应用时间序列分析试卷一
时间序列分析考试卷及答案

考核课程 时间序列分析(B 卷) 考核方式 闭卷 考核时间 120 分钟注:B 为延迟算子,使得1-=t t Y BY ;∇为差分算子,。
一、单项选择题(每小题3 分,共24 分。
)1. 若零均值平稳序列{}t X ,其样本ACF 和样本PACF 都呈现拖尾性,则对{}t X 可能建立( B )模型。
A. MA(2)B.ARMA(1,1)C.AR(2)D.MA(1)2.下图是某时间序列的样本偏自相关函数图,则恰当的模型是( B )。
A. )1(MAB.)1(ARC.)1,1(ARMAD.)2(MA3. 考虑MA(2)模型212.09.0--+-=t t t t e e e Y ,则其MA 特征方程的根是( C )。
(A )5.0,4.021==λλ (B )5.0,4.021-=-=λλ (C )5.2221==λλ, (D ) 5.2221=-=λλ,4. 设有模型112111)1(----=++-t t t t t e e X X X θφφ,其中11<φ,则该模型属于( B )。
A.ARMA(2,1) B.ARIMA(1,1,1) C.ARIMA(0,1,1) D.ARIMA(1,2,1)5. AR(2)模型t t t t e Y Y Y +-=--215.04.0,其中64.0)(=t e Var ,则=)(t t e Y E ( B )。
A.0 B.64.0 C. 16.0 D. 2.06.对于一阶滑动平均模型MA(1): 15.0--=t t t e e Y ,则其一阶自相关函数为( C )。
A.5.0- B. 25.0 C. 4.0- D. 8.07. 若零均值平稳序列{}t X ∇,其样本ACF 呈现二阶截尾性,其样本PACF 呈现拖尾性,则可初步认为对{}t X 应该建立( B )模型。
A. MA(2)B.)2,1(IMAC.)1,2(ARID.ARIMA(2,1,2)8. 记∇为差分算子,则下列不正确的是( C )。
时间序列试卷参考答案

时间序列试卷参考答案内蒙古财经学院2009——2010学年第一学期期末考试试卷《时间序列分析》试卷参考答案一、填空题(1分*20空=20分)1. 描述性2. 平稳性,白噪声3. 严平稳,宽平稳,宽平稳4. 时域分析方法,频域分析方法5. 纯随机性,2χ,1,:210>?==m H m ρρρ ,m k H k ≤≤≠?1,0:1ρ6. 否,一阶,12步,d(x,1,12)7. 差分运算,ARMA 模型8. 自回归9. t t x B ε=Φ)(二、不定项选择题(2分*5=10分)1 A C D ;2 A D ;3 A BD ;4 B ;5 A D三、判断并说明理由(10分)1.(5分)答:说法不完全正确。
模型的有效性检验指的是检验模型的有效性。
如果模型有效,则拟合残差应该不含有任何信息,即残差为纯随机序列;如果模型拟合不显著,则拟合残差应该残留未被模型提取充分的信息,即非纯随机序列。
所以模型的有效性检验等同于对残差进行纯随机性检验,而不是平稳性检验。
2.(5分)答:说法是错误的。
证明:2110110121)()()0,1,0(εσεεεεεεεεεt x Var x Var x x x x ARIMA t t t t t t t t t t t =+++=+++==++=+=----- 模型:例如即方差非齐次。
四、简答题:(第1小题15分,第2小题5分,本题共20分)1. 答:(1)平滑法是进行趋势分析和预测时常用的一种方法。
它是利用修匀技术,削弱短期随机波动对序列的影响,使序列平滑化,从而显示出长期趋势变化的规律(2)根据平滑技术的不同,平滑法可以具体分为移动平均法和指数平滑法。
移动平均法假定在一个比较短的时间间隔里,序列值之间的差异主要是由随机波动造成的。
根据这种假定,我们可以用一定时间间隔内的平均值作为某一期的估计值,具体公式为:++++++++++++=+-++---+--++----为偶数,为奇数,n x x x x x n n x x x x x n x n t n t t n t n t n t n t t n t n t t )2121(1)(1~2121222112112121 指数平滑法的思想是在实际生活中,我们会发现对大多数随机事件而言,一般都是近期的结果对现在的影响会大些,远期的结果对现在的影响会小些。
