最新参考变压吸附制氢工艺

合集下载

变压吸附制氢第二篇2

变压吸附制氢第二篇2

第二章工艺技术、设备及自动化2.1工艺技术选择1.装置规模①原料气流量: 77940Nm3/h装置操作弹性(流量范围): 30~110%②产品氢纯度: H2含量>98.35%③设计操作时数:全年连续操作(大于8000小时)2.技术来源PSA制氢技术是PSA技术中发展最早、推广最多的一种工艺,是最早实现工业化的领域,本装置的工艺技术由吉林石化公司提供。

3.产品方案氢气是主要的工业原料,也是最重要的工业气体和特种气体,在石油化工、电子工业、冶金工业、食品加工、浮法玻璃、精细有机合成、航空航天等方面有着广泛的应用。

同时,氢也是一种理想的二次能源。

在实际生产中,产品氢的纯度可通过改变PSA装置的操作条件进行调节,而解吸气的组成也会随原料气和产品气的不同而不同。

4.原料来源PSA制氢装置所采用的气源为各工艺生产过程中产生的含氢尾气,这些气体中除含氢外,还有CO2、H2O、N2、CO、CH4及少量烃类,这些杂质体可采用变压吸附法一次除尽达到纯化和回收氢气的目的。

一般而言,含氢气30%以上的混合气可作为PSA提纯氢气的气源。

5.工艺流程本装置由十个吸附塔组成,其中2个吸附塔始终处于进料吸附的状态,其工艺过程由吸附、四次均压降压、顺放、逆放、冲洗、四次均压升压和产品最终升压等步骤组成。

来自前工段压力为2.6MPa左右的混合气,首先进入原料气冷却器降温到≤40℃再到原料气分液罐分离掉其中的机械液滴,然后直接从塔底部进入吸附塔中正处于吸附工况的吸附塔(始终有2台吸附塔处于吸附状态)内,在多种吸附剂组成的复合吸附床的依次选择吸附下,气体中的CO2、CO、CH4及N2等组份被塔内吸附剂吸附,纯净的氢气从吸附塔顶部连续排出去后工段,逆放气和冲洗解吸气混合后经尾气压缩机加压送燃气管网。

2.2主要设备方案选择表2.3.1主要设备表注:换热器设计按富氢尾气52350Nm3/h考虑换热面积,进气量按77940 Nm3/h计算,达到PSA进气温度在20~35℃内波动。

变压吸附煤气制氢工艺改造

变压吸附煤气制氢工艺改造
(h odR ln l t fia o n te C .Ld,ia 5 1 1C ia T eC l ol g a J nI na d e l o, t.J n20 0 , hn ) i P no n r S n
Ab ta t n od rt e ov h e u n q pme tto b e n o a albit fh do e kn rm a e eutd i src:I r e o r sle te f q e te ui r n ru ls a d lw v i ly o y rg n ma ig fo g s strs l n a i e d fce td s lh rz t n a d n p tae e rmo a,Jn n Se l od rlig Pa tto o au e u h a pi zn h eiin e up uiai n a h h ln e v l ia te C l— oln ln o k s me me s rs s c s o tmiig te o
第3卷 第5 2 期 2 1 1 月 00年 O
山 东 冶 金
S a d n M ealr y hn og tl g u
V0 _ 2 l NO5 3 .
0c o e O O tb r 2 1
变压 吸附煤气 制氢工艺改造
邵 传收 , 董 凯, 薛垂 义 , 王雪 晗
5 ~ 0 0. 0 8 3 5 5 8 15 3 2 2 4 ~ 0 ~1 0 ~ O 5 6 4~ . ~ ~ . ~3 2 ~ 8 ~ 2 5 5
焦炉煤气 中C H 以后 的组 分是 沸 点 较 高 的组 分, 与吸 附剂结合 吸 附性较 强 。采用 变温解 析 先除
污染 。为此 , 对制 氢机组进行 了针对性 的改造 。

