2.1 二次函数 教学设计
二次函数图像和性质教学设计【优秀3篇】

二次函数图像和性质教学设计【优秀3篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!二次函数图像和性质教学设计【优秀3篇】二次函数的基本表示形式为y=aX²+bX+c(a≠0)。
二次函数教案(3篇)

二次函数教案(3篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!二次函数教案(3篇)作为一名无私奉献的老师,就有可能用到教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。
最新完整版二次函数教学设计

22.1.1二次函数一、教学设计1、知识与技能(1)理解并掌握二次函数的概念和一般形式。
(2)会判断一个函数是二次函数并会寻找二次函数的二次项系数、一次项系数、常数项。
(3)会列二次函数表达式解决实际问题。
2、过程与方法学生经历观察、思考、交流、归纳、辨析、实践运用等过程,体会函数中的常量与变量,深刻领悟二次函数意义。
3、情感态度与价值观使学生进一步体验函数是描述变量间对应关系的重要数学模型,培养学生合作交流意识和探索能力。
二、教学重点理解并掌握二次函数的概念和一般形式。
三、教学难点会列二次函数表达式解决实际问题。
四、教学方法引导法五、学习方法小组合作交流探讨得出二次函数的一般形式六、教学准备多媒体课件七、教学过程(一)复习引入1、一元二次方程的一般形式是什么?2、什么叫函数?3、什么是一次函数?正比例函数?追问:一次函数和正比例函数的图像是什么形状?生:一条直线教师用多媒体展示几张有关二次函数的图像的图片,问同学们这还是我们学过的一次函数和正比例函数的图像吗?学生很容易的回答说不是,接着教师很自然的告诉学生这将是我们本节课要学习的二次函数的图像,我们首先来学习二次函数的定义。
(引出本节课课题)(二)提出学习目标(1)理解并掌握二次函数的概念和一般形式。
(重点)(2)会判断一个函数是二次函数并会寻找二次函数的二次项系数、一次项系数、常数项。
(3)会列二次函数表达式解决实际问题。
(难点)(三)探究新知问题1 正方体六个面是全等的正方形,设正方体棱长为x,表面积为y,则y 关于x 的关系式为。
问题2n个球队参加比赛,每两个队之间进行一场比赛,比赛的场次数m与球队数n有什么关系?教师引导:每个球队n要与其他个球队各比赛一场,甲队对乙队的比赛与乙队对甲队的比赛时同一场比赛,所以比赛的场次数。
问题3某工厂一种产品现在的年产量是20件,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x之间的关系怎样表示?教师引导:这种产品的原产量是20件, 一年后的产量是件,再经过一年后的产量是件,即两年后的产量y=________。
2.1二次函数教学设计.1二次函数教学设计

2.1二次函数教学设计一、学习目标1、探索并归纳二次函数的定义;2、能够表示简单变量之间的二次函数关系.教学重点:二次函数的概念教学难点:经历探索,分析和建立两个变量之间的二次函数关系的过程二、教学过程分析本节课设计了七个教学环节:课前准备、创设问题情境引入新课、自主学习、合作探究、归纳总结、课堂检测、课堂小结、延伸迁移。
第一环节课前准备活动内容:引导学生复习函数的概念及已经学习过的几种函数:1..函数的定义2.回忆函数的形式活动目的:从学生已有的知识经验出发,学习新的内容,注重知识之间的联系,调动学生学习的积极性与主动性,也为接下来的学习作好铺垫。
实际教学效果:通过“温故”又可重新唤起学生对变量、自变量、因变量、函数等概念的理解,在回顾以前学习过的具体实例中能更好的帮助学生了解“函数”本质所在。
第二环节创设问题情境,引入新课活动内容:活动内容1、利用投影片出示课本中的引例某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,且增加的橙子树不超过20棵.请大家先独立思考,再互相交流后回答活动目的:设计问题由简单到复杂,逐步推进,同时也可让学生初步体会到问题中所蕴涵着的函数关系。
探究橙子的数量与橙子树之间的关系、及用关系式表示这一关系的过程,为引出二次函数的概念作铺垫,使学生感受二次函数与生活的密切联系。
实际教学效果:问题的设置由浅入深,问题中的变化过程也恰好反映了函数本质所在,学生在不知不觉中也在复习函数的表示方法中的解析式法。
活动内容2、:利用投影片出示课本中的引例2,银行的储蓄利率问题活动目的:通过解决生活中数学问题,进一步熟悉用函数解析式反映变化过程,实际教学效果:学生对本金、利息、利率、本息和等到概念不是很熟悉,需要老师的指引,加之有了上面的学习,之后学生则能够较容易列出函数解析式。
二次函数教学设计(精选6篇)