时间序列分析考试卷及答案

考核课程 时间序列分析(B 卷) 考核方式 闭卷 考核时间 120 分钟注:B 为延迟算子,使得1-=t t Y BY ;∇为差分算子,。
一、单项选择题(每小题3 分,共24 分。
)1. 若零均值平稳序列{}t X ,其样本ACF 和样本PACF 都呈现拖尾性,则对{}t X 可能建立( B )模型。
A. MA(2)B.ARMA(1,1)C.AR(2)D.MA(1)2.下图是某时间序列的样本偏自相关函数图,则恰当的模型是( B )。
A. )1(MAB.)1(ARC.)1,1(ARMAD.)2(MA3. 考虑MA(2)模型212.09.0--+-=t t t t e e e Y ,则其MA 特征方程的根是( C )。
(A )5.0,4.021==λλ (B )5.0,4.021-=-=λλ (C )5.2221==λλ, (D ) 5.2221=-=λλ,4. 设有模型112111)1(----=++-t t t t t e e X X X θφφ,其中11<φ,则该模型属于( B )。
A.ARMA(2,1) B.ARIMA(1,1,1) C.ARIMA(0,1,1) D.ARIMA(1,2,1)5. AR(2)模型t t t t e Y Y Y +-=--215.04.0,其中64.0)(=t e Var ,则=)(t t e Y E ( B )。
A.0 B.64.0 C. 16.0 D. 2.06.对于一阶滑动平均模型MA(1): 15.0--=t t t e e Y ,则其一阶自相关函数为( C )。
A.5.0- B. 25.0 C. 4.0- D. 8.07. 若零均值平稳序列{}t X ∇,其样本ACF 呈现二阶截尾性,其样本PACF 呈现拖尾性,则可初步认为对{}t X 应该建立( B )模型。
A. MA(2)B.)2,1(IMAC.)1,2(ARID.ARIMA(2,1,2)8. 记∇为差分算子,则下列不正确的是( C )。
时间序列分析试题

第九章 时间序列分析一、单项选择题1、乘法模型是分析时间序列最常用的理论模型。
这种模型将时间序列按构成分解为( ) 等四种成分,各种成分之间( ),要测定某种成分的变动,只须从原时间序列中( )。
A. 长期趋势、季节变动、循环波动和不规则波动;保持着相互依存的关系;减去其他影响成分的变动B. 长期趋势、季节变动、循环波动和不规则波动;缺少相互作用的影响力量;减去其他影响成分的变动C. 长期趋势、季节变动、循环波动和不规则波动;保持着相互依存的关系;除去其他影响成分的变动D.长期趋势、季节变动、循环波动和不规则波动;缺少相互作用的影响力量;除去其他影响成分的变动答案:C2、加法模型是分析时间序列的一种理论模型。
这种模型将时间序列按构成分解为( )等四种成分,各种成分之间( ),要测定某种成分的变动,只须从原时间序列中( )。
A. 长期趋势、季节变动、循环波动和不规则波动;保持着相互依存的关系;减去其他影响成分的变动B. 长期趋势、季节变动、循环波动和不规则波动;缺少相互作用的影响力量;减去其他影响成分的变动C. 长期趋势、季节变动、循环波动和不规则波动;保持着相互依存的关系;除去其他影响成分的变动D.. 长期趋势、季节变动、循环波动和不规则波动;缺少相互作用的影响力量;除去其他影响成分的变动答案:B3、利用最小二乘法求解趋势方程最基本的数学要求是( )。
A.∑=-任意值2)ˆ(t Y Y B. ∑=-min )ˆ(2t Y Y C. ∑=-max )ˆ(2t Y Y D. 0)ˆ(2∑=-t Y Y 答案:B4、从下列趋势方程t Y t86.0125ˆ-=可以得出( )。
A. 时间每增加一个单位,Y 增加0.86个单位B. 时间每增加一个单位,Y 减少0.86个单位C. 时间每增加一个单位,Y 平均增加0.86个单位D. 时间每增加一个单位,Y 平均减少0.86个单位答案:D.5、时间序列中的发展水平( )。
时间序列分析考试试题