制氢操作规程(变压吸附部分)

制氢操作规程(变压吸附部分)

制氢操作规程(变压吸附部分)第一篇:制氢操作规程(变压吸附部分)甲醇重整制氢操作规程—变压吸附第 1 页共 8 页生产部第二部分变压吸附部分主题内容本操作规程描述了甲醇重整制氢的工艺控制、设备运行的操作规范,以及操作中的注意事项、异常情况的处理;通过实施本操作规程,确保甲醇重整制氢的质量和设备的正常运行,减少事故的发生。

2 适用范围本操作规程适用甲醇重整制氢装置的操作与控制。

3 职责3.1 生产部管理人员负责本工艺操作规程的编制、修改、监督与管理。

3.2 制氢岗位操作人员负责执行本操作规程。

4 工作程序4.1 装置概况 4.1.1 概述本装置采用变压吸附(简称PSA)法从甲醇转化气中提取氢气,在正常操作条件,转化气的处理量可达到800NM3--1200NM3/h。

在不同的操作条件下可生产不同纯度的氢气,氢气纯度最高可达99,9995%。

4.1.2 吸附剂的工作原理本装置采用变压吸附(PSA)分离气体的工艺,从含氢混合气中提取氢气。

其原理是利用吸附剂对不同吸附质的选择性吸附,同时吸附剂对吸附质的吸附容量是随压力的变化而有差异的特性,在吸附剂选择吸附条件下,高压吸附除去原料中杂质组份,低压下脱附这些杂质而使吸附剂获得再生。

整个操作过程是在环境温度下进行的。

4.1.3 吸附剂的再生吸附剂的再生是通过三个基本步骤来完成的:(1)吸附塔压力降至低压吸附塔内的气体逆着原料气进入的方向进行降压,称为逆向放压,通过逆向放压,吸附塔内的压力直到接近大气压力。

逆向放压时,被吸附的部分杂质从吸附剂中解吸,并被排出吸附塔。

(2)抽真空吸附床压力下降到大气压后,床内仍有少部分杂质,为使这部分杂质尽可能解吸,甲醇重整制氢操作规程—变压吸附第 2 页共 8 页生产部要求床内压力进一步降低,在此利用真空泵抽吸的方法使杂质解吸,并随抽空气体带出吸附床。

(3)吸附塔升压至吸附压力,以准备再次分离原料气 4.2 工艺操作本装置是有5台吸附塔(T201A、B、C、D、E)、二台真空泵(P203A、B)、33台程控阀和2个手动调节阀通过若干管线连接构成 4.2.1 工艺流程说明工艺过程是按设定好的运行方式,通过各程控阀有序地开启和关闭来实现的。

