心处的磁感应强度大小为120/2B B I R μ==,按照右手螺旋定习题11-1图习题11-2图则判断知1B 和2B 的方向相互垂直,依照磁场的矢量叠加原理,计算可得圆心O处的磁感应强度大小为0/2B I R =。
11-3 如图11-3所示,在均匀磁场B 中,有一个半径为R 的半球面S ,S 边线所在平面的单位法线矢量n 与磁感应强度B 的夹角为α,则通过该半球面的磁通量的大小为[ ](A )B R 2π (B )B R 22π (C )2cos R B πα (D )2sin R B πα 答案:C解析:通过半球面的磁感应线线必通过底面,因此2cos m B S R B παΦ=⋅=。
故正确答案为(C )。
11-4 如图11-4所示,在无限长载流直导线附近作一球形闭合曲面S ,当曲面S 向长直导线靠近时,穿过曲面S 的磁通量ΦB 将如何变化?[](A)Φ增大,B 也增大 (B )Φ不变,B 也不变 (C )Φ增大,B 不变 (D )Φ不变,B 增大 答案:D解析:根据磁场的高斯定理0SBdS Φ==⎰,通过闭合曲面S 的磁感应强度始终为0,保持不变。
无限长载流直导线在空间中激发的磁感应强度大小为02IB dμπ=,曲面S 靠近长直导线时,距离d 减小,从而B 增大。
故正确答案为(D )。
11-5下列说法正确的是[ ](A) 闭合回路上各点磁感应强度都为零时,回路内一定没有电流穿过 (B) 闭合回路上各点磁感应强度都为零时,回路内穿过电流的代数和必定为零(C) 磁感应强度沿闭合回路的积分为零时,回路上各点的磁感应强度必定为零(D) 磁感应强度沿闭合回路的积分不为零时,回路上任意一点的磁感应强度I习题11-4图习题11-3图都不可能为零 答案:B解析:根据安培环路定理0d i liB lI μ=∑⎰,闭合回路上各点磁感应强度都为零表示回路内电流的代数和为零。
回路上各点的磁感应强度由所有电流有关,并非由磁感应强度沿闭合回路的积分所决定。
故正确答案为(B )。
11-6 如图11-6所示,I 1和I 2为真空中的稳恒电流,L ⎰⋅d l的值为[ ](A )012()I I μ+(B )012()I I μ-+ (C )012()I I μ-- (D )012()I I μ-答案:C解析:根据安培环路定理0d i liB lI μ=∑⎰,并按照右手螺旋定则可判断I 1取负值,I 2为正,因此012d ()LB l I I μ⋅=--⎰。
11-7 如图11-7所示,一根很长的电缆线由两个同轴的圆柱面导体组成,若这两个圆柱面的半径分别为R 1和R 2(R 1<R 2),通有等值反向电流,那么下列哪幅图正确反映了电流产生的磁感应强度随径向距离的变化关系?[ ](A ) (B ) (C ) (D )答案:C解析:根据安培环路定理0d i liB lI μ=∑⎰,可得同轴的圆柱面导体的磁感应强度分布为1012220,0,,0r R B I R r R B r r R B μπ<<=⎧⎪⎪<<=⎨⎪>=⎪⎩,作B-r 图可得答案(C )。
习题11-6图12R 112R 12R 习题11-7图11-8一运动电荷q ,质量为m ,垂直于磁场方向进入均匀磁场中,则[ ] (A )其动能改变,动量不变 (B )其动能不变,动量可以改变 (C )其动能和动量都改变 (D )其动能和动量都不变 答案:B解析:垂直于磁场方向进入均匀磁场的电荷受到洛伦兹力的作用,仅提供向心力,改变电荷速度的方向,而不改变速度的大小,从而其动能不变,而动量改变。
故正确答案为(B )。
11-9 如图11-9所示,一根载流导线被弯成半径为R 的1/4圆弧,放在磁感应强度为B 的均匀磁场中,则载流导线所受的安培力为[ ](A )2BIR ,竖直向下 (B )BIR ,竖直向上 (C )2BIR ,竖直向上 (D )BIR ,竖直向下 答案:C解析:连接ab 形成一闭合回路,由于此回路所在平面垂直于磁感应强度方向,因此,回路受力为零,则弧线受力与直线ab 受力大小相等,方向相反。
直导线ab 受力为2ab F BIl BIR ==,方向竖直向下,因此载流弧线所受的安培力2BIR ,方向为竖直向上。
11-10 用细导线均匀密绕成长为l 、半径为a (l >>a )、总匝数为N 的螺线管,通以稳恒电流I ,当管内充满相对磁导率为r μ的均匀介质后,管中任意一点磁感应强度大小为[ ](A )0/r NI l μμ (B )l NI r /μ (C )l NI /0μ (D )l NI / 答案:A解析:根据由磁介质时的安培环路定理d iliH l I=∑⎰,得螺线管内磁场强度大小为NIH l=,因此管中任意一点磁感应强度大小为00/r r B H NI l μμμμ==。
故正确答案为(A )。
习题11-9图二 填空题11-11 一无限长载流直导线,沿空间直角坐标的Oy 轴放置,电流沿y 正向。