二次函数教学设计(精选6篇)(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如主题班会、教案大全、教学反思、教学设计、工作计划、文案策划、文秘资料、活动方案、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as theme class meetings, lesson plans, teaching reflections, teaching designs, work plans, copywriting planning, secretarial materials, activity plans, speeches, other materials, etc. If you want to learn about different data formats and writing methods, please stay tuned!二次函数教学设计(精选6篇)二次函数教学设计(精选6篇)由好文档网本店铺整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“二次函数教案教学设计”。
二次函数教案(全)

二次函数教案(一)教学目标:1. 理解二次函数的定义和基本性质。
2. 学会如何列写二次函数的一般形式。
3. 掌握二次函数的图像特点。
教学重点:1. 二次函数的定义和一般形式。
2. 二次函数的图像特点。
教学难点:1. 理解二次函数的图像特点。
2. 掌握如何求解二次函数的零点。
教学准备:1. 教学课件或黑板。
2. 练习题。
教学过程:一、导入(5分钟)1. 引入二次函数的概念,让学生回顾一次函数的知识。
2. 提问:一次函数的图像是一条直线,二次函数的图像会是什么样子呢?二、新课讲解(15分钟)1. 讲解二次函数的定义:一般形式为y=ax^2+bx+c(a≠0)。
2. 解释二次函数的各个参数的含义:a是二次项系数,b是一次项系数,c是常数项。
3. 举例说明如何列写二次函数的一般形式。
4. 讲解二次函数的图像特点:开口方向、顶点、对称轴等。
三、课堂练习(15分钟)1. 让学生独立完成练习题,巩固所学知识。
2. 讲解练习题的答案,解析解题思路。
四、课堂小结(5分钟)2. 强调二次函数的图像特点。
教学反思:本节课通过讲解和练习,让学生掌握了二次函数的定义和一般形式,以及图像特点。
在教学中,可以通过举例和互动提问的方式,激发学生的兴趣和思考。
在课堂练习环节,要注意关注学生的解题过程,培养学生的思维能力。
二次函数教案(二)教学目标:1. 学会如何求解二次方程。
2. 理解二次函数的零点与二次方程的关系。
3. 掌握二次函数的图像与x轴的交点。
教学重点:1. 求解二次方程的方法。
2. 二次函数的零点与图像的关系。
教学难点:1. 理解二次方程的解法。
2. 掌握二次函数的图像与x轴的交点。
1. 教学课件或黑板。
2. 练习题。
教学过程:一、复习导入(5分钟)1. 复习二次函数的定义和一般形式。
2. 提问:二次函数的图像与x轴的交点有什么关系?二、新课讲解(15分钟)1. 讲解如何求解二次方程:公式法、因式分解法等。
2. 解释二次函数的零点与二次方程的关系:零点是二次方程的解。
《二次函数》教学设计最新6篇

