2020年苏科版八年级数学上册 期中复习试卷十(含答案)

合集下载

【苏科版】 八年级上期中数学试卷(含答案

【苏科版】 八年级上期中数学试卷(含答案

精品“正版”资料系列,由本公司独创。

旨在将“人教版”、”苏教版“、”北师大版“、”华师大版“等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和检测题分享给需要的朋友。

本资源创作于2020年12月,是当前最新版本的教材资源。

包含本课对应内容,是您备课、上课、课后练习以及寒暑假预习的最佳选择。

通过我们的努力,能够为您解决问题,这是我们的宗旨,欢迎您下载使用!2016-2017学年江苏省泰州市兴化市顾庄学区三校八年级(上)期中数学试卷一、选择题(本大题共有6小题, 每小题3分, 共18分)1.化简:的值为()A.4 B.﹣4 C.±4 D.162.有些国家的国旗设计成了轴对称图形, 观察如图代表国旗的图案, 你认为是轴对称图形的有()A.4个B.3个C.2个D.1个3.下列各组线段能构成直角三角形的一组是()A.5cm, 9cm, 12cm B.7cm, 12cm, 13cmC.30cm, 40cm, 50cm D.3cm, 4cm, 6cm4.在实数、﹣、0.1010010001、、3.14、﹣中, 无理数有()A.2个B.3个C.4个D.5个5.已知点A(a, 2016)与点B关于x轴对称, 则a+b的值为()A.﹣1 B.1 C.2 D.36.如图, 等腰三角形ABC的底边BC长为4, 面积是16, 腰AC的垂直平分线EF分别交AC, AB边于E, F点.若点D为BC边的中点, 点M为线段EF上一动点, 则△CDM周长的最小值为()A.6 B.8 C.10 D.12二、填空题(本大题共有10小题, 每小题3分, 共30分)7.等边三角形的边长为a, 则它的周长为.8.比较大小:4(填“>”或“<”)9.估算:的值是(精确到0.1).10.若点A的坐标(x, y)满足条件(x﹣3)2+|y+2|=0, 则点A在第象限.11.等腰三角形的顶角为80°, 则底角等于.12.如图, 在△ABC中, ∠ACB=90°, AB=10cm, 点D为AB的中点, 则CD=cm.13.已知一个三角形的三边长分别为12、16、20, 则这个三角形的面积是.14.如图, 在平面直角坐标系xOy中, 已知点A(3, 4), 将OA绕坐标原点O逆时针旋转90°至OA′, 则点A′的坐标是.15.在长、宽都是3, 高是8的长方体纸箱的外部, 一只蚂蚁从顶点A沿纸箱表面爬到顶点B点, 那么它所行的最短路线的长是.16.在△ABC中, AB=13cm, AC=20cm, BC边上的高为12cm, 则BC长为.三、解答题(本大题共有10小题, 共102分.解答时应写出必要的步骤)17.(1)计算:﹣(π+2)0+|1﹣|;(2)已知:(x+1)2=16, 求x.18.如图, 正方形网格中的每个小正方形边长都是1.(1)图1、图2中已知线段AB、CD, 画线段EF(图1与图2不得相同), 使它与AB、CD 组成轴对称图形;(2)在图3中画出一条以格点为端点长为的线段MN.19.已知:如图, P、Q是△ABC边BC上两点, 且AB=AC, AP=AQ.求证:BP=CQ.20.已知在△ABC中, 三条边长分别为a、b、c, 且a=n2﹣1、b=2n、c=n2+1, △ABC是直角三角形吗?请说明理由.21.已知:如图, △ABC的角平分线BE、CF相交于点P.求证:点P在∠A的平分线上.22.如图, 在平面直角坐标系中, A(﹣1, 5), B(﹣1, 0), C(﹣4, 3).(1)求出△ABC的面积;(2)在图中作出△ABC关于y轴的对称图形△A1B1C1;(3)写出点A1, B1, C1的坐标.23.如图, 在△ABC中, ∠C=90°, CB=6, AB的垂直平分线分别交AB、AC于点D、E, CD=5.(1)求线段AC的长;(2)求线段AE的长.24.在Rt△ABC中, ∠ACB=90°, AC=BC, D为BC中点, CE⊥AD于E, BF∥AC交CE的延长线于F.(1)求证:△ACD≌△CBF;(2)求证:AB垂直平分DF.25.阅读材料, 解答下列问题:例:当a>0时, 如a=5, 则|a|=|5|=5, 故此时a的绝对值是它本身;当a=0时, |a|=0, 故此时a的绝对值是0;当a<0时, 如a=﹣5, 则|a|=|﹣5|=﹣(﹣5), 故此时a的绝对值是它的相反数.综上所述, 一个数的绝对值要分三种情况, 即:|a|=, 这种分析方法渗透了数学中的分类讨论思想.(1)请仿照例中的分类讨论, 分析的各种化简后的情况;(2)猜想与|a|的大小关系;(3)当1<x<2时, 试化简|x+1|+.26.已知, 点P是Rt△ABC斜边AB上一动点(不与A、B重合), 分别过A、B向直线CP作垂线, 垂足分别为E、F、Q为斜边AB的中点.(1)如图1, 当点P与点Q重合时, AE与BF的位置关系是, QE与QF的数量关系是;(2)如图2, 当点P在线段AB上不与点Q重合时, 试判断QE与QF的数量关系, 并给予证明;(3)如图3, 当点P在线段BA(或AB)的延长线上时, 此时(2)中的结论是否成立?请画出图形并给予证明.2016-2017学年江苏省泰州市兴化市顾庄学区三校八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共有6小题, 每小题3分, 共18分)1.化简:的值为()A.4 B.﹣4 C.±4 D.16【考点】二次根式的性质与化简.【分析】表示16的算术平方根, 根据二次根式的意义解答即可.【解答】解:原式==4.故选A.2.有些国家的国旗设计成了轴对称图形, 观察如图代表国旗的图案, 你认为是轴对称图形的有()A.4个B.3个C.2个D.1个【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合, 这样的图形叫做轴对称图形.这条直线叫做对称轴.【解答】解:根据轴对称的概念可知:加拿大国旗、瑞士国旗是轴对称图形, 符合题意;澳大利亚国旗、乌拉圭国旗都不是轴对称图形, 不符合题意.故选C.3.下列各组线段能构成直角三角形的一组是()A.5cm, 9cm, 12cm B.7cm, 12cm, 13cmC.30cm, 40cm, 50cm D.3cm, 4cm, 6cm【考点】勾股定理的逆定理.【分析】欲求证是否为直角三角形, 这里给出三边的长, 只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、52+92≠122, 不能构成直角三角形, 故选项错误;B、72+122≠132, 不能构成直角三角形, 故选项错误;C、302+402=502, 能构成直角三角形, 故选项正确;D、32+42≠62, 不能构成直角三角形, 故选项错误.故选C.4.在实数、﹣、0.1010010001、、3.14、﹣中, 无理数有()A.2个B.3个C.4个D.5个【考点】无理数.【分析】根据无理数的三种形式:①开方开不尽的数, ②无限不循环小数, ③含有π的数, 解答即可.【解答】解:、﹣是无理数,故选:A.5.已知点A(a, 2016)与点B关于x轴对称, 则a+b的值为()A.﹣1 B.1 C.2 D.3【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于x轴对称的点, 横坐标相同, 纵坐标互为相反数”求出a、b的值, 然后代入代数式进行计算即可得解.【解答】解:∵点A(a, 2016)与点B关于x轴对称,∴a=2017, b=﹣2016,∴a+b=2017+(﹣2016)=1.故选B.6.如图, 等腰三角形ABC的底边BC长为4, 面积是16, 腰AC的垂直平分线EF分别交AC, AB边于E, F点.若点D为BC边的中点, 点M为线段EF上一动点, 则△CDM周长的最小值为()A.6 B.8 C.10 D.12【考点】轴对称-最短路线问题.【分析】连接AD, 由于△ABC是等腰三角形, 点D是BC边的中点, 故AD⊥BC, 再根据三角形的面积公式求出AD的长, 再再根据EF是线段AC的垂直平分线可知, 点C关于直线EF的对称点为点A, 故AD的长为CM+MD的最小值, 由此即可得出结论.【解答】解:连接AD,∵△ABC是等腰三角形, 点D是BC边的中点,∴AD⊥BC,=BC•AD=×4×AD=16, 解得AD=8,∴S△ABC∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=8+×4=8+2=10.故选C.二、填空题(本大题共有10小题, 每小题3分, 共30分)7.等边三角形的边长为a, 则它的周长为3a.【考点】等边三角形的性质.【分析】等边三角形的边长为a, 进而求出它的周长.【解答】解:因为等边三角形的三边相等, 而等边三角形的边长为a, 所以它的周长为3a.故答案为3a.8.比较大小:4>(填“>”或“<”)【考点】实数大小比较;二次根式的性质与化简.【分析】根据二次根式的性质求出=4, 比较和的值即可.【解答】解:4=,>,∴4>,故答案为:>.9.估算:的值是 4.2(精确到0.1).【考点】估算无理数的大小;近似数和有效数字.【分析】先估算的范围, 再尝试求出答案即可.【解答】解:4<<5, 4.22=17.64, 4.32=18.49,∴≈4.2,故答案为:4.2.10.若点A的坐标(x, y)满足条件(x﹣3)2+|y+2|=0, 则点A在第四象限.【考点】点的坐标;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数之和等于0的特点, 求得x, y的值, 求出点A的坐标, 即可判断其所在的象限.【解答】解:∵(x﹣3)2+|y+2|=0,∴x﹣3=0, y+2=0,∴x=3, y=﹣2,∴A点的坐标为(3, ﹣2),∴点A在第四象限.故填:四.11.等腰三角形的顶角为80°, 则底角等于50°.【考点】等腰三角形的性质.【分析】因为等腰三角形的两个底角的度数相等, 再依据三角形的内角和是180度, 即可分别求出三角形的底角的度数.【解答】解:÷2=100°÷2=50°.故答案为:50°.12.如图, 在△ABC中, ∠ACB=90°, AB=10cm, 点D为AB的中点, 则CD=5cm.【考点】直角三角形斜边上的中线.【分析】根据直角三角形中, 斜边上的中线等于斜边的一半解答即可.【解答】解:∵∠ACB=90°, 点D为AB的中点,∴CD=AB=5cm.故答案为:5.13.已知一个三角形的三边长分别为12、16、20, 则这个三角形的面积是96.【考点】勾股定理的逆定理.【分析】首先根据勾股定理的逆定理判定该三角形是直角三角形, 再进一步根据直角三角形的面积等于两条直角边的乘积的一半求解.【解答】解:∵122+162=400=202,∴该三角形是直角三角形,∴这个三角形的面积是×12×16=96.故答案为96.14.如图, 在平面直角坐标系xOy中, 已知点A(3, 4), 将OA绕坐标原点O逆时针旋转90°至OA′, 则点A′的坐标是(﹣4, 3).【考点】坐标与图形变化-旋转.【分析】过点A作AB⊥x轴于B, 过点A′作A′B′⊥x轴于B′, 根据旋转的性质可得OA=OA′, 利用同角的余角相等求出∠OAB=∠A′OB′, 然后利用“角角边”证明△AOB和△OA′B′全等, 根据全等三角形对应边相等可得OB′=AB, A′B′=OB, 然后写出点A′的坐标即可.【解答】解:如图, 过点A作AB⊥x轴于B, 过点A′作A′B′⊥x轴于B′,∵OA绕坐标原点O逆时针旋转90°至OA′,∴OA=OA′, ∠AOA′=90°,∵∠A′OB′+∠AOB=90°, ∠AOB+∠OAB=90°,∴∠OAB=∠A′OB′,在△AOB和△OA′B′中,,∴△AOB≌△OA′B′(AAS),∴OB′=AB=4, A′B′=OB=3,∴点A′的坐标为(﹣4, 3).故答案为:(﹣4, 3).15.在长、宽都是3, 高是8的长方体纸箱的外部, 一只蚂蚁从顶点A沿纸箱表面爬到顶点B点, 那么它所行的最短路线的长是10.【考点】平面展开-最短路径问题.【分析】分情况讨论, 将纸箱展开后, 蚂蚁可经上表面爬到B点, 也可经右侧面爬到B点.求出这两种情况所走路线的长度, 比较可得答案.【解答】解:将纸箱展开, 当蚂蚁经上表面爬到B点, 则AB==当蚂蚁经右侧面爬到B点, 则AB==比较上面两种情况, 一只蚂蚁从顶点A沿纸箱表面爬到顶点B点, 那么它所行的最短路线的长是, 即10.16.在△ABC中, AB=13cm, AC=20cm, BC边上的高为12cm, 则BC长为21cm或11cm.【考点】勾股定理.【分析】分两种情况:①∠B为锐角;②∠B为钝角;利用勾股定理求出BD、CD, 即可求出BC的长.【解答】解:分两种情况:①当∠B为锐角时, 如图1所示,在Rt△ABD中,BD===5(cm),在Rt△ADC中,CD===16cm,∴BC=BD+CD=21cm;②当∠B为钝角时, 如图2所示,在Rt△ABD中,BD═==5(cm),在Rt△ADC中,CD===16cm,∴BC=CD﹣BD=16﹣5=11(cm);综上所述:BC的长为21cm或11cm.三、解答题(本大题共有10小题, 共102分.解答时应写出必要的步骤)17.(1)计算:﹣(π+2)0+|1﹣|;(2)已知:(x+1)2=16, 求x.【考点】实数的运算;零指数幂.【分析】(1)本题有零指数幂、立方根、绝对值化简3个考点.在计算时, 需要针对每个考点分别进行计算, 然后根据实数的运算法则求得计算结果.(2)根据平方运算, 转化为一元一次方程, 求出x的值.【解答】解:(1)原式=2﹣1+﹣1=;(2)因为(±4)2=16所以x+1=4或x+1=﹣4∴x=3或x=﹣5.答:x的值为3或者﹣5.18.如图, 正方形网格中的每个小正方形边长都是1.(1)图1、图2中已知线段AB、CD, 画线段EF(图1与图2不得相同), 使它与AB、CD 组成轴对称图形;(2)在图3中画出一条以格点为端点长为的线段MN.【考点】利用轴对称设计图案;勾股定理.【分析】(1)根据轴对称的性质画出图形即可;(2)根据勾股定理画出线段MN即可.【解答】解:(1)如图1, 2所示, 线段EF即为所求;(2)如图3所示, 线段MN即为所求.19.已知:如图, P、Q是△ABC边BC上两点, 且AB=AC, AP=AQ.求证:BP=CQ.【考点】等腰三角形的性质.【分析】根据线段垂直平分线的性质, 可得BO=CO, PO=QO, 根据等式的性质, 可得答案.【解答】证明:过点A作AO⊥BC于O.∵AB=AC, AO⊥BC∴BO=CO∵AP=AQ, AO⊥BC∴PO=QO∴BO﹣PO=CO﹣QO∴BP=CQ.20.已知在△ABC中, 三条边长分别为a、b、c, 且a=n2﹣1、b=2n、c=n2+1, △ABC是直角三角形吗?请说明理由.【考点】勾股定理的逆定理.【分析】判断一组数能否成为直角三角形的三边, 就是看是否满足两较小边的平方和等于最大边的平方即可.【解答】解:△ABC是直角三角形,理由如下:∵(n2﹣1)2+(2n)2=n4+2n2+1=(n2+1)2,∴a2+b2=c2,∴能成为直角三角形的三边长.21.已知:如图, △ABC的角平分线BE、CF相交于点P.求证:点P在∠A的平分线上.【考点】角平分线的性质.【分析】过点P作PD⊥AB、PM⊥BC、PN⊥AC垂足分别为D、M、N, 根据角平分线上的点到角的两边距离相等可得PD=PM, 同理可得PM=PN, 从而得到PD=PN, 再根据到角的两边距离相等的点在角的平分线上证明即可.【解答】证明:如图, 过点P作PD⊥AB、PM⊥BC、PN⊥AC垂足分别为D、M、N,∵BE平分∠ABC, 点P在BE上,∴PD=PM,同理, PM=PN,∴PD=PN,∴点P在∠A的平分线上.22.如图, 在平面直角坐标系中, A(﹣1, 5), B(﹣1, 0), C(﹣4, 3).(1)求出△ABC的面积;(2)在图中作出△ABC关于y轴的对称图形△A1B1C1;(3)写出点A1, B1, C1的坐标.【考点】作图-轴对称变换.【分析】(1)利用长方形的面积剪去周围多余三角形的面积即可;(2)首先找出A、B、C三点关于y轴的对称点, 再顺次连接即可;(3)根据坐标系写出各点坐标即可.【解答】解:(1)如图所示:△ABC的面积:3×5﹣﹣﹣=6;(2)如图所示:(3)A1(2, 5), B1(1, 0), C1(4, 3).23.如图, 在△ABC中, ∠C=90°, CB=6, AB的垂直平分线分别交AB、AC于点D、E, CD=5.(1)求线段AC的长;(2)求线段AE的长.【考点】线段垂直平分线的性质;勾股定理.【分析】(1)根据直角三角形的性质得到AB=2CD=10, 根据勾股定理计算即可;(2)连接BE, 设AE=x, 根据线段垂直平分线的性质得到BE=AE=x, 根据勾股定理列出关于x的方程, 解方程即可.【解答】解:(1)∵AB的垂直平分线,∴CD为中线,∵∠C=90°,∴AB=2CD=10,∵∠C=90°,∴;(2)连接BE,设AE=x,∵AB的垂直平分线,∴BE=AE=x,∴CE=8﹣x,∵∠C=90°,∴CE2+BC2=BE2,∴(8﹣x)2+62=x2,解得:,∴线段AE的长为.24.在Rt△ABC中, ∠ACB=90°, AC=BC, D为BC中点, CE⊥AD于E, BF∥AC交CE的延长线于F.(1)求证:△ACD≌△CBF;(2)求证:AB垂直平分DF.【考点】全等三角形的判定与性质;线段垂直平分线的性质.【分析】(1)根据∠ACB=90°, 求证∠CAD=∠BCF, 再利用BF∥AC, 求证∠ACB=∠CBF=90°, 然后利用ASA即可证明△ACD≌△CBF.(2)先根据ASA判定△ACD≌△CBF得到BF=BD, 再根据角度之间的数量关系求出∠ABC=∠ABF, 即BA是∠FBD的平分线, 从而利用等腰三角形三线合一的性质求证即可.【解答】解:(1)∵在Rt△ABC中, ∠ACB=90°, AC=BC,∴∠CAB=∠CBA=45°,∵CE⊥AD,∴∠CAD=∠BCF,∵BF∥AC,∴∠FBA=∠CAB=45°∴∠ACB=∠CBF=90°,在△ACD与△CBF中,∵,∴△ACD≌△CBF;(2)证明:∵∠BCE+∠ACE=90°, ∠ACE+∠CAE=90°,∴∠BCE=∠CAE.∵AC⊥BC, BF∥AC.∴BF⊥BC.∴∠ACD=∠CBF=90°,在△ACD与△CBF中,∵,∴△ACD≌△CBF,∴CD=BF.∵CD=BD=BC,∴BF=BD.∴△BFD为等腰直角三角形.∵∠ACB=90°, CA=CB,∴∠ABC=45°.∵∠FBD=90°,∴∠ABF=45°.∴∠ABC=∠ABF, 即BA是∠FBD的平分线.∴BA是FD边上的高线, BA又是边FD的中线,即AB垂直平分DF.25.阅读材料, 解答下列问题:例:当a>0时, 如a=5, 则|a|=|5|=5, 故此时a的绝对值是它本身;当a=0时, |a|=0, 故此时a的绝对值是0;当a<0时, 如a=﹣5, 则|a|=|﹣5|=﹣(﹣5), 故此时a的绝对值是它的相反数.综上所述, 一个数的绝对值要分三种情况, 即:|a|=, 这种分析方法渗透了数学中的分类讨论思想.(1)请仿照例中的分类讨论, 分析的各种化简后的情况;(2)猜想与|a|的大小关系;(3)当1<x<2时, 试化简|x+1|+.【考点】二次根式的性质与化简;实数大小比较.【分析】(1)分a>0, a=0及a<0三种情况进行讨论即可;(2)根据(1)的结果可得出结论;(3)先判断出x+1, x﹣2的符号, 再去绝对值符号, 合并同类项即可.【解答】解:(1)当a>0时, 如a=5, 则==5, 即=a;当a=0 时, ==0, 即=0;当a<0时, 如a=﹣5, 则==5, 即=﹣a.综合起来:=;(2)由(1)可知=|a|;(3)∵1<x<2,∴x+1>0, x﹣2<0,∴|x+1|+=|x+1|+|x﹣2|=x+1﹣(x﹣2)=3.26.已知, 点P是Rt△ABC斜边AB上一动点(不与A、B重合), 分别过A、B向直线CP作垂线, 垂足分别为E、F、Q为斜边AB的中点.(1)如图1, 当点P与点Q重合时, AE与BF的位置关系是AE∥BF, QE与QF的数量关系是QE=QF;(2)如图2, 当点P在线段AB上不与点Q重合时, 试判断QE与QF的数量关系, 并给予证明;(3)如图3, 当点P在线段BA(或AB)的延长线上时, 此时(2)中的结论是否成立?请画出图形并给予证明.【考点】全等三角形的判定与性质;直角三角形斜边上的中线.【分析】(1)根据AAS推出△AEQ≌△BFQ, 推出AE=BF即可;(2)延长EQ交BF于D, 求出△AEQ≌△BDQ, 根据全等三角形的性质得出EQ=QD, 根据直角三角形斜边上中点性质得出即可;(3)延长EQ交FB于D, 求出△AEQ≌△BDQ, 根据全等三角形的性质得出EQ=QD, 根据直角三角形斜边上中点性质得出即可.【解答】解:(1)如图1,当点P与点Q重合时, AE与BF的位置关系是AE∥BF, QE与QF的数量关系是AE=BF,理由是:∵Q为AB的中点,∴AQ=BQ,∵AE⊥CQ, BF⊥CQ,∴AE∥BF, ∠AEQ=∠BFQ=90°,在△AEQ和△BFQ中∴△AEQ≌△BFQ,∴QE=QF,故答案为:AE∥BF, QE=QF;(2)QE=QF,证明:延长EQ交BF于D,∵由(1)知:AE∥BF,∴∠AEQ=∠BDQ,在△AEQ和△BDQ中∴△AEQ≌△BDQ,∴EQ=DQ,∵∠BFE=90°,∴QE=QF;,(3)当点P在线段BA(或AB)的延长线上时, 此时(2)中的结论成立, 证明:延长EQ交FB于D, 如图3,∵由(1)知:AE∥BF,∴∠AEQ=∠BDQ,在△AEQ和△BDQ中∴△AEQ≌△BDQ,∴EQ=DQ,∵∠BFE=90°,∴QE=QF.2016年12月8日。