变压吸附提氢

变压吸附提氢

变压吸附提氢
变压吸附提氢(Pressure Swing Adsorption, PSA)是一种常用的氢气分离和纯化技术。

该技术基于氢气与其他气体在不同条件下的吸附性质不同,通过调节吸附材料的压力来实现氢气的分离和纯化。

变压吸附提氢的原理是利用吸附剂对氢气和其他气体的选择性吸附特性。

通常,吸附剂会选择性地吸附氢气,而其他气体则被排除。

通过在不同压力下调节吸附剂的吸附和解吸过程,可以实现对氢气的分离和纯化。

变压吸附提氢的过程通常包括以下几个步骤:
1. 压缩:将气体混合物压缩至较高压力,使氢气与其他气体更容易被吸附剂吸附。

2. 吸附:将压缩后的气体混合物通过吸附塔,吸附剂会选择性地吸附氢气,而其他气体则被排除。

3. 解吸:降低吸附塔的压力,使吸附剂释放吸附的氢气。

4. 重复:根据需要,可以通过多个吸附塔的交替使用,实现连续分离和纯化过程。

变压吸附提氢技术具有操作灵活性高、分离效率高、能耗低等优点,广泛应用于氢气制备、氢气纯化和氢气储存等领域。

同时,变压吸附提氢技术也可以与其他氢气分离和纯化技术结合使用,以进一步提高氢气的纯度和产量。

psa变压吸附制氢原理

psa变压吸附制氢原理

psa变压吸附制氢原理变压吸附制氢(PSA)是一种用于制备高纯度氢气的方法,它基于吸附剂对氢气和其他气体的选择性吸附特性而设计。

在PSA过程中,气体混合物通过逐步压缩和脱压的吸附/解吸过程,从而分离出高纯度的氢气。

本文将介绍PSA制氢的原理、工作流程、设备和应用,并对其优缺点进行分析。

1.原理PSA制氢基于吸附剂对氢气和其他气体的不同吸附性能。

通常情况下,PSA包含两个或多个吸附塔,并在不同阶段进行吸附和解吸。

PSA 制氢的原理可以分为以下几个步骤:1)压缩:原始气体混合物含有大量氢气以及其他杂质气体,如甲烷、氮气、氧气等。

首先,气体混合物被压缩到一定压力下,以便于之后的吸附过程。

2)吸附:压缩后的气体混合物经过吸附塔,其中填充有选择性吸附剂。

由于吸附剂对不同气体的亲和力不同,它们会根据吸附剂的特性被吸附在吸附塔中,而氢气则被分离出来。

3)解吸:当吸附塔中吸附剂吸附饱和时,需要进行解吸来释放吸附的气体。

通常采用降压的方式来解吸,从而将吸附在吸附剂上的气体释放出来。

这样,可以得到高纯度的氢气。

4)再生:当一个吸附塔工作周期结束后,需要对吸附塔进行再生,以恢复其吸附性能。

再生通常采用换热和脱附的方式来进行。

通过这些步骤,PSA可以实现高纯度氢气的制备,适用于各种领域的氢气需求,如化工、电力、新能源等。

2.工作流程PSA制氢的工作流程通常包括多个步骤,如压缩、吸附、解吸和再生。

其典型工作流程如下:1)原始气体混合物通过压缩机被压缩到一定压力下,同时经过预处理以去除杂质气体和水分。

2)压缩后的气体混合物进入至少两个吸附塔中,其中填充了选择性吸附剂。

在吸附过程中,吸附剂吸附对杂质气体具有选择性,而氢气则通过吸附塔后被分离出来。

3)当一个吸附塔达到吸附饱和后,需要进行解吸来释放氢气。

通常采用降压的方式来进行解吸。

4)解吸后,吸附塔需要进行再生来恢复其吸附性能,这通常包括换热和脱附。

5)同时,另一个吸附塔开始工作,实现连续生产高纯度氢气的目的。

变压吸附制氢工艺技术说明(21页)

变压吸附制氢工艺技术说明(21页)