第8章时间序列分析一、填空题:1.平稳性检验的方法有__________、__________和__________。
2.单位根检验的方法有:__________和__________。
3.当随机误差项不存在自相关时,用__________进行单位根检验;当随机误差项存在自相关时,用__________进行单位根检验。
4.EG检验拒绝零假设说明______________________________。
5.DF检验的零假设是说被检验时间序列__________。
6.协整性检验的方法有__________和__________。
7.在用一个时间序列对另一个时间序列做回归时,虽然两者之间并无任何有意义的关系,但经常会得到一个很高的的值,这种情况说明存在__________问题。
8.结构法建模主要是以______________________________来确定计量经济模型的理论关系形式。
9.数据驱动建模以____________________作为建模的主要准则。
10.建立误差校正模型的步骤为一般采用两步:第一步,____________________;第二步,____________________。
二、单项选择题:1. 某一时间序列经一次差分变换成平稳时间序列,此时间序列称为()。
A.1阶单整B.2阶单整C.K阶单整D.以上答案均不正确2.如果两个变量都是一阶单整的,则()。
A.这两个变量一定存在协整关系B.这两个变量一定不存在协整关系C.相应的误差修正模型一定成立D.还需对误差项进行检验3.当随机误差项存在自相关时,进行单位根检验是由()来实现。
A DF检验B.ADF检验C.EG检验D.DW检验4.有关EG检验的说法正确的是()。
A.拒绝零假设说明被检验变量之间存在协整关系B.接受零假设说明被检验变量之间存在协整关系C.拒绝零假设说明被检验变量之间不存在协整关系D.接受零假设说明被检验变量之间不存在协整关系三、多项选择题:1. 平稳性检验的方法有()。
《时间序列》试卷答案

《时间序列》试卷答案【篇一:时间序列分析试卷及答案3套】>一、填空题(每小题2分,共计20分)1. arma(p, q)模型_________________________________,其中模型参数为____________________。
2. 设时间序列?xt?,则其一阶差分为_________________________。
3. 设arma (2, 1):xt?0.5xt?1?0.4xt?2??t?0.3?t?1则所对应的特征方程为_______________________。
4. 对于一阶自回归模型ar(1): xt?10+?xt?1??t,其特征根为_________,平稳域是_______________________。
5. 设arma(2, 1):xt?0.5xt?1?axt?2??t?0.1?t?1,当a满足_________时,模型平稳。
6. 对于一阶自回归模型______________________。
7. 对于二阶自回归模型ar(2):xt?0.5xt?1?0.2xt?2??tma(1):xt??t?0.3?t?1,其自相关函数为则模型所满足的yule-walker方程是______________________。
8. 设时间序列?xt?为来自arma(p,q)模型:xt??1xt?1?l??pxt?p??t??1?t?1?l??q?t?q则预测方差为___________________。
9. 对于时间序列?xt?,如果___________________,则xt~i?d?。
10. 设时间序列?xt?为来自garch(p,q)模型,则其模型结构可写为_____________。
二、(10分)设时间序列?xt?来自arma?2,1?过程,满足1b0.5bx2t1?0.4bt,2其中??t?是白噪声序列,并且e??t??0,var??t。
(1)判断arma?2,1?模型的平稳性。
(完整word版)《时间序列》试卷

《时间序列分析》试卷注意:请将答案直接写在试卷上一、填空题(1分*20空=20分)1. 德国药剂师、业余天文学家施瓦尔发现太阳黑子的活动具有11年周期依靠的是 时序分析方法。