2020-2021学年度苏科版八年级数学上 期中测试题( 含答案)

2020-2021学年度苏科版八年级数学上 期中测试题( 含答案)

期中测试题(本试卷满分120分)一、选择题(每小题3分,共30分)1.图1所示的四个图案中是轴对称图形的有( )A .1个B .2个C .3个D .4个2.三角形的三边长分别等于下列各组数,其中不能构成直角三角形的是( )A .5,12,13B .12,18,22C .7,24,25D .9,12,15 3.若等腰三角形有一个角等于40°,则它的顶角的度数为( ) A . 70° B . 40° C .100° D . 40°或100°4.如图2,有一块直角三角形纸片,∠A CB =90°,AC =4 cm ,BC =3 cm ,将斜边AB翻折,使点B 落在直角边AC 的延长线上的点E 处,折痕为AD ,则CE 的长为( )A .1 cmB .1.5 cmC .2 cmD .3 cm5.如图3,△ABD ≌△ACE ,若∠AEC =110°,则∠DAE 的度数为( ) A .30°B .40°C .50°D .60° 6.如图4,在长方形ABCD 中,AB=9,BC=6,将长方形折叠,使A 点与BC 的中点F 重合,折痕为EH ,则线段BE 的长为( )A .B .4C .D .57. 如图5,在△ABC 中,AB=AC ,BC=10,AD 平分∠BAC 交BC 于点D ,且AD=12,点E 为AC 的中点,连接DE ,则△CDE 的周长为( )A. 16.5B. 18C. 23D. 268.图6是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A ,B ,C ,D 的边长分别是3,5,2,3,则最大正方形E 的面积是( )A .13B .26C .47D .52图5 图6 图79.已知∠AOB =30°,点P 在∠AOB 的内部,P 1与P 关于OA 对称,P 2与P 关于OB 对称,则△P 1OP 2是( ) A B C DE 图2A BCD E 图3A .含30°角的直角三角形B .顶角是30的等腰三角形C .等边三角形D .等腰直角三角形.10.如图7,∠BAC 与∠CBE 的平分线相交于点P ,BE=BC ,PB 与CE 交于点H ,PG ∥AD 交BC于点F ,交AB 于点G ,下列结论:①GA=GP ;②S △PAC :S △PAB =AC:AB ;③BP 垂直平分CE ;④FP=FC.其中正确的有( )A .仅①②B .仅①③④C .仅①②③D .①②③④二、填空题(每小题4分,共24分) 11. 等腰三角形的两边长分别为4 cm 和6 cm ,则这个等腰三角形的周长为cm. 12. 有一个三角形三边长的比是3:4:5,它的周长是24,这个三角形的面积是__________.13. 如图8,∠AOE=∠BOE=15o ,EF ∥OB ,EC ⊥OB ,若EC=2,则EF=__________.14. 如图9,在△ABC 中,AB=AC ,DE 是AB 的垂直平分线,△BCE 的周长为14,BC=6,则AB 的长为 .15. 如图10,∠BAC=100o ,MN ,EF 分别垂直平分AB ,AC ,则∠MAE 的度数为_____________.16. 如图11,AC ⊥AB ,垂足为A ,AB=12 cm ,AC=6 cm ,射线BM ⊥AB ,垂足为B ,一动点E 从A 点出发以2 cm/s 的速度沿射线AN 运动,点D 为射线BM 上一动点,随着E 点运动而运动,且始终保持ED=CB ,当点E 经过 s 时,△DEB 与△BCA 全等.图8 图9 图10 图11三、解答题(共66分)17.(7分)如图12,在边长为1个单位长度的小正方形组成的网格中,点A ,B ,C 均在小正方形的顶点上.(1)在图中画出与△ABC 关于直线l 成轴对称的△A ′B ′C ′;(2)在直线l 上找一点P ,使PB +PC 的长最短,这个最短长度的平方是 .图1218.(7分)如图13,AD ⊥BC ,垂足为D .如果CD =1,AD =3,BD =9,那么△ABC 是直角 三角形吗?请说明理由.19. 如图13,A ,B ,C 三家公司想共建一个污水处理站M ,使得该站到B ,C 两公司的距离相等,且使A 公司到污水处理站M 的管线最短,试确定污水处理站M 的位置.(不写作法,保留作图痕迹)F E M NC B AE D C M B NA BC D20.(8分)假期中,小明和同学们到某海岛上去探宝旅游,按照探宝图,他们登陆后先往东走8千米,又往北走2千米,遇到障碍后又往西走了3千米,再折向北走了6千米处往东一拐,仅走了1千米就找到宝藏(如图15),问登陆点A 到宝藏埋藏点B 之间的距离是多少千米?21.(10分)如图14,已知点D ,E 在直线BC 上.(1)若AB=BC=AC=CE=BD ,求∠EAC 的度数;(2)若AB=AC=CE=BD ,∠DAE=100°,求∠EAC 的度数.22.(12分)如图15,AD 是△ABC 的角平分线,DF ⊥AB ,垂足为F ,DE =DG ,△ADG 和△AED 的面积分别为50和39,求△EDF 的面积.23.(14分) 问题背景:如图18-①,在四边形ABCD 中,AB=AD ,∠BAD=120°,∠B=∠ADC=90°,E ,F 分别是BC ,CD 上的点,且∠EAF=60°.探究图中线段BE ,EF ,FD 之间的数量关系.小王同学探究此问题的方法:延长FD 到点G ,使DG=BE ,连接AG ,先证明△ABE ≌△ADG ,再证明△AEF ≌△AGF ,可得出结论,他的结论应是______;探索延伸:如图18-②,若在四边形ABCD 中,AB=AD ,∠B+∠D=180°,E ,F 分别是BC ,CD 上的点,且∠EAF=21∠BAD , 上述结论是否仍然成立,并说明理由; 实际应用:如图18-③,在某次军事演习中,舰艇甲在指挥中心(O 处)北偏西30°的A 处,舰艇乙在指挥中心南偏东70°的B 处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/时的速度前进,舰艇乙沿北偏东50°的方向以80海里/时的速度前进. 1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E ,F 处,且两舰艇与指挥中心形成的∠EOF=70°,试求此时两舰艇之间的距离.期中测试题参考答案一、1. B 2. B 3. D 4. A 5. B 6. B 7. B 8. C 9. C 10. D二、11. 14或16 12. 24 13. 4 14. 8 15. 20° 16. 0,3,9,12三、17. 画图略,最短长度的平方是13.18. △ABC 是直角三角形,理由略.19.解:如图所示,点M 即为所求.20. 登陆点A 到宝藏埋藏点B 之间的距离是13千米.21.解:(1)因为AB=BC=AC ,所以△ABC 是等边三角形.所以∠ACB=60.因为AC=CE ,所以∠E=∠EAC .又因为∠E+∠EAC=∠ACB=60°,所以∠EAC=30°.(2)因为AB=AC ,所以∠ABC=∠ACB.因为AB=BD ,AC=CE ,所以∠BAD=∠D ,∠EAC=∠E.又因为∠ABC=∠BAD+∠D=2∠D ,∠ACB=∠EAC+∠E=2∠E ,所以∠D=∠E .因为∠D+∠E=180°﹣∠DAE=80°,所以∠E=40°,即∠EAC=∠E=40°.22. 解:如图所示,过点D 作DN ⊥AC 于点N .因为AD 是△ABC 的角平分线,DF ⊥AB ,DN ⊥AC ,所以DF =DN .在Rt △DEF 和Rt △DGN 中,DE =DG ,DF =DN ,所以Rt △DEF ≌Rt △DGN (HL ). 在Rt △ADF 和Rt △ADN 中,AD =AD ,DF =DN ,所以Rt △ADF ≌Rt △ADN (HL ). 所以S △DEF =S △DGN ,S △ADF =S △ADN .所以S △DEF =S △DGN =S △ADG -S △ADN =S △ADG -S △ADF =S △ADG - S △AED -S △DEF =50-39-S △DEF .所以2S △DEF =11,则S △DEF =5.5.23. 解:问题背景:EF=BE+DF探索延伸:EF=BE+DF 仍然成立.证明如下:如图1,延长FD 到点G ,使DG=BE ,连接AG.因为∠B+∠ADC=180°,∠ADC+∠ADG=180°,所以∠B=∠ADG.在△ABE 和△ADG 中,BE=DG ,∠B=∠ADG ,AB=AD ,所以△ABE ≌△ADG (SAS ). 所以AE=AG ,∠BAE=∠DAG.因为∠EAF=21∠BAD , 所以∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF.所以∠EAF=∠GAF.在△AEF 和△AGF 中,AE=AG ,∠EAF=∠GAF ,AF=AF ,所以△AEF ≌△AGF (SAS ). 所以EF=FG.因为FG=DG+DF=BE+DF ,所以EF=BE+DF.实际应用:如图2,连接EF ,延长AE ,BF 相交于点C.因为∠AOB=30°+90°+(90°-70°)=140°,∠EOF=70°,所以∠EOF=21∠AOB. 又因为OA=OB ,∠A+∠OBC=(90°-30°)+(70°+50°)=180°,所以符合探索延伸中的条件. 所以结论EF=AE+BF 成立,即EF=1.5×(60+80)=210(海里).答:此时两舰艇之间的距离是210海里.。

苏教版八年级数学上册期中考试及答案【完美版】

苏教版八年级数学上册期中考试及答案【完美版】

苏教版八年级数学上册期中考试及答案【完美版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.64的立方根是( )A .4B .±4C .8D .±82.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( )A .8B .6C .2D .03.化简二次根式 22a a a +-的结果是( ) A .2a -- B .-2a -- C .2a - D .-2a -4.在△ABC 中,AB=10,AC=210,BC 边上的高AD=6,则另一边BC 等于( )A .10B .8C .6或10D .8或105.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( )A .606030(125%)x x -=+B .606030(125%)x x-=+ C .60(125%)6030x x ⨯+-= D .6060(125%)30x x⨯+-= 6.小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是( )A .①,②B .①,④C .③,④D .②,③7.四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AO=CO,BO=DO D.AB∥DC,AD=BC8.关于▱ABCD的叙述,正确的是()A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形9.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,若添加下列一个条件后,仍然不能证明△ABC≌△DEF,则这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF 10.尺规作图作AOB∠的平分线方法如下:以O为圆心,任意长为半径画弧交OA、OB于C、D,再分别以点C、D为圆心,以大于12CD长为半径画弧,两弧交于点P,作射线OP,由作法得OCP ODP≌的根据是()A.SAS B.ASA C.AAS D.SSS二、填空题(本大题共6小题,每小题3分,共18分)1.已知1<x<52(1)x-+|x-5|=________.2.已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根,则k 的值为__________.3.已知x、y满足方程组2524x yx y+=⎧⎨+=⎩,则x y-的值为________.4.如图是一个三级台阶,它的每一级的长、宽和高分别为20 dm,3 dm,2 dm,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点的最短路程是__________dm.5.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 ____________.6.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =________.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)430210x y x y -=⎧⎨-=-⎩ (2)134342x y x y ⎧-=⎪⎨⎪-=⎩2.先化简,再求值:22122()121x x x x x x x x ----÷+++,其中x 满足x 2-2x -2=0.3.已知关于x的不等式组5x13(x-1),13x8-x2a22+>⎧⎪⎨≤+⎪⎩恰有两个整数解,求实数a的取值范围.4.如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF ∥BE,交AC的延长线于点F,求∠F的度数.5.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示(1)求甲车从A地到达B地的行驶时间;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)求乙车到达A地时甲车距A地的路程.6.某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、B4、C5、C6、D7、D8、C9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、42、﹣33、14、255、46、6三、解答题(本大题共6小题,共72分)1、(1)1010xy=⎧⎨=⎩(2)64xy=⎧⎨=⎩2、1 23、-4≤a<-3.4、(1) 65°;(2) 25°.5、(1)2.5小时;(2)y=﹣100x+550;(3)175千米.6、(1)A型机器人每小时搬运150千克材料,B型机器人每小时搬运120千克材料;(2)至少购进A型机器人14台.。