将工艺流程设定为如下流程
分别简述其流程如下 z
(1)
压缩工序
压缩工厅 由 2 台 CI 开 l 备 ) 三级往复式压缩机组成。由于本装置的原料气中的 ,
茶含量非常低(仅为 5mg/Nm勺 , 所以 , 即使到 了 压缩三段也不会在三级冷却器中出现
茶结晶堵塞管道的问题。因此 , 来自界区外的焦炉煤气首先经压缩机的 级加压至~
在变压吸附气体分离装置常用的几种吸附剂中,活性氧 化铝类属于对水杳强亲和
力的固体 ,
干燥。
般采用三水合侣或三水铝矿的热脱水或热活化法制备 ,主要用于气体的
硅胶类吸附剂属于一种合成的无定形二氧化硅 , 它是胶态 二氧化硅球形控子的刚
性连续网络 , 一般是 由 硅酸饷溶液和无机殴混合来制备的,硅胶不仅对水有极强的亲
附剂选择吸附的条件下一次性除去氢以外的绝大部分杂质 , 获得纯度大于 99.9% 的
粗氢气 , 从塔顶排出送净化工序。 当被吸附杂质的传质区 前沿(称为吸附前沿)到达床层出口预留段某
停止吸附 , 转入再生过程。
位置时 ,
吸附剂的再生过程依次如下
a 均压阵压过程 这是在吸附过程结束后 , 顺着吸附方向将塔内的较高压力的氢气放入其它已完
品氢
il\
O .02 MPa 解 吸气
4
3)
装置 工艺流程描述
本装置中焦炉煤气组成复杂且产品氢纯度要求高 , 因而本装置工艺流程由压缩工
序、预处理工序 、 变压吸附工 序和净化工序组成。由 于 原料气中的硫\茶及焦油含量很 低 , 所以在考虑工 艺流程设计时 , 为节省用户的投资额同时又能保证装置的正常运行 ,
0.22MPa(G) , 然后进入压缩机第二和第 三级压缩至~ 1.7讯。a(G)后进入后续预处理系

简述变压吸附制氢工艺

简述变压吸附制氢工艺

关键设备与材料
关键设备与材料
关键设备
变压吸附制氢工艺的关键设备包括
原料气预处理设备:用于去除原料气 中的杂质
吸附塔:装填有吸附剂的吸附塔是实 现氮气和氢气分离的核心设备
压力调节器:用于控制原料气和产品 气的压力
解吸器:使被吸附的氮气解吸
产品气输出设备:用于输出产品气
吸附剂再生设备:在较低压力下使吸 附在吸附剂上的氮气完全解吸
吸附剂再生:完成上述步骤后, 需要对吸附剂进行再生处理,以 便进行下一轮的吸附过程。再生 通常是在较低压力下进行的,以 使吸附在吸附剂上的氮气完全解

1
2
3
4
5
加压吸附:将预处理后的原料气 在加压条件下通过装填有吸附剂 的吸附塔,此时氮气被吸附剂选 择性吸附,而氢气则通过吸附塔
继续前行
产品气处理:解吸后的氮气作为 产品气输出,而氢气则可能需要 进一步处理,如进行纯化或液化
变压吸附制氢工艺的流程 通常包括以下几个步骤
原料气准备:首先,需要将原料 气进行预处理,以去除其中的杂 质,如二氧化碳、水分等,避免 这些杂质对后续的吸附过程产生
影响
工艺流程
减压解吸:经过加压吸附后的吸 附塔,通过减压手段使被吸附的 氮气解吸,同时使氢气继续留在 吸附剂中。这一步实现了氮气和
氢气的分离
简述变压吸附制 氢工艺
指导老师:xxx
-
1 工艺流程 2 关键设备与材料
简述变压吸附制氢工艺
变压吸附(PSA)制氢工艺是一种常用的制备氢 气的方法,其通过吸附剂在加压和减压之间变
化,实现对氮气和氢气的选择性吸附和解吸
这种工艺具有高效、环保、操作简便等优点, 广泛应用于工业和实验室领域

变压吸附(PSA)氢气提纯技术 Microsoft Word 文档

变压吸附(PSA)氢气提纯技术 Microsoft Word 文档

工艺原理:
变压吸附(PSA)技术是:利用不同吸附剂对不同物质的吸附能力,吸附速度和吸附容量的不同,以及吸附剂对混合气体中各种组分的吸附容量随压力而变化的物理特性。

采用自动控制阀门开关,自动实现升压吸附、降压解析的气体分离过程。

应用领域:
PSA提纯氢:
我公司成功地从合成氨厂的变换气、弛放气、精练气,炼油厂的催化裂化气、石油裂解气,钢铁厂的焦炉煤气、水煤气,三氯氢硅合成尾气、多晶硅还原尾气和多种富氢混合(H2 大于25%,P大于0.6MPa)尾气中提纯出纯氢和高纯氢。