2. 时间序列预处理包括 和 。
3. 平稳时间序列有两种定义,根据限制条件的严格程度,分为和 。
使用序列的特征统计量来定义的平稳性属于 。
4. 统计时序分析方法分为 和 。
5. 为了判断一个平稳的序列中是否含有信息,即是否可以继续分析,需对该序列进行 检验,该检验用到的统计量服从 分布;原假设和备择假设分别是 和 。
6. 图1为2000年1月——2007年12月中国社会消费品零售总额时间序列图,据此判断,该序列{}t X 是否平稳(填“是”或者“否”) ;要使其平稳化,应该对原序列进行 和 差分处理。
用Eviews 软件对该序列做差分运算的表达式是 。
7. ARIMA 模型的实质 是和的结合。
8. 差分运算的实质是使用的方式提取确定性信息。
9. 用延迟算子表示中心化的AR(P)模型是 。
二、不定项选择题(下列每小题至少有一个答案是正确的,请将正确答班级 姓名 学号50010001500200025003000350040009394959697989900图1案代码填入相应括号内,2分*5题=10分)1.下列属于白噪声序列{}t ε所满足的条件的是( )A. 任取T t ∈,有με=)(t E (μ为常数)B. 任取T t ∈,有0)(=t E εC.)(0),(s t Cov s t ≠∀=εεD. 2)(εσε=t Var (2εσ为常数) 2.使用n 期中心移动平均法对序列{}t x 进行平滑时,下列表达式正确的是( )A.n x x x x x n x n t n t t n t n t t ),(1~2112112121-+--++----++++++=ΛΛ为奇数;B. n x x x x x n x n t n t t n t n t t ),(1~212122+-++--++++++=ΛΛ为偶数;C. )(1~11+--+++=n t t t t x x x n x Λ; D. n x x x x x n x n t n t t n t n t t ),2121(1~212122+-++--++++++=ΛΛ为偶数。
时间序列分析试卷及标准答案

时间序列分析试卷1一、 填空题(每小题2分,共计20分)1. ARMA(p, q)模型_________________________________,其中模型参数为____________________。
2. 设时间序列{}t X ,则其一阶差分为_________________________。
3. 设ARMA (2, 1):1210.50.40.3t t t t t X X X εε---=++-则所对应的特征方程为_______________________。
4. 对于一阶自回归模型AR(1): 110t t t X X φε-=++,其特征根为_________,平稳域是_______________________。
5. 设ARMA(2, 1):1210.50.1t t t t t X X aX εε---=++-,当a 满足_________时,模型平稳。
6. 对于一阶自回归模型MA(1):10.3t t t X εε-=-,其自相关函数为______________________。
7. 对于二阶自回归模型AR(2):120.50.2t t t t X X X ε--=++则模型所满足的Yule-Walker 方程是______________________。
8. 设时间序列{}t X 为来自ARMA(p,q)模型:1111t t p t p t t q t q X X X φφεθεθε----=++++++L L则预测方差为___________________。
9. 对于时间序列{}t X ,如果___________________,则()~t X I d 。
10. 设时间序列{}t X 为来自GARCH(p ,q)模型,则其模型结构可写为_____________。