苏科版八年级上册数学期中考试试题含答案

苏科版八年级上册数学期中考试试题含答案

苏科版八年级上册数学期中考试试卷一、单选题1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A .B .C .D .2.一个等腰三角形的两边长分别是2cm 和5cm ,则它的周长为()A .9cm B .12cm C .7cm D .9cm 或12cm 3.如图,点C 、D 分别在BO 、AO 上,AC 、BD 相交于点E ,若CO DO =,则再添加一个条件,仍不能证明AOC △≌BOD 的是()A .A B∠=∠B .ADE BCE ∠=∠C .AC BD =D .AD BC=4.如图,点A 、B 、C 都在方格纸的“格点”上,请找出“格点”D ,使点A 、B 、C 、D 组成一个轴对称图形,这样的点D 共有()个.A .1B .2C .3D .45.根据下列已知条件,能画出唯一的ABC ∆的是()A .90C ∠=︒,6AB =B .4AB =,3BC =,30A ∠=︒C .60A ∠=︒,45B ∠=︒,4AB =D .3AB =,4BC =,8CA =6.如图,Rt △ABC 中,AB =AC =3,AO =1,D 点在线段BC 上运动,若将AD 绕A 点逆时针旋转90°得到AE ,连接OE ,则在D 点运动过程中,线段OE²的最小值为()A.1B.2C.3D.4二、填空题7.一个汽车牌照号码在水中的倒影为,则该车牌照号码为_________.8.如图,在△ABC中,∠ACB=90°,D是AB边的中点若AB=18,则CD的长为_____.9.等腰三角形的一个内角为100°,则它的一个底角的度数为______.10.已知直角三角形两直角边长分别为8和6,则此直角三角形斜边长为___.11.如图,已知AD平分∠BAC,要使△ABD≌△ACD,根据“SAS”,需要添加的条件是_____.12.如图,在△ABC中,∠C=90°,BD平分∠ABC,DC=5,则点D到AB的距离为___.13.如图所示,△AEB≌△DFC,AE⊥CB,DF⊥BC,∠C=28°,则∠A的度数为______.14.如图,在△ABC中,BD平分∠ABC,ED∥BC,AB=9,AD=6,则△AED的周长为___.15.如图,∠ADB=90°,正方形ABCG和正方形AEFD的面积分别是100和36,则以BD 为直径的半圆的面积是___.(结果保留π)16.如图,在Rt△ABC中,∠C=90°,沿过点A的一条直线AE折叠Rt△ABC,使点C恰好落在AB边的中点D处,则∠B的度数是___.17.如图,点A、B、C、O在网格中小正方形的顶点处,直线l经过点C、O,将△ABC 沿l平移得到△MNO,M是A的对应点,再将这两个三角形沿l翻折,P、Q分别是A、M 的对应点.已知网格中每个小正方形的边长都等于1,则PQ2的值为___.18.如图,在长方形ABCD中,AB=6,AD=8,E、F分别是BC、CD上的一点,EF⊥AE,将△ECF沿EF翻折得到ΔEC′F,连接AC′.若△AEC′是等腰三角形,且AE=AC′,则BE =___.三、解答题19.已知:如图,C是AE的中点,AB∥CD,且AB=CD.求证:△ABC≌△CDE.20.已知:如图,ED⊥AB,FC⊥AB,垂足分别为D、C,AC=BD,AE=BF,求证:(1)△AED≌△BFC;(2)AE∥BF.21.如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上,点E在边BC上,且点E在小正方形的顶点上,连接AE.(1)在图中画出△AEF,使△AEF与△AEB关于直线AE对称;(2)△AEF与四边形ABCD重叠部分的面积=;(3)在AE上找一点P,使得PC+PD的值最小.22.如图,△ABC中,AD是高,CE是中线,点G是CE的中点,DG⊥CE,点G为垂足.(1)求证:DC=BE;(2)若∠AEC=66°,求∠BCE的度数.23.如图,在△ABC中,AB=7,AC=25,AD是中线,点E在AD的延长线上,且AD =ED=12.(1)求证:△CDE≌△BDA;(2)判断△ACE的形状,并证明;(3)求△ABC的面积.24.尺规作图:如图,射线OM ⊥射线ON ,A 为OM 上一点,请以OA 为一边作两个大小不等的等腰直角三角形.保留作图痕迹,标上顶点字母,并写出所画的三角形.25.如图,在ABC 中,90ACB ∠=︒,5AB =,3BC =,点P 从点A 出发,以每秒2个单位长度的速度沿折线A C B A ---运动.设点P 的运动时间为t 秒()0t >.(1)求AC 的长及斜边AB 上的高.(2)当点P 在CB 上时,①CP 的长为______________(用含t 的代数式表示).②若点P 在BAC ∠的角平分线上,则t 的值为______________.(3)在整个运动过程中,直接写出BCP 是等腰三角形时t 的值.26.【问题发现】(1)如图1,△ABC 和△ADE 均为等边三角形,点B ,D ,E 在同一直线上,连接CE ,容易发现:①∠BEC 的度数为;②线段BD 、CE 之间的数量关系为;【类比探究】(2)如图2,△ABC 和△ADE 均为等腰直角三角形,∠BAC =∠DAE =90°,点B ,D ,E 在同一直线上,连接CE ,试判断∠BEC 的度数及线段BE 、CE 、DE 之间的数列关系,并【问题解决】(3)如图3,∠AOB=∠ACB=90°,OA=3,OB=6,AC=BC,则OC2的值为.参考答案1.D【解析】【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A.不是轴对称图形,故A不符合题意;B.不是轴对称图形,故B不符合题意;C.不是轴对称图形,故C不符合题意;D.是轴对称图形,故D符合题意.故选:D.【点睛】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠2.B【解析】【分析】根据已知条件和三角形三边关系可知,等腰三角形的腰长不可能为2cm,只能为5cm,然后即可求得三角形的周长.【详解】本题只知道等腰三角形的两边的长,并不知道腰和底,所以需要分两种情况讨论,当腰长为2cm时,由于2+2<5,所以此时三角形不存在;当腰长为5cm时,5+5>2,所以此三角形满足题意,此时三角形的周长为:5+5+2=12cm.故答案为B.【点睛】本题考查了等腰三角形的概念,注意三角形两边之和大于第三边是解题的关键.3.C【解析】【分析】根据题目给出的条件结合全等三角形的判定定理分别分析即可.【详解】解:A、可利用AAS证明△AOC≌△BOD,故此选项不合题意;B、根据三角形外角的性质可得∠A=∠B,再利用AAS证明△AOC≌△BOD,故此选项不合题意;C、不可利用SSA证明△AOC≌△BOD,故此选项符合题意;D、根据线段的和差关系可得OA=OB,再利用SAS证明△AOC≌△BOD,故此选项不合题意.故选:C.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.D【分析】直接利用轴对称图形的性质得出符合题意的答案.【详解】解:如图所示:点A 、B 、C 、D 组成一个轴对称图形,这样的点D 共有4个.故选D .【点睛】此题主要考查了利用轴对称设计图案,正确掌握轴对称图形的定义是解题关键.5.C【解析】【分析】利用全等三角形的判定方法以及三角形三边关系分别判断得出即可.【详解】解:A .∠C=90°,AB=6,不符合全等三角形的判定方法,即不能画出唯一三角形,故本选项不符合题意;B .4AB =,3BC =,30A ∠=︒,不符合全等三角形的判定定理,不能画出唯一的三角形,故本选项不符合题意;C .60A ∠=︒,45B ∠=︒,4AB =,符合全等三角形的判定定理ASA ,能画出唯一的三角形,故本选项符合题意;D .3+4<8,不符合三角形的三边关系定理,不能画出三角形,故本选项不符合题意;故选:C .【点睛】此题主要考查了全等三角形的判定以及三角形三边关系,正确把握全等三角形的判定方法是解题关键.6.B【解析】在AB 上截取AQ=AO=1,利用SAS 证明△AQD ≌△AOE ,推出QD=OE ,当QD ⊥BC 时,QD 的值最小,即线段OE²有最小值,利用勾股定理即可求解.【详解】解:如图,在AB 上截取AQ=AO=1,连接DQ,∵将AD 绕A 点逆时针旋转90°得到AE ,∴∠BAC=∠DAE=90°,∴∠BAC-∠DAC =∠DAE-∠DAC ,即∠BAD=∠CAE ,在△AQD 和△AOE 中,AQ AOQAD OAE AD AE=⎧⎪∠=∠⎨⎪=⎩,∴△AQD ≌△AOE(SAS),∴QD=OE ,∵D 点在线段BC 上运动,∴当QD ⊥BC 时,QD 的值最小,即线段OE²有最小值,∵△ABC 是等腰直角三角形,∴∠B=45°,∵QD ⊥BC ,∴△QBD 是等腰直角三角形,∵AB=AC=3,AO=1,∴QB=2,∴由勾股定理得∴线段OE²有最小值为2,故选:B .【点睛】本题考查了勾股定理,等腰直角三角形的判定和性质,全等三角形的判定和性质,旋转的性质,熟记各图形的性质并准确识图是解题的关键.7.WL027【解析】【详解】解:关于水面对称的图形为W L027,∴该汽车牌照号码为WL027.8.9【解析】【分析】根据直角三角形的性质:在直角三角形中,斜边上的中线等于斜边的一半,即可得出答案.【详解】在△ABC中,∵∠ACB=90°,D是AB边的中点,∴CD=12AB=9.故答案为9.【点睛】本题考查的是直角三角形的性质.掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.9.40°【解析】【分析】由于等腰三角形的一个内角为100°,这个角是顶角或底角不能确定,故应分两种情况进行讨论.【详解】解:①当100°这个角是顶角时,底角=(180°-100°)÷2=40°;②当100°这个角是底角时,另一个底角为100°,因为100°+100°=200°,不符合三角形内角和定理,所以舍去.故答案为:40°.【点睛】本题考查的是等腰三角形的性质,解答此类问题时往往用到三角形的内角和是180°这一隐藏条件.10.10【解析】【分析】根据勾股定理列式计算即可得解.【详解】解:∵直角三角形的两直角边长分别为8和6,∴斜边长=10.故答案为:10.【点睛】本题主要考查了勾股定理,比较简单,熟练掌握勾股定理是解题的关键.11.AB=AC【解析】【分析】根据角平分线定义求出∠BAD=∠CAD ,根据SAS 推出两三角形全等即可.【详解】解:AB=AC ,理由是:∵AD 平分∠BAC ,∴∠BAD=∠CAD ,在△ABD 和△ACD 中,AB AC BAD CAD AD AD =⎧⎪=⎨⎪=⎩∠∠,∴△ABD ≌△ACD (SAS ),故答案为AB=AC .【点睛】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .12.5【解析】【分析】过点D 作DE ⊥AB 于E ,根据角平分线上的点到角的两边距离相等可得DE=CD .【详解】解:如图,过点D 作DE ⊥AB 于E ,∵∠C=90°,BD 平分∠ABC ,∴DE=CD=5,即点D 到AB 的距离是5.故答案为:5.13.62【分析】根据C ∠和AEB DFC V V ≌可得28B ∠=︒,再根据AE CB ⊥和三角形的内角和定理即可求解.【详解】解:∵AEB DFC V V ≌,28C ∠=︒,∴28B C ∠=∠=︒.∵AE CB ⊥,∴90AEB =︒∠.∴18062A AEB B ∠=︒-∠-∠=︒.故答案为:62.14.15【详解】解:∵ED ∥BC ,∴∠EDB=∠CBD ,∵BD 平分∠ABC ,∴∠CBD=∠ABD ,∴∠EDB=∠ABD ,∴DE=BE ,∴AE+ED+AD=AE+BE+AD=AB+AD=9+6=15,即△AED 的周长为15,故答案为:15.15.8π【分析】根据勾股定理求出BD ,再利用圆的面积公式求半圆面积即可.