现已广泛用于:电子、冶金、热处理、通讯等行业作为保护气。

用于油脂、香料、糖醇、(山梨醇、木醇糠醇)双氧水、炼油、染料等加氢。

用于石化、医药农药中间体、有机合成、等行业。

PSA:空气分离,提取O2、N2
PSA:氨碳分离,提取NH3、CO2、CO等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

历史资料,供大家参考学习,下载后自行修改使用
工艺技术说明
1、吸附制氢装置工艺技术说明
1)工艺原理
吸附是指:当两种相态不同的物质接触时,其中密度较低物质的分子在密度较高的物质表面被富集的现象和过程。

具有吸附作用的物质(一般为密度相对较大的多孔固体)被称为吸附剂,被吸附的物质(一般为密度相对较小的气体或液体)称为吸附质。

吸附按其性质的不同可分为四大类,即:化学吸附、活性吸附、毛细管凝缩和物理吸附。

变压吸附(PSA)气体分离装置中的吸附主要为物理吸附。

物理吸附是指依靠吸附剂与吸附质分子间的分子力(包括范德华力和电磁力)进行的吸附。

其特点是:吸附过程中没有化学反应,吸附过程进行的极快,参与吸附的各相物质间的动态平衡在瞬间即可完成,并且这种吸附是完全可逆的。

变压吸附气体分离工艺过程之所以得以实现是由于吸附剂在这种物理吸附中所具有的两个基本性质:一是对不同组分的吸附能力不同,二是吸附质在吸附剂上的吸附容量随吸附质的分压上升而增加,随吸附温度的上升而下降。

利用吸附剂的第一个性质,可实现对混合气体中某些组分的优先吸附而使其它组分得以提纯;利用吸附剂的第二个性质,可实现吸附剂在低温、高压下吸附而在高温、低压下解吸再生,从而构成吸附剂的吸附与再生循环,达到连续分离气体的目的。

吸附剂:
工业PSA-H2装置所选用的吸附剂都是具有较大比表面积的固体颗粒,主要有:活性氧化铝类、活性炭类、硅胶类和分子筛类吸附剂;另外还有针对某种组分选择性吸附而研制的特殊吸附材料,如CO专用吸附剂和碳分子筛等。

吸附剂最重要的物理特征包括孔容积、孔径分布、表面积和表面性质等。

不同的吸附剂由于有不同的孔隙大小分布、不同的比表面积和不同的表面性质,因而对混合气体中的各组分具有不同的吸附能力和吸附容量。

吸附剂对各种气体的吸附性能主要是通过实验测定的吸附等温线和动态下的穿透曲线来评价的。

优良的吸附性能和较大的吸附容量是实现吸附分离的基本条件。

同时,要在工业上实现有效的分离,还必须考虑吸附剂对各组分的分离系数应尽可能大。

所谓分离系数是指:在达到吸附平衡时,(弱吸附组分在吸附床死空间中残余量/弱吸附组分在吸附床中的总量)与(强吸附组分在吸附床死空间中残余量/强吸附组
分在吸附床中的总量)之比。

分离系数越大,分离越容易。

一般而言,变压吸附气体分离装置中的吸附剂分离系数不宜小于3。

另外,在工业变压吸附过程中还应考虑吸附与解吸间的矛盾。

一般而言,吸附越容易则解吸越困难。

如对于C5、C6等强吸附质,就应选择吸附能力相对较弱的吸附剂如硅胶等,以使吸附容量适当而解吸较容易;而对于N2、O2、CO等弱吸附质,就应选择吸附能力相对较强的吸附剂如分子筛等,以使吸附容量更大、分离系数更高。