《二次函数》教学设计最新6篇作为一名无私奉献的老师,时常需要用到教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。
那么大家知道正规的教案是怎么写的吗?下面是书包范文为大家带来的《1.1二次函数》教学设计最新6篇,希望能够对大家的写作有一些帮助。
次函数教案篇一教学目标【知识与技能】使学生会用描点法画出函数y=ax2的图象,理解并掌握抛物线的有关概念及其性质。
【过程与方法】使学生经历探索二次函数y=ax2的图象及性质的过程,获得利用图象研究函数性质的经验,培养学生分析、解决问题的能力。
【情感、态度与价值观】使学生经历探索二次函数y=ax2的图象和性质的过程,培养学生观察、思考、归纳的良好思维品质。
重点难点【重点】使学生理解抛物线的有关概念及性质,会用描点法画出二次函数y=ax2的图象。
【难点】用描点法画出二次函数y=ax2的图象以及探索二次函数的性质。
教学过程一、问题引入1、一次函数的图象是什么?反比例函数的图象是什么?(一次函数的图象是一条直线,反比例函数的图象是双曲线。
)2、画函数图象的一般步骤是什么?一般步骤:(1)列表(取几组x,y的对应值);(2)描点(根据表中x,y的数值在坐标平面中描点(x,y));(3)连线(用平滑曲线)。
3、二次函数的图象是什么形状?二次函数有哪些性质?(运用描点法作二次函数的图象,然后观察、分析并归纳得到二次函数的性质。
)二、新课教授【例1】画出二次函数y=x2的图象。
解:(1)列表中自变量x可以是任意实数,列表表示几组对应值。
(2)描点:根据上表中x,y的数值在平面直角坐标系中描点(x,y)。
(3)连线:用平滑的曲线顺次连接各点,得到函数y=x2的图象,如图所示。
思考:观察二次函数y=x2的图象,思考下列问题:(1)二次函数y=x2的图象是什么形状?(2)图象是轴对称图形吗?如果是,它的对称轴是什么?(3)图象有最低点吗?如果有,最低点的坐标是什么?师生活动:教师引导学生在平面直角坐标系中画出二次函数y=x2的图象,通过数形结合解决上面的3个问题。
九年级数学初三下册:2.1 二次函数2教案 教学设计