【详解】∵正方形ABCG 和正方形AEFD 的面积分别是100和36,∴AB 2=100,AD 2=36,∵∠ADB =90°,∴在Rt ABD △中,8BD =,∴半圆面积:218822ππ⎛⎫⨯= ⎪⎝⎭.故答案为:8π.16.30°【分析】由折叠的性质可得出:∠CAE=∠DAE ,∠ADE=∠C=90°,结合点D 为线段AB 的中点,利用等腰三角形的三线合一可得出AE=BE ,进而可得出∠B=∠DAE ,再利用三角形内角和定理,即可求出∠B 的度数.【详解】解:由折叠,可知:∠CAE=∠DAE ,∠ADE=∠C=90°,∴ED ⊥AB .∵点D 为线段AB 的中点,ED ⊥AB ,∴AE=BE ,∴∠B=∠DAE .又∵∠CAE+∠DAE+∠B+∠C=180°,∴3∠B=90°,∴∠B=30°.故答案为:30°.17.10【解析】连接PQ,AM,根据PQ=AM即可解答.【详解】解:连接PQ,AM,由图形变换可知:PQ=AM,由勾股定理得:AM2=12+32=10.∴PQ2=AM2=12+32=10.故答案为:10.18.8 3【解析】设BE=x,则EC=8-x,由翻折得:EC′=EC=8-x.当AE=AC′时,作AH⊥EC′,由∠AEF=90°,EF平分∠CEC′可证得∠AEB=∠AEH,则△ABE≌△AHE,所以BE=HE=x,由三线合一得EC′=2EH,即8-x=2x,解方程即可.【详解】解:∵四边形ABCD是矩形,设BE=x,则EC=8-x,由翻折得:EC′=EC=8-x,作AH⊥EC′,如图,∵EF⊥AE,∴∠AEF=∠AEC′+∠FEC′=90°,∴∠BEA+∠FEC=90°,∵△ECF沿EF翻折得△EC′F,∴∠FEC′=∠FEC,∴∠AEB=∠AEH,∵∠B=∠AHE=90°,AH=AH,∴△ABE≌△AHE(AAS),∴BE=HE=x,∵AE=AC′,∴EC′=2EH,即8-x=2x,解得x=8 3,∴BE=8 3.故答案为:8 3.19.见解析【解析】根据全等三角形的判定方法SAS,即可证明△ABC≌△CDE.【详解】证明:∵点C是AE的中点,∵AB ∥CD ,∴∠A=∠ECD ,在△ABC 和△CDE 中,AC CE A ECD AB CD =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△CDE (SAS ).20.(1)见解析;(2)见解析【解析】(1)求出90EDA FCB ∠=∠=︒,AD=BC ,根据HL 证明Rt AED Rt BFC ∆≅∆即可;(2)根据全等三角形的性质得出∠A=∠B ,根据平行线的判定得出即可.【详解】解:(1)∵ED ⊥AB ,FC ⊥AB ,∴90EDA FCB ∠=∠=︒∵AC =BD ,∴AC CD BD CD +=+,即AD BC=在Rt AED ∆和Rt BFC ∆中,AD BC AE BF=⎧⎨=⎩∴Rt AED Rt BFC∆≅∆(2)由(1)知Rt AED Rt BFC∆≅∆∴∠A=∠B∴AE ∥BF .21.(1)见解析;(2)6;(3)见解析【解析】(1)根据轴对称的性质确定出点B 关于AE 的对称点F 即可;(2)即DC 与EF 的交点为G ,由四边形ADGE 的面积=平行四边形ADCE 的面积-△ECG 的面积求解即可;(3)根据轴对称的性质取格点M ,连接MC 交AE 于点P ,此时PC+PD 的值最小.【详解】解:(1)如图所示,△AEF 即为所求作:(2)重叠部分的面积=S 四边形ADCE-S △ECG =2×4-12×2×2=8-2=6.故答案为:6;(3)如图所示,点P 即为所求作:22.(1)证明见解析;(2)22°.【解析】(1)连接DE .由G 是CE 的中点,DG CE ^得到DG 是CE 的垂直平分线,根据线段垂直平分线的性质得到DE DC =,由DE 是Rt ADB 的斜边AB 上的中线,根据直角三角形斜边上的中线等于斜边的一半得到12DE BE AB ==,即可得到DC BE =.(2)由DE DC =得到DEC BCE ∠=∠,由DE BE =得到B EDB ∠=∠,根据三角形外角性质得到2EDB DEC BCE BCE ∠=∠+∠=∠,则2B BCE ∠=∠,由此根据外角的性质来求BCE ∠的度数.【详解】(1)如图,连接DE .∵G是CE的中点,DG CE^,∴DG是CE的垂直平分线,∴DE DC=.∵AD是高,CE是中线,∴DE是Rt ADB的斜边AB上的中线,∴12DE BE AB==.∴DC BE=;(2)∵DC DE=,DEC BCE∴∠=∠,2EDB DEC BCE BCE∴∠=∠+∠=∠,DE BE=,B EDB∴∠=∠,2B BCE∴∠=∠,366AEC BCE∴∠=∠= ,22BCE∴∠= .23.(1)见解析;(2)△ACE是直角三角形,证明见解析;(3)84【解析】(1)根据SAS证明△CDE≌△BDA即可;(2)由全等三角形的性质得出AB=CE=7,利用勾股定理逆定理证得△ACE是直角三角形;(3)求得△ACE的面积,即可得出△ABC的面积.【详解】解:(1)证明:∵AD 是边BC 上的中线,∴BD=CD ,在△ABD 和△ECD 中,BD CD ADB EDC AD ED ⎧⎪∠∠⎨⎪⎩===,∴△CDE ≌△BDA (SAS ),(2)△ACE 是直角三角形,证明如下:∵△ABD ≌△ECD ,∴AB=CE=7,∵AE=AD+ED=24,AC=25,CE=7,∴AE 2+CE 2=AC 2,∴△ACE 是直角三角形,(3)∵△CDE ≌△BDA∴CDE BDAS =S ∴△ABC 的面积=△ACE 的面积=12×7×24=84.【点睛】此题考查三角形全等的判定与性质,勾股定理的逆定理的运用,三角形的面积计算方法,掌握三角形全等的判定方法与勾股定理逆定理是解决问题的关键.24.见解析【分析】以O 为圆心,OA 为半径作圆,与射线ON 交于点B ,则△AOB 是以OA 为腰的等腰直角三角形;作∠MON 的平分线OP ,过点A 作AC ⊥OP 于点C ,则△AOC 是以OA 为斜边的等腰直角三角形.【详解】解:如图:△AOB 和△AOC 即为所作..【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等腰三角形的判定.25.(1)125;(2)①24t -;②83;(3)t 的值为0.5或4.75或5或5.3.【解析】(1)直接利用勾股定理即可求得AC 的长,再利用等面积法即可求得斜边AB 上的高;(2)①CP 的长度等于运动的路程减去AC 的长度,②过点P '作P 'D ⊥AB ,证明Rt △AC P '≌Rt △AD P '得出AD=AC=4,分别表示各线段,在Rt △BD P '利用勾股定理即可求得t 的值;(3)由图可知,当△BCP 是等腰三角形时,点P 必在线段AC 或线段AB 上,①当点P 在线段AC 上时,此时△BCP 是等腰直角三角形,②当点P 在线段AB 上时,又分三种情况:BC=BP ;PC=BC ;PC=PB ,分别求得点P 运动的路程,再除以速度即可得出答案.【详解】解:(1)∵90C ∠=︒,5AB =,3BC =,∴在Rt ABC ∆中,2222534AC AB BC =-=-=.∴AC 的长为4.设斜边AB 上的高为h .∵1122AB h AC BC ⨯⨯=⨯⨯,∴1153422h ⨯⨯=⨯⨯,∴125h =.∴斜边AB 上的高为125.(2)已知点P 从点A 出发,以每秒2个单位长度的速度沿折线A-C-B-A 运动,①当点P 在CB 上时,点P 运动的长度为:AC+CP=2t ,∵AC=4,∴CP=2t-AC=2t-4.故答案为:2t-4.②当点P '在∠BAC 的角平分线上时,过点P '作P 'D ⊥AB ,如图:∵A P '平分∠BAC ,P 'C ⊥AC ,P 'D ⊥AB ,∴P 'D=P 'C=2t-4,∵BC=3,∴B P '=3-(2t-4)=7-2t ,在Rt △AC P '和Rt △AD P '中,AP AP P D P C ''''=⎧⎨=⎩,∴Rt △AC P '≌Rt △AD P '(HL ),∴AD=AC=4,又∵AB=5,∴BD=1,在Rt △BD P '中,由勾股定理得:2221(24)(72)t t +-=-解得:83t =,故答案为:83;(3)由图可知,当△BCP 是等腰三角形时,点P 必在线段AC 或线段AB 上,①当点P 在线段AC 上时,此时△BCP 是等腰直角三角形,∴此时CP=BC=3,∴AP=AC-CP=4-3=1,∴2t=1,∴t=0.5;②当点P在线段AB上时,若BC=BP,则点P运动的长度为:AC+BC+BP=4+3+3=10,∴2t=10,∴t=5;若PC=BC,如图2,过点C作CH⊥AB于点H,则BP=2BH,在△ABC中,∠ACB=90°,AB=5,BC=3,AC=4,∴AB•CH=AC•BC,∴5CH=4×3,∴125 CH=,在Rt△BCH中,由勾股定理得:1.8BH==,∴BP=3.6,∴点P运动的长度为:AC+BC+BP=4+3+3.6=10.6,∴2t=10.6,∴t=5.3;若PC=PB,如图3所示,过点P作PQ⊥BC于点Q,则30.52BQ CQ BC ==⨯=,∠PQB=90°,∴∠ACB=∠PQB=90°,∴PQ ∥AC ,∴PQ 为△ABC 的中位线,∴PQ=0.5×AC=0.5×4=2,在Rt △BPQ中,由勾股定理得: 2.5BP ==,点P 运动的长度为:AC+BC+BP=4+3+2.5=9.5,∴2t=9.5,∴t=4.75.综上,t 的值为0.5或4.75或5或5.3.【点睛】本题考查勾股定理,HL 定理,等腰三角形的性质和判定.掌握等面积法和分类讨论思想是解题关键.26.(1)60°,BD=CE ;(2)∠BEC=90°,BE=CE+DE ,理由见解析;(3)92【解析】【分析】(1)根据等边三角形的性质得到AB=AC ,AD=AE ,∠BAC=∠DAE=60°,得到∠BAD=∠CAE ,证明△BAD ≌△CAE ,根据全等三角形的性质证明结论;(2)由“SAS”可证△ABD ≌△ACE ,可得BD=CE ,∠AEC=∠ADB=135°,即可求解;(3)由“AAS”可证△ACF ≌△CBE ,可得BE=CF ,AF=CE ,可求OF=CF=32,由勾股定理可求解.【详解】解:(1)∵△ABC 和△ADE 为等边三角形,∴AB=AC ,AD=AE ,∠BAC=∠DAE=60°,∴∠BAC-∠DAC=∠DAE-∠DAC ,即∠BAD=∠CAE ,在△BAD 和△CAE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△BAD ≌△CAE (SAS ),∴BD=CE ;∠AEC=∠ADB=180°-∠ADE=120°,∴∠BEC=∠AEC-∠AED=120°-60°=60°,故答案为:60°,BD=CE ;(2)∠BEC=90°,BE=CE+DE ,理由如下:∵∠BAC=∠DAE=90°,∴AB=AC ,AD=AE ,∠BAC-∠DAC=∠DAE-∠DAC ,即∠BAD=∠CAE ,在△ABD 和△ACE 中,AB ACBAD CAE AD AE=⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS ),∴BD=CE ,∠AEC=∠ADB=135°,∴∠BEC=∠AEC-∠AED=135°-45°=90°,∵BE=BD+DE ,∴BE=CE+DE ;(3)如图,过点C 作CF ⊥AO 交AO 延长线于F ,过点B 作BE ⊥CF 于E,∵∠ACB=90°=∠E=∠AFC ,∴∠BCE+∠ACF=90°=∠BCE+∠CBE ,∴∠ACF=∠CBE ,又∵AC=BC ,∠AFC=∠E ,∴△ACF ≌△CBE (AAS ),∴BE=CF,AF=CE,∵OA=3,OB=6,∴EC+CF=BO=6,OA=AF-OF=CE-BE=CE-CF=3,∴EC=92,CF=32=OF,∴OC2=CF2+OF2=(32)2+(32)2=92.故答案为:9 2.。