此外,在吸附过程中,由于吸附床内压力是周期性变化的,吸附剂要经受气流的频繁冲刷,因而吸附剂还应有足够的强度和抗磨性。

在变压吸附气体分离装置常用的几种吸附剂中,活性氧化铝类属于对水有强亲和力的固体,一般采用三水合铝或三水铝矿的热脱水或热活化法制备,主要用于气体的干燥。

硅胶类吸附剂属于一种合成的无定形二氧化硅,它是胶态二氧化硅球形粒子的刚性连续网络,一般是由硅酸钠溶液和无机酸混合来制备的,硅胶不仅对水有极强的亲和力,而且对烃类和CO2等组分也有较强的吸附能力。

活性炭类吸附剂的特点是:其表面所具有的氧化物基团和无机物杂质使表面性质表现为弱极性或无极性,加上活性炭所具有的特别大的内表面积,使得活性炭成为一种能大量吸附多种弱极性和非极性有机分子的广谱耐水型吸附剂。

沸石分子筛类吸附剂是一种含碱土元素的结晶态偏硅铝酸盐,属于强极性吸附剂,有着非常一致的孔径结构和极强的吸附选择性,对CO、CH4、N2、Ar、O2等均具有较高的吸附能力。

碳分子筛是一种以碳为原料,经特殊的碳沉积工艺加工而成的专门用于提纯空气中的氮气的专用吸附剂,使其孔径分布非常集中,只比氧分子直径略大,因此非常有利于对空气中氮氧的分离。

对于组成复杂的气源,在实际应用中常常需要多种吸附剂,按吸附性能依次分层装填组成复合吸附床,才能达到分离所需产品组分的目的。

吸附平衡:
吸附平衡是指在一定的温度和压力下,吸附剂与吸附质充分接触,最后吸附质在两相中的分布达到平衡的过程,吸附分离过程实际上都是一个平衡吸附过程。

在实际的吸附过程中,吸附质分子会不断地碰撞吸附剂表面并被吸附剂表面的分子引力束缚在吸附相中;同时吸附相中的吸附质分子又会不断地从吸附剂分子或其它吸附质分子
得到能量,从而克服分子引力离开吸附相;当一定时间内进入吸附相的分子数和离开吸附相的分子数相等时,吸附过程就达到了平衡。

在一定的温度和压力下,对于相同的吸附剂和吸附质,该动态平衡吸附量是一个定值。

在压力高时,由于单位时间内撞击到吸附剂表面的气体分子数多,因而压力越高动态平衡吸附容量也就越大;在温度高时,由于气体分子的动能大,能被吸附剂表面分子引力束缚的分子就少,因而温度越高平衡吸附容量也就越小。

我们用不同温度下的吸附等温线来描述这一关系,吸附等温线就是在一定的温度下,测定出各气体组份在吸附剂上的平衡吸附量,将不同压力下得到的平衡吸附量用曲线连接而成的曲线。

不同温度下的吸附等温线示意图:
渐减小。

实际上,变温吸附过程正是利用上图中吸附剂在A-D段的特性来实现吸附与解吸的。

吸附剂在常温(即A点)下大量吸附原料气中的某些杂质组分,然后升高温度(到D点)使杂质得以解吸。

从上图的B→A可以看出:在温度一定时,随着杂质分压的升高吸附容量逐渐增大;
变压吸附过程正是利用吸附剂在A-B段的特性来实现吸附与解吸的。

吸附剂在常温高压(即A点)下大量吸附原料气中除的某些杂质组分,然后降低杂质的分压(到B点)使杂质得以解吸。

吸附剂的这一特性也可以用Langmuir吸附等温方程来描述:
P
Xi K P Xi K A i ⋅⋅+⋅⋅=211 (A i :吸附质i 的平衡吸附量,K 1、K 2: 吸附常数 ,P :吸附压力,Xi :吸附质i 的摩尔组成)。

在通常的工业变压吸附过程中,由于吸附--解吸循环的周期短(一般只有数分钟),吸附热来不及散失,恰好可供解吸之用,所以吸附热和解吸热引起的吸附床温度变化一般不大,吸附过程可近似看做等温过程,其特性基本符合Langmuir 吸附等温方程。