二、(10分)设时间序列{}t X 来自()2,1ARMA 过程,满足()()210.510.4ttB B X B ε-+=+,其中{}t ε是白噪声序列,并且()()2t t 0,E Var εεσ==。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用时间序列分析试卷
一
Document number【980KGB-6898YT-769T8CB-246UT-18GG08】
应用时间序列分析(试卷一)
一、 填空题
1、拿到一个观察值序列之后,首先要对它的平稳性和纯随机性进行检验,这两个重要的检验称为序列的预处理。
2、白噪声序列具有性质纯随机性和方差齐性。
3、平稳AR (p )模型的自相关系数有两个显着的性质:一是拖尾性;二是呈负指数衰减。
4、MA(q)模型的可逆条件是:MA(q)模型的特征根都在单位圆内,等价条件是移动平滑系数多项式的根都在单位圆外。
5、AR (1)模型的平稳域是{}11<<-φφ。
AR (2)模型的平稳域是{}11,12221<±<φφφφφ且,
二、单项选择题
1、频域分析方法与时域分析方法相比(D )
A 前者要求较强的数学基础,分析结果比较抽象,不易于进行直观解释。
B 后者要求较强的数学基础,分析结果比较抽象,不易于进行直观解释。
C 前者理论基础扎实,操作步骤规范,分析结果易于解释。
D 后者理论基础扎实,操作步骤规范,分析结果易于解释。
2、下列对于严平稳与宽平稳描述正确的是(D )
A 宽平稳一定不是严平稳。
B 严平稳一定是宽平稳。
C 严平稳与宽平稳可能等价。
D 对于正态随机序列,严平稳一定是宽平稳。
3、纯随机序列的说法,错误的是(B )
A时间序列经过预处理被识别为纯随机序列。
B纯随机序列的均值为零,方差为定值。
C在统计量的Q检验中,只要Q 时,认为该序列为纯随机序列,其
中m为延迟期数。
D不同的时间序列平稳性检验,其延迟期数要求也不同。
4、关于自相关系数的性质,下列不正确的是(D)
A. 规范性;
B. 对称性;
C. 非负定性;
D. 唯一性。
5、对矩估计的评价,不正确的是(A)
A. 估计精度好;
B. 估计思想简单直观;
C. 不需要假设总体分布;
D. 计算量小(低阶模型场合)。
6、关于ARMA模型,错误的是(C)
A ARMA模型的自相关系数偏相关系数都具有截尾性。
B ARMA模型是一个可逆的模型
C 一个自相关系数对应一个唯一可逆的MA模型。
D AR模型和MA模型都需要进行平稳性检验。
7、MA(q)模型序列的预测方差为下列哪项(B)
A、
[]2
2
,
Va()
,
l
t
l q r e l
l q
ξ
ξ
θθσ
θθσ
⎧<
⎪
=⎨
>
⎪⎩
22
1-1
22
1q
(1++...+)
(1++...+)
B、
[]2
2
,
Va()
,
l
t
l q r e l
l q
ξ
ξ
θθσ
θθσ
⎧≤
⎪
=⎨
>
⎪⎩
22
1-1
22
1q
(1++?+)
(1++?+)
C、
[]2
q
2
,
Va()
,
t
l
l q r e l
l q
ξ
ξ
θθσ
θθσ
⎧≤
⎪
=⎨
>
⎪⎩
22
1-1
22
1
(1++?+)
(1++?+)
D、
[]2
2
,
Va()
,
l
t
l q r e l
l q
ξ
ξ
θθσ
θθσ
⎧≤
⎪
=⎨
>
⎪⎩
22
1-1
22
1q-1
(1++?+)
(1++?+)
8、ARMA(p,q)模型的平稳条件是(B )
A. 0)(=ΘB 的根都在单位圆外;
B. 0)(=ΦB 的根都在单位圆外;
C. 0)(=ΘB 的根都在单位圆内;
D. 0)(=ΦB 的根都在单位圆内。
9、利用自相关图判断一个时间序列的平稳,下列说法正确的是(A ) A 自相关系数很快衰减为零。
B 自相关系数衰减为零的速度缓慢。
C 自相关系数一直为正。
D 在相关图上,呈现明显的三角对称性。
10、利用时序图对时间序列的平稳性进行检验,下列说法正确的是(C ) A 如果时序图呈现明显的递增态势,那么这个时间序列就是平稳序列。
B 如果时序图呈现明显的周期态势,那么这个时间序列就是平稳序列。
C 如果时序图总是围绕一个常数波动,而且其波动范围有限,那么这个时间序列是平稳序列。
D 通过时序图不能够精确判断一个序列的平稳与否。
三、概念解释
1、AR 模型的定义