2020-2021学年苏科版八年级数学上册期中测试试题(含答案)

2020-2021学年苏科版八年级数学上册期中测试试题(含答案)

初二数学期中测试试题 (分值:100分 考试时间: 120分钟) 请注意:考生须将本卷所有答案答到答题纸上,答在试卷上无效!一、选择题:(每题2分,共12分)1. 下列交通标志图案是轴对称图形的是( ▲ )A .B .C .D .2. 下列实数中,是无理数的为( ▲ )A . 0.303003B .C .D .2273. 在平面直角坐标系中,点(3,﹣2)关于y 轴对称的点的坐标是( ▲ )A .(3,2)B .(3,﹣2)C .(﹣3,2)D .(﹣3,﹣2)4. 下列各组中的三条线段不能..构成直角三角形的是( ▲ ) A .3,4,5 B .1,25.5,7,9 D .7,24,255. 在联欢会上,有三名选手站在△ABC 的三个顶点的位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC 的( ▲ )A .三边中线的交点处B .三边垂直平分线的交点处C .三条角平分线的交点处D .三边上高的交点处6.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为81,小正方形面积为16,若用x ,y 表示直角三角形的两直角边(x y >),请观察图案,指出以下关系式①2281x y +=; ②21681xy +=;③13x y +=;④4x y -=中正确的有( ▲ )A .1个B .2个C .3个D .4个二、填空题:(每题2分,共20分)7.2(7)-的平方根是 ▲ .8. 由四舍五入法得到的近似数8.8×103,精确到 ▲ 位.9. 等边三角形的的对称轴有 ▲ 条直线.10. 直角三角形的两条直角边长为3和4,则它斜边上的中线为 ▲ .11. 在△ABC 中,∠A =80°,当∠B = ▲ 时,△ABC 是等腰三角形.12. 已知点P 在第二象限,且与坐标轴的距离均为3,则点P 的坐标为 ▲ .13. Rt △ABC 的三边分别为a ,b ,c ,且50222=++c b a ,则斜边=c ▲ . 14. 如图,∠AOB =90°,OA=OB ,直线l 经过点O ,分别过A 、B 两点作AC ⊥l 交l 于点C ,BD ⊥l 交l 于点D ,若AC =10,BD =6,则CD = ▲ .第14题 第15题 第16题15. 如图,△ABC 中,D 是BC 上一点,AC =AD =DB ,∠BAC =102°,则∠ADC = ▲ 度.16. 如图,等腰三角形ABC 的底边BC 长为4,面积是16,腰AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点,若点D 为BC 边的中点,点M 为线段EF 上一动点,则△CDM 周长的最小值为 ▲ .三、解答题(共10题,总分68分)17.(本题6分)求下列各式中的x 值.(1) 102=x 5(2) ()6443-=+x18.(本题6分)已知一个正数的两个不同平方根是a+6与2a﹣9.求这个正数是多少?19.(本题6分)如图,AD、BC相交于点O,AD=BC,∠C=∠D=90°,求证:△ACB≌△BDA.20.(本题6分)已知:如图,∠DAC是△ABC的外角,AB=AC,AE∥BC.求证:AE是∠DAC的平分线.21.(本题6分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,AC=12,BC=5,求CD、BD 的长.22. (本题6分)如图,在Rt△ABC中,∠ACB=90°.(1) 用尺规在边BC上求作一点P,使P A=PB(不写作法,保留作图痕迹) ;(2) 连结AP,如果AP平分∠CAB.求∠B的度数.23.(本题6分)如图,在△ABC中,AD是高,M、N分别是AB、AC的中点.(1)若四边形AMDN的周长为24,AB=9,求AC的长;(2)连接MN,观察并猜想,线段MN与线段AD有怎样的位置关系?证明你的结论.24.(本题8分)如图,已知A(0,4),B(﹣2,2),C(3,0).(1)作△ABC关于x轴对称的△A1B1C1;(2)写出点A1,B1的坐标:A1,B1;(3)若每个小方格的边长为1,则△A1B1C1的面积=平方单位.B E DC A25. (本题8分)课本重现和拓展:课本在61页数学活动中出现了这样一题(1) 重现:如图(1)△ABC 中,AB>AC ,求证:∠C > ∠B (4分)证明:作BAC ∠的平分线,交BC 边于点D ,在AB 边上截取AE AC =,连接ED请完成证明;(2) 拓展:如图(2),在△ABC 中,AD 是∠A 的外角平分线,P 是AD 上一动点且不与点A,D 重 合,设PB+PC =a, AB+AC =b,猜想a 和b 的大小关系_______,并说明理由.(提示:在BA 延长线上取一点E,使得AC=AE )26.(本题10分)在平面直角坐标系x0y 中,点A (a -4,4),点B (a+1,4),点C (—3,0).(1) 若OA=OB ,求点A 的坐标;(2) 当点A 到x 轴、y 轴的距离相等时,在y 轴上存在点D ,使得AD ⊥AC ,求点D 的坐标;(3) 当△ABC 是以AB 为腰的等腰三角形时,求a 的值.参考答案及评分标准一:选择题1~6 BBDCBC二:填空题 (7).7± (8) 百 (9) 三 (10)52(11) 80°或50°或20° (12) ()3,3- (13) 5 (14) 4 (15) 052 (16) 10三:解答题17: (1) (2) 8- 18:49 19:略 20. 略21: (1) 6013CD = (3分) 2513DB = (3分) 22: (1)略 (3分) (2) 30 (3分) 23: (1) 15(3分) (2) 猜想:垂直(1分)证明(2分) 24: (1) 略 (3分) (2)11(0,4)(2,2)A B --- (2分) (3) 7 (3分)25: (1)略 (4分)(2)a b >(1分)在BA 的延长线上截取AE AC =,连接PE ,EAP CAP ≅,得EP CP =, 在EPB 中,EP BP EA AB +>+,即a b >(3分)26:(1) 5(,4)2A -(2分) (2) 1(0,11)D 2(0,5)D (4分) (3)4217---,,, (4分)。