2.1 二次函数教学目标:(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯重点难点:能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
教学过程:一、试一试1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,2.x的值是否可以任意取?有限定范围吗?3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的关系式,对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。
对于2,可让学生分组讨论、交流,然后各组派代表发表意见。
形成共识,x的值不可以任意取,有限定范围,其范围是0 <x <10。
对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函数关系式.二、提出问题某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。
将这种商品的售价降低多少时,能使销售利润最大?在这个问题中,可提出如下问题供学生思考并回答:1.商品的利润与售价、进价以及销售量之间有什么关系?[利润=(售价-进价)×销售量]2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元? [10-8=2(元),(10-8)×100=200(元)]3.若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品? [(10-8-x);(100+100x)]4.x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2]5.若设该商品每天的利润为y元,求y与x的函数关系式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章二次函数
《二次函数》教学设计
白银市第二中学杜艳霞
本节通过对具体情境的分析,概括出二次函数的表达形式,明确二次函数的概念.通过例题和学生列举的实例可以丰富对二次函数的认识,理解二次函数的意义.
一、学习目标
1、结合具体实际问题和已有函数知识,发现并归纳出两个变量之间的关系;说出二次函数的表达式及其限制条件的必要性;
2、能根据一些具有实际意义的问题,确定二次函数表达式;能辨析、区分一个函数是不是二次函数;
3、结合例子说出表达式及自变量的范围并解决变式练习.
重难点:会叙述二次函数的定义及一般形式,并作出正确的判断;能用数学符号表示简单变量之间的二次函数关系.
二、学习过程
(一)知识准备
说说什么是函数?
我们学习过的函数
有
(二)研讨交流
1、研讨问题1:
某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.
(独立思考)
①说一说问题中有哪些变量?其中哪些是自变量?哪些因变量?
②设果园增种x棵橙子树,则果园共有棵橙子树,
这时平均每棵树结个橙子
③如果果园橙子的总产量为y个,请写出y与X之间的关系式:
y= .化简得:
y=
2、研讨问题2
银行的储蓄利率是随时间的变化而变化的,也就是说,利率是一个变量.在我国,利率的调整是由中国人民银行根据国民经济发展的情况而决定的.
设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储存转存.如果存款额是100元,那么请你写出两年后的本息和y(元)的表达式(不考虑利息税)
(合作交流)
①本金:;
②一年到期后,利息:;本息和;
③两年到期后,本金;利
息:;
本息和;
④请写出y与x之间的关系式:
试试身手:
请用适当的函数解析式表示下列问题中的两个变量 y 与 x 之间的关系:
①某商店1月份的利润是2万元,2、3月份利润逐月增长,这两个月利润的月平均增长率为x,3月份的利润为y= 即:y=
②用总长为60 m 的篱笆围成矩形场地,矩形面积y (m 2)与矩形一边长x (m)
之间是函数关系y = 即:
y =
③设人民币一年定期储蓄的年利率是x ,一年到期后,银行将本金和利息自
动按一年定期储蓄转存.如果存款是210元,那么请你写出两年后的本息和y(元)的表达式(不考虑利息税).
3、研讨问题3:
上面三个问题中的函数解析式具有哪些共同的特征?
说一说二次函数的定义及一般形式呢?
一般地形
如 的函数叫做x 的二次函数.
友情提示: 二次函数的特点
(1)y=ax 2 --- (a ≠0,b=0,c=0).
(2)y=ax ²+c --- (a ≠0,b=0,c ≠0)
(3)y=ax ²+bx ---(a ≠0,b ≠0,c=0
再试身手:下列函数中哪些是二次函数?
( )
①y=ax ²+bx+c ②y=2x ² ③y=-5x ²+6
④ y=(x+1)(x-2) ⑤y=2x(x+1)²-2x ²
⑥y=232--x x ⑦x y 2=
⑧26x
y = 活学活用:
【例2】底面为正方形的长方体,已知底面边长是a ,长方体的高为5,体积
为v ,
(1)求v 与a 之间的函数表达式: , v 是a 的______函数,
其中二次项系数为: 一次项系数为: 常数
项为:
(2)当a=2时,v=
套.据市场调查发现,这种服装每提高1元售价,销量就减少5套,如果商场每
件提价x 元,请你得出每天销售利润y 与售价的函数表达式:
化为一般式为: ,y 是x 的 函数.
(三)课堂练习
1.下列函数中,不是二次函数( )
A.162+=x y
B.26
1x y -= C.12+=x y )2)(1(-+=x x y D.
2 .函数 y=(m-n)x 2+mx+n 是二次函数的条件是( )
A .m 、n 为常数,且m ≠0
B .m 、n 为常数,且m ≠n
C .m 、n 为常数,且n ≠0
D .m 、n 可以为任何常数
3.如果函数1232++=+-kx x y k k 是二次函数,则k 的值是______
变式训练如果函数1)3(232++-=+-kx x k y k k 是二次函数,则k 的值是______
(四)全课小结
(五)课堂检测
1下列函数中:①y=3; ②y=2x ; ③y=22+x 2-x 3; ④m=3-t -t 2
⑤y=(x -1)(x+2) ⑥y= (x+1)2 ⑦y=2(x+3)2-2x 2 ⑧y=1-x 2是
二次函数的是_____
2若y =(m 2+m) 是二次函数,则m 的值为
3若函数y=(a —b )x 2+ a x+ b 是关于x 的二次函数,则( )
A.a ,b 为常数且a ≠0
B. a ,b 为常数且
b ≠0
C. a ,b 为常数且a ≠b
D. a ,b 可为任何实
数
套.据市场调查发现,这种服装每提高 1 元售价,销量就减少 5 套,如果商场将售价定为 x元/套,请你得出每天销售利润 y 与售价x的函数表达
式:.
(六)能力提升
1.一个菱形的边长为xcm,它的面积为ycm .
(1)当一个内角为60°时,则y与x之间的函数关系式
(2)当一个内角为45°时,则 y与x之间的函数关系
式
2已知二次函数y=x²+px+q,当x=1时,函数值为4,当x=2时,函数值为- 5, 求这个二次函数的解析式.。