具有如下结构的模型称为 阶自回归模型,简记为AR (p )
⎪⎪⎩⎪⎪⎨⎧<∀=≠===≠+++++=---t s Ex t
s E Var E x x x x t
s s t t t p t p t p t t t ,0,0)(,)(0)(0222110εεεσεεφεφφφφε, 2、偏自相关系数
对于平稳AR(p)序列,所谓滞后k 偏自相关系数就是指在给定中间k-1个随机变量121,,,+---k t t t x x x 的条件下,或者说,在剔除了中间k-1个随机变量的干扰之后, k t x -对t x 影响的相关度量。
用数学语言描述就是
2,,,)
ˆ[()]ˆ)(ˆ[(11k t k t k t k t t t x x x x x E x E x E x x E x E k t t k t t -------=+--- ρ 3、MA 模型的定义
具有如下结构的模型称为 阶自回归模型,简记为MP (q )
112220
()0(),()0,t t t t q t q q t t t s x E Var E s t
εμεθεθεθεθεεσεε---⎧=+----⎪≠⎨⎪===≠⎩,
4、 ARMA(p,q)模型的可逆条件:
q 阶移动平均系数多项式0)(=ΘB 的根都在单位圆外,即ARMA(p,q)模型的可逆性完全由其移动平滑部分的可逆性决定。
四、计算题
1、求平稳AR(1)模型的协方差
递推公式 0111γφγφγk k k ==-
平稳AR(1)模型的方差为 2
1201φσγε-= 协方差函数的递推公式为 21
21,11k k k εσγφφ=∀≥-
2、计算下列MA (q )模型的可逆性条件
21211
1
16
2545)4(25
1654)3(5.0)2(2)1(------+-=+-=-=-=t t t t t t t t t t t t t t x x x x εεεεεεεεεε 解:不可逆⇒>=⇒-=-1221θεεt t t x
可逆⇒<=⇒-=-15.05.01θεεt t t x
逆函数⎩⎨⎧≥=1
,5.01k I k k
逆转形式∑∞
=-=05.0k k t k t x ε
可逆⇒<±<⇒+-=--1,125
165412221θθθεεεt t t t x 不可逆⇒>=⇒+-=--116
25162545221θεεεt t t t x 逆函数 ,1,0,2
3,0133,)1(1=⎩⎨⎧+=+=-=n n k n n k I k n k 或θ、
逆转形式∑∑∞
=--+∞=--+-=013130338.0)1(8.0)1(n n t n n n n t n
n t x x ε
3、求ARMA(1,1)模型1111---+=t t t t x x εθεφ中未知参数11,θφ的矩估计。
解:根据ARMA 模型Green 函数的递推公式,可以确定该ARMA(1,1)模型的Green 函数为:
1G 0=
,2,1,)(G 11
11k =-=-k k φθφ
推导出: ⎪⎪⎪⎩
⎪⎪⎪⎨⎧==---==--+==∑∑∑∞=+∞=+∞=01122202211111211022111212201)1)((121k k k k k k k k G G G G G γφσγσφφθθφσγσφφθθσγεεεεε 则:⎪⎩
⎪⎨⎧=-+--==1121121111101121)1)((ρθρφθθφθθφγγρ 整理方程组得:
⎪⎪⎩
⎪⎪⎨⎧==+--+-121111*********ρρφθρφρφθ
考虑可以条件:,11<θ得到未知参数矩估计的唯一解:
⎪⎪⎪⎩
⎪⎪⎪⎨⎧---=⎪⎪⎩⎪⎪⎨⎧≥---≤-+==11221221121ˆˆˆ2ˆ1,2,242,24ˆˆˆˆρφρφθρ
ρφc c c c c c c
五.证明题
1、证明AR (2)模型的平稳的充要条件为{21,φφ12<φ且}112<±φφ
2.设时间序列{}t x 来自()1,1ARMA 过程,满足 110.50.25t t t t x x εε---=-, 其中()2t ~0,WN εσ, 证明其自相关系数为 11,00.2710.52k k k k k ρρ-=⎧⎪==⎨⎪≥⎩。