苏科版八年级上册数学期中考试试题含答案

苏科版八年级上册数学期中考试试题含答案

苏科版八年级上册数学期中考试试卷一、单选题1.现实世界中,对称现象无处不在,中国的方块字中有些也具备对称性,下列汉字不是轴对称图形的是()A .一B .中C .王D .语2.下列各组数分别为一个三角形三边的长,其中能构成直角三角形的一组是()A .2,3,4B .6,8,10C .5,12,14D .1,1,23.如图,ABC ADE △≌△,若80B ∠=︒,30C ∠=︒,则E ∠的度数为()A .80°B .35°C .70°D .30°4.如图,在△ABC 中,∠B=36°,AB =AC ,AD 是△ABC 的中线,则∠BAD 的度数是()A .36°B .54°C .72°D .108°5.如图,在ABC ∆中,90C ∠=︒,4AC =,2BC =.以AB 为一条边向三角形外部作正方形,则正方形的面积是()A .8B .12C .18D .206.如图所示,公路AC 、BC 互相垂直,点M 为公路AB 的中点,为测量湖泊两侧C 、M 两点间的距离,若测得AB 的长为6km ,则M 、C 两点间的距离为()A.2.5km B.4.5km C.5km D.3km7.下列说法正确的是()A.两个等边三角形一定是全等图形B.两个全等图形面积一定相等C.形状相同的两个图形一定全等D.两个正方形一定是全等图形∠+∠+∠=)8.如图为6个边长相等的正方形的组合图形,则123(A.90 B.135 C.150 D.180二、填空题9.用一根长12cm的铁丝围成一个等边三角形,那么这个等边三角形的边长为___cm.10.在△ABC中,AB=AC,∠A=40°,则∠B的度数为_____°.11.木工师傅要做一扇长方形纱窗,做好后量得长为6分米,宽为4分米,对角线为7分米,则这扇纱窗________(填“合格”或“不合格”)12.若(a-4)2+|b-2|=0,则有两边长为a、b的等腰三角形的周长为________.13.如图,A、F、C、D在同一条直线上,△ABC≌△DEF,AF=1,FD=3.则线段FC 的长为_____.14.如图,△ABC中,边AB的垂直平分线分别交AB,BC于点D,E,连接AE,若AC =2cm,BC=5cm,则△AEC的周长是_____cm.15.如图,在网格图中选择一个格子涂阴影,使得整个图形是以虚线为对称轴的轴对称图形,则把阴影涂在图中标有数字______的格子内.16.若一个三角形的三边之比为5:12:13,且周长为60cm,则它的面积为_____cm2.17.如图,Rt△ABC中,∠ACB=90°,AB=5,BC=3,将斜边AB绕点A顺时针旋转90°至AB′,连接B'C,则△AB′C的面积为_____.三、解答题18.如图,△ABC中,AB=AC,∠1=∠2,BC=6cm,那么BD的长_____cm.19.如图,网格中的△ABC与△DEF为轴对称图形.(1)利用网格线作出△ABC与△DEF的对称轴l;(2)如果每一个小正方形的边长为1,请直接写出△ABC的面积=.20.已知:如图,若AB∥CD,AB=CD且BE=CF.求证:AE=DF.21.已知:如图,∠A=∠D=90°,点E、F在线段BC上,DE与AF交于点O,且AB=CD,BE=CF.求证:△OEF是等腰三角形.22.如图,厂房屋顶的人字架是等腰三角形,AB=AC,AD⊥BC,若跨度BC=16m,上弦长AB=10m,求中柱AD的长.23.如图,△ABC中,BC的垂直平分线DE分别交AB、BC于点D、E,且BD2﹣DA2=AC2.(1)求证:∠A=90°;(2)若AB=8,AD:BD=3:5,求AC的长.24.如图,把一块等腰直角三角形零件(△ABC,其中∠ACB=90°),放置在一凹槽内,三个顶点A,B,C分别落在凹槽内壁上,已知∠ADE=∠BED=90°,测得AD=5cm,BE=7cm,求该三角形零件的面积.25.如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高.(1)求证:AD垂直平分EF;=15,求DE的长.(2)若AB+AC=10,S△ABC26.如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求证:△BCE≌△DCF;(2)若AB=21,AD=9,BC=CD=10,求AC的长.27.如图,在等边△ABC中,AB=AC=BC=6cm,现有两点M、N分别从点A、B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次回到点B时,点M、N同时停止运动,设运动时间为ts.(1)当t为何值时,M、N两点重合;(2)当点M、N分别在AC、BA边上运动,△AMN的形状会不断发生变化.①当t为何值时,△AMN是等边三角形;②当t为何值时,△AMN是直角三角形;(3)若点M、N都在BC边上运动,当存在以MN为底边的等腰△AMN时,求t的值.参考答案1.D【解析】【分析】直接利用轴对称图形的定义得出答案,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A、“一”是轴对称图形,故本选项不合题意;B、“中”是轴对称图形,故本选项不合题意;C、“王”是轴对称图形,故本选项不合题意;D、“语”不是轴对称图形,故本选项符合题意.故选:D.【点睛】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.B【解析】【分析】先求出较小两边的平方和,再求出最长边的平方,判断是否相等即可.【详解】解:A.∵22+32≠42,∴以2,3,4为边不能组成直角三角形,故本选项不符合题意;B.∵62+82=102,∴以6,8,10为边能组成直角三角形,故本选项符合题意;C.∵52+122≠142,∴5,12,14为边不能组成直角三角形,故本选项不符合题意;D.∵12+12≠22,∴以1,1,2为边不能组成直角三角形,故本选项不符合题意;故选:B.【点睛】本题考查了勾股定理的逆定理,能熟记勾股定理逆定理的内容是解题关键,注意:如果一个三角形的两边,a b的平方和等于第三边的平方,即222a b c,那么这个三角形是直角三角+=形.3.D【解析】【分析】根据全等三角形的性质即可求出∠E.【详解】解:∵△ABC≌△ADE,∠C=30°,∴∠E=∠C=30°,故选:D.【点睛】本题考查了全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.4.B【解析】【分析】利用等腰三角形的三线合一和直角三角形的两个锐角互余解决问题即可.【详解】解:∵AB=AC,AD是△ABC的中线,∴AD ⊥BC ,∵∠B=36°,∴∠BAD=90°-∠B=90°-36°=54°,故选:B .【点睛】本题考查等腰三角形的性质和直角三角形的性质,解题的关键是掌握等腰三角形的三线合一的性质,属于中考常考题型.5.D【解析】【分析】根据勾股定理解得2AB 的值,再结合正方形的面积公式解题即可.【详解】在ABC ∆中,90C ∠=︒,4AC =,2BC =,222224220AB AC BC ∴=+=+=∴以AB 为一条边向三角形外部作的正方形的面积为220AB =,故选:D .【点睛】本题考查勾股定理的应用,是重要考点,难度较易,掌握相关知识是解题关键.6.D【解析】【详解】根据直角三角形斜边上的中线性质得出CM =12AB ,即可求出CM .【解答】解:∵公路AC ,BC 互相垂直,∴∠ACB =90°,∵M 为AB 的中点,∴CM =12AB ,∵AB =6km ,∴CM =3km ,即M ,C 两点间的距离为3km ,故选:D .7.B【解析】利用全等的定义分别判断后即可得到正确答案.【详解】解:A 、两个等边三角形不一定全等,例如两个等边三角形的边长分别为3和4,这两个三角形就不全等,故此选项错误;B 、两个全等的图形面积是一定相等的,故此选项正确;C 、形状相等的两个图形不一定全等,例如边长为3和4的正方形,故此选项错误;D 、两个正方形不一定全等,例如边长为3和4的正方形,故此选项错误.故选B.8.B【分析】标注字母,利用“边角边”判断出△ABC 和△DEA 全等,根据全等三角形对应角相等可得∠1=∠4,然后求出∠1+∠3=90°,再判断出∠2=45°,然后计算即可得解.【详解】解:如图,在△ABC 和△DEA中,90AB DE ABC DEA BC AE ⎧⎪∠∠︒⎨⎪⎩====,∴△ABC ≌△DEA (SAS ),∴∠1=∠4,∵∠3+∠4=90°,∴∠1+∠3=90°,又∵∠2=45°,∴∠1+∠2+∠3=90°+45°=135°.故选B.【点睛】本题考查了全等图形,网格结构,准确识图判断出全等的三角形是解题的关键.9.4【解析】【分析】根据等边三角形的定义“三条边都相等的三角形”即可求出答案.【详解】=÷=cm.根据等边三角形的三条边相等可知其边长1234故答案为:4.【点睛】本题考查等边三角形的定义.掌握其定义是解答本题的关键.10.70【解析】【分析】根据等腰三角形的性质可得到∠B=∠C,已知顶角的度数,根据三角形内角和定理即可求解.【详解】解:∵AB=AC,∴∠B=∠C,∵∠A=40°,∴∠B=(180°﹣40°)÷2=70°.故答案为:70.【点睛】本题主要是考查了等腰三角形的性质,熟练地利用等边找到底角,然后利用三角形内角和定理求解角度,这是解决本题的关键.11.不合格【分析】根据勾股定理的逆定理,若一个三角形的两边的平方和等于第三边的平方,则这个三角形为直角三角形,即可解答.【详解】解:根据矩形的性质得:矩形的长、宽、对角线三边能构成直角三角形,∵长为6分米,宽为4分米,对角线为7分米,∴22264527+=≠,∴长为6分米,宽为4分米,对角线为7分米的三边不能构成直角三角形,即这扇纱窗不合格.故答案为:不合格.【点睛】本题主要考查了矩形的性质,勾股定理的逆定理,能根据勾股定理的逆定理判断三条边长能否构成直角三角形是解题的关键.12.10【解析】【分析】先根据非负数的性质列式求出a、b,再根据等腰三角形和三角形三边关系分情况讨论求解即可.【详解】解:根据题意得,a-4=0,b-2=0,解得a=4,b=2,①若2是腰长,则底边为4,三角形的三边分别为2、2、4,不能组成三角形,②若4是腰长,则底边为2,三角形的三边分别为4、4、2,能组成三角形,周长=4+4+2=10.故答案为:10.【点睛】本题主要考查了等腰三角形的性质,非负数的性质,以及三角形的三边关系,解决本题的关键是要熟练掌握非负数的非负性质和三角形三边关系.13.2【分析】根据全等三角形的性质得出AC=FD=3,再求出FC即可.【详解】解:∵△ABC≌△DEF,FD=3,∴AC=FD=3,∵AF=1,∴FC=AC﹣AF=3﹣1=2,故答案为:2.【点睛】本题主要是考查了全等三角形的性质,熟练应用全等三角形的性质,找到对应相等的边,是求解该问题的关键.14.7【解析】【分析】根据线段的垂直平分线的性质得到EA=EB,根据三角形的周长公式计算,得到答案.【详解】解:∵DE是线段AB的垂直平分线,∴EA=EB,∴△AEC的周长=AC+EC+EA=AC+EC+EB=AC+BC=7(cm),故答案为:7.【点睛】本题主要是考查了垂直平分线的性质,熟练地应用垂直平分线的性质,找到相等边,是求解该类问题的关键.15.3【解析】【分析】根据轴对称的定义,沿着虚线进行翻折后能够重合,所以阴影应该涂在标有数字3的格子内.【详解】解:根据轴对称的定义,沿着虚线进行翻折后能够重合,根据题意,阴影应该涂在标有数字3的格子内;故答案为3.【点睛】本题考查了轴对称图形的性质,沿着虚线进行翻折后能够重合,进而求出答案.16.120【解析】【分析】设三边的长是5x,12x,13x,根据周长列方程求出x的长,则三角形的三边的长即可求得,然后利用勾股定理的逆定理判断三角形是直角三角形,然后利用面积公式求解.【详解】解:设三边分别为5x,12x,13x,则5x+12x+13x=60,∴x=2,∴三边分别为10cm,24cm,26cm,∵102+242=262,∴三角形为直角三角形,∴S=10×24÷2=120cm2.故答案为:120.【点睛】本题考查三角形周长,一元一次方程,直角三角形的判定以及勾股定理逆定理的理解与运用,三角形面积,比较基础,掌握三角形周长,一元一次方程,直角三角形的判定以及勾股定理逆定理的理解与运用,三角形面积是解题关键.17.8【解析】【分析】根据题意过点B'作B'H⊥AC于H,由全等三角形的判定得出△ACB≌△B'HA(AAS),得AC•B′H即可求得答案.AC=B'H=4,则有S△AB'C=12【详解】解:过点B'作B'H⊥AC于H,∴∠AHB'=90°,∠BAB'=90°,∴∠HAB'+∠HB'A =90°,∠BAC+∠CAB'=90°,∴∠HB'A =∠CAB ,在△ACB 和△B'HA 中,ACB AHB CAB AB H AB AB ∠=∠'⎧⎪∠=∠'⎨⎪='⎩,∴△ACB ≌△B'HA (AAS ),∴AC =B'H ,∵∠ACB =90°,AB =5,BC =3,∴AC 22BA BC -2253-4,∴AC =B'H =4,∴S △AB 'C =12AC•B′H =12×4×4=8.故答案为:8.【点睛】本题主要考查三角形全等的判定与性质和旋转的性质以及勾股定理,根据题意利用全等三角形的判定证明△ACB ≌△B'HA 是解决问题的关键.18.3【解析】【分析】由AB =AC ,得出△ABC 是等腰三角形,由∠1=∠2,得出AD 是顶角平分线,再由等腰三角形底边上的中线与顶角平分线重合求解即可.【详解】解:∵AB=AC,∴△ABC是等腰三角形,∵∠1=∠2,∴12BD CD BC==,∵BC=6cm,∴1632BD=⨯=(cm).故答案为:3.【点睛】本题考查了等腰三角形,比较简单,解题的关键是掌握等腰三角形的性质.19.(1)见解析;(2)3【解析】【分析】(1)对应点连线段的垂直平分线即为对称轴;(2)根据三角形的面积等于矩形面积减去周围三个三角形面积即可.【详解】解:(1)如图,直线l即为所求;(2)S△ABC =2×4﹣12×1×2﹣12×2×2﹣12×1×4=3.20.见解析【解析】由AB∥CD,得∠B=∠C,再利用SAS证明△ABE≌△DCF,从而得出AE=DF.证明:∵AB ∥CD ,∴∠B =∠C ,在△ABE 与△DCF 中,AB CD B C BE CF =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△DCF (SAS ),∴AE =DF .【点睛】本题考查了全等三角形的性质与判定,平行线的性质,掌握SAS 证明三角形全等是解题的关键.21.见解析【分析】证明Rt △ABF ≌Rt △DCE ,根据全等三角形的性质得到∠AFB =∠DEC ,根据等腰三角形的判定定理证明结论.【详解】证明:∵BE =CF ,∴BE+EF =CF+EF ,即BF =CE ,在Rt △ABF 和Rt △DCE 中,AB DC BF CE =⎧⎨=⎩,∴Rt △ABF ≌Rt △DCE (HL )∴∠AFB =∠DEC ,∴OE =OF ,∴△OEF 是等腰三角形.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定,掌握全等三角形的判定与性质是解题的关键.22.6mAD =【分析】由等腰三角形的性质得BC=CD=12BC=8(m),再由勾股定理求解即可.【详解】解:∵AB=AC,AD⊥BC,BC=16m,∴BC=CD=12BC=8(m),∠ADB=90°,∴AD6(m),即中柱AD的长为6m.23.(1)见解析;(2)4AC=【解析】(1)利用线段垂直平分线的性质可得CD=BD,然后利用勾股定理逆定理可得结论;(2)首先确定BD的长,进而可得CD的长,再利用勾股定理进行计算即可.【详解】(1)证明:连接CD,∵BC的垂直平分线DE分别交AB、BC于点D、E,∴CD=DB,∵BD2﹣DA2=AC2,∴CD2﹣DA2=AC2,∴CD2=AD2+AC2,∴△ACD是直角三角形,且∠A=90°;(2)解:∵AB=8,AD:BD=3:5,∴AD=3,BD=5,∴DC=5,∴AC4=.【点睛】本题主要考查勾股定理及其逆定理、线段垂直平分线的性质定理,熟练掌握勾股定理及其逆定理、线段垂直平分线的性质定理是解题的关键.24.该零件的面积为37cm 2.【解析】【分析】首先证明△ADC ≌△CEB ,根据全等三角形的性质可得DC=BE=7cm ,再利用勾股定理计算出AC 长,然后利用三角形的面积公式计算出该零件的面积即可.【详解】解:∵△ABC 是等腰直角三角形,∴AC=BC ,∠ACB=90°,∴∠ACD+∠BCE=90°,∵∠ADC=90°,∴∠ACD+∠DAC=90°,∴∠DAC=∠BCE ,在△ADC 和△CEB 中,D E DAC ECB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△CEB (AAS ),∴DC=BE=7cm ,∴(cm ),∴cm ,∴该零件的面积为:12(cm 2).故答案为37cm 2.【点睛】本题考查全等三角形的应用,等腰直角三角形以及勾股定理的应用,关键是掌握全等三角形的判定方法.25.(1)见解析;(2)3DE =【解析】【分析】(1)由角平分线的性质得DE =DF ,再根据HL 证明Rt △AED ≌Rt △AFD ,得AE =AF ,从而证明结论;(2)根据DE =DF ,得111++()15222ABD ACD S S AB ED AC DF DE AB AC ==+= ,代入计算即可.【详解】(1)证明:∵AD 是△ABC 的角平分线,DE 、DF 分别是△ABD 和△ACD 的高,∴DE =DF ,在Rt △AED 与Rt △AFD 中,AD AD DE DF=⎧⎨=⎩,∴Rt △AED ≌Rt △AFD (HL ),∴AE =AF ,∵DE =DF ,∴AD 垂直平分EF ;(2)解:∵DE =DF ,∴111++()15222ABD ACD S S AB ED AC DF DE AB AC ==+= ,∵AB+AC =10,∴DE =3.26.(1)见解析;(2)AC 的长为17.【解析】(1)首先根据垂线的意义得出∠CFD=∠CEB=90°,然后根据角平分线的性质得出CE=CF ,即可判定Rt △BCE ≌Rt △DCF ;(2)首先由(1)中全等三角形的性质得出DF=EB ,然后判定Rt △AFC ≌Rt △AEC ,得出AF=AE ,构建方程得出CF ,再利用勾股定理即可得出AC.【详解】(1)∵AC 平分∠BAD ,CE ⊥AB 于E ,CF ⊥AD 于F ,∴∠CFD=90°,∠CEB=90°(垂线的意义)∴CE=CF (角平分线的性质)∵BC=CD(已知)∴Rt△BCE≌Rt△DCF(HL)(2)由(1)得,Rt△BCE≌Rt△DCF∴DF=EB,设DF=EB=x∵∠CFD=90°,∠CEB=90°,CE=CF,AC=AC∴Rt△AFC≌Rt△AEC(HL)∴AF=AE即:AD+DF=AB﹣BE∵AB=21,AD=9,DF=EB=x∴9+x=21﹣x解得,x=6在Rt△DCF中,∵DF=6,CD=10∴CF=8∴Rt△AFC中,AC2=CF2+AF2=82+(9+6)2=289∴AC=17答:AC的长为17.27.(1)当M、N运动6秒时,点N追上点M;(2)①2t=,△AMN是等边三角形;②当32t=或125时,△AMN是直角三角形;(3)8t=【解析】(1)首先设点M、N运动x秒后,M、N两点重合,表示出M,N的运动路程,N的运动路程比M的运动路程多6cm,列出方程求解即可;(2)①根据题意设点M、N运动t秒后,可得到等边三角形△AMN,然后表示出AM,AN 的长,由于∠A等于60°,所以只要AM=AN三角形ANM就是等边三角形;②分别就∠AMN=90°和∠ANM=90°列方程求解可得;(3)首先假设△AMN是等腰三角形,可证出△ACM≌△ABN,可得CM=BN,设出运动时间,表示出CM,NB,NM的长,列出方程,可解出未知数的值.【解答】解:(1)设点M、N运动x秒后,M、N两点重合,x×1+6=2x,解得:x=6,即当M、N运动6秒时,点N追上点M;(2)①设点M、N运动t秒后,可得到等边三角形△AMN,如图1,AM=t,AN=6﹣2t,∵AB=AC=BC=6cm,∴∠A=60°,当AM=AN时,△AMN是等边三角形,∴t=6﹣2t,解得t=2,∴点M、N运动2秒后,可得到等边三角形△AMN.②当点N在AB上运动时,如图2,若∠AMN=90°,∵BN=2t,AM=t,∴AN=6﹣2t,∵∠A=60°,∴2AM=AN,即2t=6﹣2t,解得32 t ;如图3,若∠ANM=90°,由2AN=AM得2(6﹣2t)=t,解得125t .综上所述,当t为32或125s时,△AMN是直角三角形;(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知6秒时M、N两点重合,恰好在C处,如图4,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB是等边三角形,∴∠C=∠B,在△ACM和△ABN中,∵∠AMC=∠ANB,∠C=∠B,AC=AB,∴△ACM≌△ABN(AAS),∴CM=BN,∴t﹣6=18﹣2t,解得t=8,符合题意.所以假设成立,当M、N运动8秒时,能得到以MN为底的等腰三角形.。