在实际应用中一般依据气源的组成、压力及产品要求的不同来选择PSA 、TSA 或PSA+TSA 工艺。

变温吸附(TSA )法的循环周期长、投资较大,但再生彻底,通常用于微量杂质或难解吸杂质的脱除;
变压吸附(PSA )的循环周期短,吸附剂利用率高,吸附剂用量相对较少,不需要外加换热设备,被广泛用于大气量多组分气体的分离与纯化。

在变压吸附(PSA )工艺中,通常吸附剂床层压力即使降至常压,被吸附的组分也不能完全解吸,因此根据降压解吸方式的不同又可分为两种工艺:
一种是用产品气或其他不易吸附的组分对床层进行“冲洗”,使被吸附组分的分压大大降低,将较难解吸的杂质冲洗出来,其优点是在常压下即可完成,不再增加任何设备,但缺点是会损失产品气体,降低产品气的收率。

另一种是利用抽真空的办法降低被吸附组分的分压,使吸附的组分在负压下解吸出来,这就是通常所说的真空变压吸附(Vacuum Pressure Swing Absorption,缩写为VPSA)。

VPSA 工艺的优点是再生效果好,产品收率高,但缺点是需要增加真空泵。

在实际应用过程中,究竟采用以上何种工艺,主要视原料气的组成性质、原料气压力、流量、产品的要求以及工厂的资金和场地等情况而决定。

由于焦炉煤气提纯氢气的特点是:原料压力低,原料组分复杂并含有焦油、萘等难以解吸的重组分,产品纯度要求高。

因而装置需采用“加压+TSA 预处理+PSA 氢提纯+脱氧+TSA 干燥”流程。

2)
装置流程框图
3)装置工艺流程描述
本装置中焦炉煤气组成复杂且产品氢纯度要求高,因而本装置工艺流程由压缩工序、预处理工序、变压吸附工序和净化工序组成。

由于原料气中的硫\萘及焦油含量很低,所以在考虑工艺流程设计时,为节省用户的投资额同时又能保证装置的正常运行,将工艺流程设定为如下流程:
分别简述其流程如下:
(1)压缩工序
压缩工序由2台(1开1备)三级往复式压缩机组成。

由于本装置的原料气中的萘含量非常低(仅为5mg/Nm3),所以,即使到了压缩三段也不会在三级冷却器中出现萘结晶堵塞管道的问题。

因此,来自界区外的焦炉煤气首先经压缩机的一级加压至~0.22MPa(G),然后进入压缩机第二和第三级压缩至~1.7MPa(G)后进入后续预处理系统。

(2)预处理工序
预处理系统主要由2台除油塔、2台预处理塔、1台解吸气加热器、1台解吸气缓冲罐组成。

来自压缩三段,压力为~1.7MPa(G)的焦炉煤气进入预处理工序后,首先经过除油塔分离掉其中夹带的油滴,然后自塔底进入预处理塔,其中一台处于吸附脱油、脱硫萘状态、一台处于再生状态。

当预处理塔吸附焦油、硫和萘饱和后即转入再生过程。

预处理塔的再生过程包括:
a)降压过程
预处理塔逆着吸附方向,即朝着入口端卸压,气体排至煤气管网。

b)加热脱附杂质
用PSA工序副产的解吸气经加热至140~160℃后逆着吸附方向吹扫吸附层,使萘、焦油、NH3、H2S及其它芳香族化合物在加温下得以完全脱附,再生后的解吸气送回焦炉煤气管网。

c)冷却吸附剂
脱附完毕后,停止加热再生气,继续用常温解吸气逆着进气方向吹扫吸附床层,使之冷却至吸附温度。

吹冷后的解吸气也送回焦炉煤气管网。

d)升压过程。

相关文档
最新文档