在原点O 处取一电流元I d l ,则该电流元在(a ,0,0)点处的磁感应强度大小为_______________,方向为_____________。
答案:02d 4I la μπ;沿z 轴负方向 解析:根据毕奥-萨伐尔定律03d 4Idl rB rμπ⨯=,Idl 与r 的方向相互垂直,夹角为90°电流元激发的磁感应强度大小为0032d sin d d 44I l a I lB a a μθμππ⋅⋅==,按照右手螺旋定则可判断方向沿z 轴负方向。
11-12 无限长的导线弯成如图11-12所示形状,通电流为I ,BC 为半径R 的半圆,则O 点的磁感应强度大小 ,方向为 。
答案:0044IIRRμμπ+;垂直纸面向里 解析:根据磁感应强度的叠加原理,O 点的磁 感应强度由三部分组成。
0AB B =,0,4BC IB Rμ=方向垂直纸面向里,0,4CDB Rπ=方向垂直纸面向里。
因此,O 点的磁感应强度大小0044AB BC CD IIB B B B RRμμπ=++=+,方向为垂直纸面向里。
11-13 两根长度相同的细导线分别密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R =2r ,螺线管通过的电流相同为I ,则螺线管中的磁感应强度大小:R r B B = 。
答案:1:2解析:螺线管中的磁感应强度大小0NB I lμ=,其中长度l 与电流I 相同,因此B 与总匝数N 成正比。
两根导线的长度L 相同,绕在半径不同的长直圆筒上,可得:::1:222R r L L N N r R R rππ===,因此:1:2R rB B 。
11-14 如图11-14所示,均匀磁场的磁感应强度为B =0.2 T ,方向沿x 轴正方向,则通过abod 面的磁通量为_________,通过befo 面的磁通量为__________,通过aefd 面的磁通量为_______。
答案:-0.024Wb ;0Wb ;0.024Wb解析:根据磁通量的定义式cos m B S BS θΦ=⋅=, 磁感应强度与abod 面面积矢量的夹角为1180θ=, 与befo 面面积矢量的夹角290θ=,与aefd 面 面积矢量的夹角为34cos 5θ=。
因此,1cos 0.024Wb abod abod BS θΦ==-,2cos 0Wb befo befo BS θΦ==,3cos 0.024Wb aefd aefd BS θΦ==。
11-15如图11-15所示,一长直导线通以电流I ,在离导线a 处有一电子,电量为e ,以速度v 平行于导线向上运动,则作用在电子上的洛伦兹力的大小为 ,方向为 。
答案:02e Ivaμπ;水平向右 解析:无限长直导线在离导线a 处激发的磁感应强度大小 为02IB aμπ=,方向垂直纸面向里;作用在电子上的洛伦兹力 的大小0sin 2e IvF qvB aμθπ==,按照右手螺旋定则判断电子受力方向为水平向右。
11-16 如图11-16所示,A 和B 是两根固定的直导线,通以同方向的电流1I 和2I ,且1I >2I ,C 是一根放置在它们中间可以左右移动的直导线(三者在同一平面内),若它通以反方向的电流I 时,导线C 将____________(填向A 移动、向B 移动、保持静止)。
答案:向B 移动解析:根据右手螺旋定则判断导线A 施加给C 的力AC F 的方向为指向B ,同理导线B 施加给C 的力BC F 的方向为指向A 。
安培力02iI F BIL IL dμπ==,因为1I >2I ,因ab odefxyzB 30 cm 40 cm 30 cm 50 cm习题11-14图vIa此AC BC F F >,从而导线C 所受合力与AC F 相同,因此,导线C 向B 移动。
11-17 一带电粒子以速度v 垂直于均匀磁场B 射入,在磁场中的运动轨迹是半径为R 的圆,若要使运动半径变为2R ,则磁场B 的大小应变为原来的 倍。
答案:2解析:垂直于均匀磁场射入的带电粒子将在磁场中作匀速率圆周运动,圆周的半径为mvr qB=,与B 成反比。
现运动半径变为原来的1/2,则磁场B 的大小应变为原来的2倍。
11-18 一1/4圆周回路abca ,通有电流I ,圆弧部分的半径为R ,置于磁感应强度为B 的均匀磁场中,磁感线与回路平面平行,如图11-18所示,则圆弧ab 段导线所受的安培力大小为 ,回路所受的磁力矩大小为 ,方向为 。
答案:BIR ;214BIR π;竖直向下解析:ab ca bc F F F =+,由于0bc F =,因此ab ca F F BIR == 根据磁力矩定义式M m B =⨯,m 的方向垂直纸面向里,与B 方向的夹角为90°,回路所受的磁力矩大小21sin 4M BIS BIR ϕπ==,按照右手螺旋定则,方向为竖直向下。