苏科版八年级上册数学期中考试试卷含答案

苏科版八年级上册数学期中考试试卷含答案

苏科版八年级上册数学期中考试试题一、单选题1.下列美丽的图案中,不是轴对称图形的是()A .B .C .D .2)A .4B .±4C .8D .±83.22,27π,其中无理数的个数为()A .1个B .2个C .3个D .4个4.如图,通过尺规作图,得到COD C O D '''△≌△,再利用全等三角形的性质,得到了A O B AOB '''∠=∠,那么,根据尺规作图得到COD C O D '''△≌△的理由是()A .SASB .AASC .SSSD .ASA 5.到三角形三条边距离相等的点是此三角形()A .三条角平分线的交点B .三条中线的交点C .三条高的交点D .三边中垂线的交点6.如图,△ABC 是等边三角形,DE ∥BC ,若AB =12,BD =7,则△ADE 的周长为()A .5B .36C .21D .157.等腰三角形的一个外角为100︒,则等腰三角形顶角的度数是()A .20︒或80︒B .80︒C .100︒D .20︒8.如图,四边形ABCD 中,AC 、BD 为对角线,且AC =AB ,∠ACD =∠ABD ,AE ⊥BD于点E,若BD=6,CD=4.则DE的长度为()A.2B.1C.1.4D.1.69.如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是∠ABC、∠ACB的平分线,BD、CE交于点O,则图中共有等腰三角形()个A.5B.10C.11D.1210.如图,已知△ABC≌△CDE,其中AB=CD,不正确的是()A.AC=CE B.∠BAC=∠DCEC.∠ACB=∠ECD D.∠B=∠D二、填空题11.立方后得﹣64的数是_____.12.等边三角形有__________条对称轴.13=______.14.如图,△ABE≌△ACD,∠A=60°,∠B=20°,则∠DOE的度数为_____°.15.如图,直角三角形斜边上的高和中线分别是5cm 和6cm ,则它的面积是____cm 216.已知直角三角形△ABC 的三条边长分别为3,4,5,在△ABC 所在平面内画一条直线,将△ABC 分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画___条.三、解答题17.计算:(1)431168-+;(2)0121(2021)(322π---+-()18.求下列各式中x 的值:(1)241210x -=;(2)3(3)80x -+=19.已知2a ﹣1的算术平方根是3,3a+b-4的立方根是2,求3a-b 的值.20.如图,点B ,F ,C ,E 在直线l 上(F ,C 之间不能直接测量),点A ,D 在l 异侧,测得AB DE =,AB//DE ,A D ∠=∠.(1)求证:ABC DEF △≌△;(2)若10BE =,3BF =,求FC 的长度.21.如图,在正方形网格中,点A 、B 、C 、M 、N 都在格点上.(1)作△ABC关于直线MN对称的图形△A'B'C';(2)若网格中最小正方形的边长为1,则△ABC的面积为;(3)点P在直线MN上,当△PAC周长最小时,P点在什么位置,在图中标出P点.22.如图,在△ABC中,∠ACB=90°,AC=BC=AD.(1)作△ACD的高AE,点E为垂足(要求:尺规作图,不写作法,保留作图痕迹);(2)在射线CD上找一点P,使△PCB与(1)中所作的△ACE全等(要求:尺规作图,不写作法,保留作图痕迹).并证明你所作出的△PCB与△ACE全等.23.如图,△ABC中,∠BAC=105°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.的度数;(1)求DAF(2)如果BC=8,求△DAF的周长.24.如图,在△ABC 中,AB=AC ,D 为直线BC 上一动点(不与点B ,C 重合),在AD 的右侧作△ADE ,使得AE=AD ,∠DAE=∠BAC ,连接CE .(1)当D 在线段BC 上时,①求证:△BAD ≌△CAE ;②若AC ⊥DE ,求证:BD=DC ;(2)当CE ∥AB 时,若△ABD 中最小角为20°,试探究∠ADB 的度数(直接写出结果)25.如图1,直线AB//CD ,现想在直线AB 、CD 之间作一条直线l 平行于直线AB 、CD ,并且使直线l 上的点到直线AB 、CD 之间的距离相等.小明做了如下操作:分别作∠BEF 、∠DFE 的平分线交于点G ,过点G 作直线AB 、CD 的平行线,过点G 分别作直线AB 、CD 、EF 的垂线,垂足分别为M 、N 、H ,此时直线l 上的点到直线AB 、CD 的距离相等.(1)试说明:GM GN GH ==;(2)若120FEB ∠=︒,EG=4,直线l 交EF 于点k .试问EGF ∠的度数为,EKG △是三角形;EKG △周长为;(3)若点P 是射线EB 上的一个动点(不包括端点).如图2,连接PF ,将△EPF 折叠,顶点E 落在点Q 处,若∠PEF=58°,点Q 刚好落在其中的一条平行线上,试求EFP ∠的度数.参考答案1.A【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.C【解析】【分析】根据算术平方根的定义解答即可.【详解】8,故选C.【点睛】本题考查了算术平方根的意义,一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.正数a有一个正的算术平方根,0的算术平方根是0,负数没有算术平方根.3.D【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】.22,27π中,无理数有2π共4个,故选D .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.C【解析】【分析】根据SSS 证明三角形全等可得结论.【详解】解:连接CD 、C′D′,由作图可知,OD OC OD OC =='=',CD C D ='',在COD △和C O D ''' 中,∴()COD C O D SSS @ⅱV V ,∴AOB A O B ∠=∠'''故选:C .【点睛】本题考查作图-复杂作图,全等三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.5.A【解析】【分析】根据角平分线的性质进行解答即可.【详解】解: 角平分线上任意一点,到角两边的距离相等,到三角形三条边距离相等的点是三角形三个内角的平分线的交点,故选:A.【点睛】本题考查的是角平分线的性质,熟知角平分线上任意一点,到角两边的距离相等是解答此题的关键.6.D【解析】【分析】由条件可证明△ADE为等边三角形,且可求得AD=5,可求得其周长.【详解】解:∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,∵DE∥BC,∴∠ADE=∠AED=∠B=∠C=60°,∴△ADE为等边三角形,∵AB=12,BD=7,∴AD=AB-BD=5,∴△ADE的周长为15,故选:D.【点睛】本题主要考查等边三角形的性质和判定,由条件证明△ADE是等边三角形是解题的关键.7.A【解析】【分析】此外角可能是顶角的外角,也可能是底角的外角,需要分情况考虑,再结合三角形的内角和为180°,可求出顶角的度数.【详解】解:①若100°是顶角的外角,则顶角=180°-100°=80°;②若100°是底角的外角,则底角=180°-100°=80°,那么顶角=180°-2×80°=20°.故选:A .【点睛】本题考查了等腰三角形的性质,当外角不确定是底角的外角还是顶角的外角时,需分两种情况考虑,再根据三角形内角和180°、三角形外角的性质求解.8.B【解析】【分析】过点A 作AF ⊥CD 交CD 的延长线于点F ,根据AAS 证明△AFC ≌△AEB ,得到AF=AE ,CF=BE ,再根据HL 证明Rt △AFD ≌Rt △AED ,得到DF=DE ,最后根据线段的和差即可求解.【详解】解:过点A 作AF ⊥CD 交CD 的延长线于点F,∴∠AFC=90°,∵AE ⊥BD ,∴∠AFC=∠AED=∠AEB=90°,在△AFC 和△AEB 中,AFC AEB ACF ABE AC AB ∠=⎧⎪∠=∠⎨⎪=⎩,∴△AFC ≌△AEB (AAS ),∴AF=AE ,CF=BE ,在Rt △AFD 和Rt △AED 中,AF AE AD AD=⎧⎨=⎩,∴Rt △AFD ≌Rt △AED (HL ),∴DF=DE ,∵CF=CD+DF ,BE=BD-DE ,CF=BE ,∴CD+DF=BD-DE ,∴2DE=BD-CD ,∵BD=6,CD=4,∴2DE=2,∴DE=1,故选:B .【点睛】此题考查了全等三角形的判定与性质,根据AAS 证明△AFC ≌△AEB 及根据HL 证明Rt △AFD ≌Rt △AED 是解题的关键.9.D【解析】【分析】由已知条件,根据三角形内角和等于180、角的平分线的性质求得各个角的度数,然后利用等腰三角形的判定进行找寻,注意做到由易到难,不重不漏.【详解】∵AB =AC ,∠A =36°,∴∠A =36°,∠ABC =∠ACB =72°,△ABC 为等腰三角形∵BD ,CE 分别是∠ABC ,∠ACB 的平分线,∴∠EBD =∠DBC =∠ACE=∠BCE=∠A=36°,∴AE=CE ,AD=BD ,OB=OC ,∠BEC=∠BDC=∠BOE=∠COD=72°,∴△ABD ,△ACE ,△BOC 均为等腰三角形,∴OD=OE ,∴△DOE 为等腰三角形,∴∠OED=∠ODE=36°,∵∠BEC=∠BDC=∠BOE=∠COD=∠ABC=∠ACB=72°,∴CE=BC ,BD=BC ,BE=BO ,CD=OC ,∴△BCE ,△BCD ,△BOE ,△COD 为等腰三角形,∵OB=OC ,∴BE=CD ,∴AE=AD ,∴△ADE 是等腰三角形,∵∠ABD=∠BDE=∠ACE=∠CED=36°,∴△BDE ,△CDE 是等腰三角形,∴共有12个等腰三角形,故选:D .【点睛】本题考查了等腰三角形的性质和判定、角的平分线的性质及三角形内角和定理;由已知条件利用相关的性质求得各个角的度数是正确解答本题的关键.10.C【解析】【分析】根据全等三角形的性质进行判断即可.【详解】解:∵△ABC ≌△CDE ,AB=CD∴∠ACB=∠CED ,AC=CE ,∠BAC=∠ECD ,∠B=∠D∴第三个选项∠ACB=∠ECD 是不正确的.故选:C .【点睛】本题考查了全等三角形的性质,解题时注重识别全等三角形的对应边和对应角,特别是由已知AB=CD 找到对应角是解决问题的关键.11.-4【分析】据立方根的定义求解即可,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根,也叫做三次方根.【详解】立方得﹣64的数是﹣4.故答案为﹣4.【点睛】本题主要考查对立方根的理解,熟练掌握立方根的意义是解答本题的关键.正数有一个正的立方根,负数有一个负的立方根,0的立方根是0.12.3.【解析】【分析】根据等边三角形三线合一的性质可以作出解答.【详解】解:等边三角形每条边的垂直平分线都是它的对称轴,所以有3条对称轴.故答案为:3.【点睛】此题考查了等边三角形的性质,熟练掌握等边三角形的轴对称性质是解题关键.13.3【解析】【分析】先算出2(3)-的值,再根据算术平方根的定义直接进行计算即可.【详解】3==,故答案为:3.【点睛】14.100【分析】直接利用三角形的外角的性质得出∠CEO=80°,再利用全等三角形的性质得出答案.【详解】解:∵∠A=60°,∠B=20°,∴∠CEO=80°,∵△ABE≌△ACD,∴∠B=∠C=20°,∴∠DOE=∠C+∠CEO=100°.故答案为:100.【点睛】此题主要考查了全等三角形的性质以及三角形的外角的性质,求出∠CEO=80°是解题关键.15.30【解析】【分析】根据直角三角形斜边中线性质求出斜边长,在根据三角形面积=12⨯斜边⨯高计算即可【详解】解:∵EC为直角三角形斜边中线,CE=6cm,∴AB=2CE=12cm,∵CD⊥AB,CD=5cm,∴S△ACB=12⨯AB·CD=1125302创=cm2.故答案为30.【点睛】本题考查直角三角形斜边中性质,三角形面积公式,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键..16.6【解析】【分析】根据等腰三角形的性质分别利用AB,AC为底以及为腰得出符合题意的图形即可.解:如图所示:当BC 2=CC 2,AC 1=AC ,BC=BC 3,BC=CC 4,BC=CC 5,C 6A=C 6B 都能得到符合题意的等腰三角形.故答案为:6.【点睛】此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.17.(1)1;(2)1【解析】【分析】(1)先算乘方和开方,再算加减法;(2)先算零指数幂和负指数幂,利用二次根式的性质变形,再去绝对值,最后计算加减法.【详解】解:(1)41-=142-+-=1;(2)101(2021)2π-⎛⎫--+ ⎪⎝⎭=122-=122-+=1-【点睛】此题主要考查了实数的混合运算、负整数指数幂、零指数幂和二次根式的性质,正确化简各数是解题关键.18.(1)112x =±;(2)1x =【解析】【分析】(1)首先把121移到等号右边,然后两边同时开平方即可求解;(2)首先把8移到等号右边,然后再两边同时开立方即可求解.【详解】解:(1)241210x -=,∴24121x =,∴21214x =,∴112x =±;(2)3(3)80x -+=,∴3(3)8x -=-,∴32x -=-,∴1x =【点睛】此题主要考查了平方根和立方根,关键是掌握如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根;如果一个数的平方等于a ,这个数就叫做a 的平方根,也叫做a 的二次方根.19.18【解析】【分析】利用平方根,立方根定义求出a 与b 的值,即可求出所求.【详解】解:∵2a ﹣1的算术平方根是3,3a+b-4的立方根是2,∴2a-1=9,3a+b-4=8,解得:a=5,b=-3,∴3a-b=18.【点睛】此题考查了立方根,以及算术平方根,熟练掌握各自的性质是解本题的关键.20.(1)见解析(2)4【解析】【分析】(1)先证明ABC DEF ∠=∠,再根据ASA 即可证明.(2)根据全等三角形的性质即可解答.(1)解:证明://AB DE,ABC DEF ∴∠=∠,在ABC ∆与DEF ∆中ABC DEFAB DE A D∠=∠⎧⎪=⎨⎪∠=∠⎩()ABC DEF ASA ∴∆≅∆;(2)解:ABC DEF ∆≅∆ ,BC EF ∴=,BF FC EC FC ∴+=+,BF EC ∴=,10BE = ,3BF =,10334FC ∴=--=.【点睛】本题考查全等三角形的判定和性质、平行线的判定等知识,解题的关键是正确寻找全等三角形的条件,记住平行线的判定方法,属于基础题,中考常考题型.21.(1)见解析;(2)3;(3)见解析【解析】【分析】(1)根据轴对称的性质即可作△ABC 关于直线MN 对称的图形△A'B'C';(2)根据网格中最小正方形的边长为1,即可求△ABC 的面积;(3)根据两点之间线段最短,作点A 关于MN 的对称点A′,连接A′C 交直线MN 于点P ,此时△PAC 周长最小.【详解】解:(1)如图,△A'B'C'即为所求;(2)△ABC 的面积为:12×3×2=3;(3)因为点A 关于MN 的对称点为A′,连接A′C 交直线MN 于点P ,此时△PAC 周长最小.∴点P 即为所求.【点睛】本题考查了作图-轴对称变换,解决本题的关键是掌握轴对称的性质和两点之间线段最短.22.(1)见解析;(2)见解析.【解析】【分析】(1)用尺规作∠CAD 的角平分线AE 交CD 于E ,AE 即为所求;(2)用尺规过点B 作BP ⊥CD 交CD 的延长线于点P ,点P 即为所求;由BP ⊥CD 、∠ACB=90°可得∠ACB =∠CPB=90°,∠PCB+∠ACP=90°,∠PCB+∠CBP=90°则∠ACP=∠CBP ,结合AC=BC 运用AAS 即可证明△ACE ≌△CBP .【详解】解:(1)如图,用尺规作∠CAD 的角平分线AE 交CD 于E ,AE 即为所求;(2)如图,用尺规过点B 作BP ⊥CD 交CD 的延长线于点P ,点P即为所求;证明:∵BP ⊥CD 、∠ACB =90°∴∠ACB =∠CPB=90°,∠PCB+∠ACP=90°,∠PCB+∠CBP=90°∴∠ACP=∠CBP∵AC =AD ,AE 平分∠CAD∴∠AEC=90°=∠CPB在△ACE 和△CBP 中AEC CPB ACP CBP AC BC ∠∠⎧⎪∠=∠⎨⎪=⎩=∴△ACE ≌△CBP (AAS ).【点睛】本题考查尺规作图、全等三角形的判定、等腰直角三角形的性质等知识,掌握用尺规作角平分线和垂线是解答本题的关键.23.(1)30°;(2)8【解析】【分析】(1)根据三角形内角和定理可求∠B+∠C ;根据垂直平分线性质,DA=BD ,FA=FC ,则∠EAD=∠B ,∠FAC=∠C ,得出∠DAF=∠BAC-∠EAD-∠FAC=110°-(∠B+∠C )求出即可.(2)由(1)中得出,AD=BD,AF=FC,即可得出△DAF的周长为BD+FC+DF=BC,即可得出答案.【详解】解:(1)设∠B=x,∠C=y.∵∠BAC+∠B+∠C=180°,∴105°+∠B+∠C=180°,∴x+y=75°.∵AB、AC的垂直平分线分别交BA于E、交AC于G,∴DA=BD,FA=FC,∴∠EAD=∠B,∠FAC=∠C.∴∠DAF=∠BAC-(x+y)=105°-75°=30°.(2)∵AB、AC的垂直平分线分别交BA于E、交AC于G,∴DA=BD,FA=FC,∴△DAF的周长=AD+DF+AF=BD+DF+FC=BC=8.【点睛】此题考查了线段垂直平分线的性质、三角形内角和定理以及等腰三角形的性质.注意掌握垂直平分线上任意一点,到线段两端点的距离相等定理的应用,注意数形结合思想与整体思想的应用.24.(1)①见解析;②见解析;(2)100°或40°或20°【解析】【分析】(1)①根据SAS即可证明;②利用等腰三角形的三线合一得到∠DAC=∠EAC,再根据全等三角形的性质得到∠BAD=∠EAC,利用等腰三角形的性质得到BD=DC;(2)分D在线段BC上、当点D在CB的延长线上、点D在BC的延长线上三种情形根据等边三角形的性质、三角形内角和定理计算即可.【详解】解:(1)①∵∠DAE=∠BAC,∴∠BAD=∠CAE,在△BAD 和△CAE 中,AB ACBAD CAE AD AE=⎧⎪∠=∠⎨⎪=⎩,∴△BAD ≌△CAE ;②如图,∵AE=AD ,AC ⊥DE ,∴∠DAC=∠EAC ,∵△BAD ≌△CAE ,∴∠BAD=∠EAC ,∴∠DAC=∠BAD ,∵AB=AC ,∴BD=DC ;(2)如图,当D 在线段BC上时,∵CE ∥AB ,∴∠ACE=∠BAC ,∵△BAD ≌△CAE ,∴∠ABD=∠ACE ,∴∠ABD=∠BAC ,又∠ABC=∠ACB ,∴△ABC 为等边三角形,∴∠ABC=60°,∴∠ADB=180°-60°-20°=100°;如图,当点D 在CB 的延长线上时,同理可得,∠ABC=60°,∴∠ADB=40°,当△ABD 中的最小角是∠ADB 时,∠ADB=20°,当点D 在BC 的延长线上时,只能∠ADB=20°,∴∠ADB 的度数为100°或40°或20°.25.(1)证明见详解;(2)90︒;等边,12;(3)满足条件的EFP ∠的值为32︒或61︒.【解析】(1)根据角平分线的性质:角平分线上的点到角的两边距离相等,即可证明;(2)根据平行线的性质:两直线平行,同旁内角互补,可得60EFD ∠=︒,根据角平分线的性质及各角之间的关系,可得90EGF ∠=︒;再由平行直线的性质可得60EGK BEG ∠=∠=︒,得出EKG ∆是等边三角形,根据周长的公式即可得出三角形周长;(3)分两种情况讨论:①当点Q 落在AB 上时,根据折叠的性质可得:90EPF QPF ∠=∠=︒,结合图形即可得出EFP ∠;②当点Q 落在CD 上时,根据平行线及角平分线的性质即可得出EFP ∠.【详解】解:(1)∵EG 平分BEF ∠,GM BE ⊥,GH EF ⊥,∴GM GH =,∵FG 平分DEF ∠,GN FD ⊥,GH EF ⊥,∴GN GH =,∴GM GH GN ==;(2)∵AB CD ∥,∴180FEB EFD ∠+∠=︒,∵120FEB ∠=︒,∴60EFD ∠=︒,∵EG 平分BEF ∠,FG 平分DEF ∠,∴60FEG BEG ∠=︒=∠,30EFG ∠=︒,∴90EGF ∠=︒;∵直线l AB ∥,∴60EGK BEG ∠=∠=︒,∴EKG ∆是等边三角形,∵4EG =,∴EKG ∆的周长为12,故答案为:90︒;等边,12;(3)①当点Q 落在AB 上时,如图所示:∵将EPF ∆折叠,顶点E 落在点Q 处,∴90EPF QPF ∠=∠=︒,∵58PEF ∠=︒,∴9032EFP PEF ∠=︒-∠=︒;②当点Q 落在CD 上时,如图所示:∵AB CD ∥,∴180PEF EFQ ∠+∠=︒,∵58PEF ∠=︒,∴122EFQ ∠=︒,∵EFP QFP ∠=∠,∴1612EFP EFQ∠=∠=︒,综上可得,满足条件的EFP∠的值为32︒或61︒.。

2020-2021学年苏科版八年级数学上册期中测试题(含答案)

2020-2021学年苏科版八年级数学上册期中测试题(含答案)

2020-2021学年八年级数学上册期中测试题第I卷(选择题)一、选择题(本大题共8小题,共24.0分)1.下列四个汽车标志图中,不是轴对称图形的是()A. B.C. D.2.若等腰三角形的两边长分别为2和5,则它的周长为()A. 9B. 7C. 12D. 9或123.在下列以线段a、b、c的长为边,能构成直角三角形的是()A. a=3,b=4,c=6B. a=5,b=6,c=7C. a=6,b=8,c=9D. a=7,b=24,c=254.如图,若AB=AC,则添加下列一个条件后,仍无法判定△ABE≌△ACD的是()A. ∠B=∠CB. AE=ADC. BE=CDD. ∠AEB=∠ADC5.如图,把一个长方形纸片沿EF折叠后,点C、D分别落在M、N的位置.若∠EFB=65°,则∠AEN等于()A. 25°B. 50°C. 65°D. 70°6.如图,正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个图案构成一个轴对称图形,那么涂法共有()A. 3种B. 4种C. 5种D. 6种7.如图,在△ABC中,BC=8,AB的垂直平分线分别交AB、AC于点D、E,△BCE的周长为18,则AC的长等于()A. 12B. 10C. 8D. 68.如图,在△ABC中,∠ACB=90°,AC=BC=2,D是AB的中点,点E在AC上,点F在BC上,且AE=CF.给出以下四个结论:其中正确的有()(1)DE=DF;(2)△DEF是等腰直角三角形;(3)S四边形CEDF =12S△ABC;(4)EF2的最小值为2.A. 4个B. 3个C. 2个D. 1个第II卷(非选择题)二、填空题(本大题共10小题,共30.0分)9.在△ABC中,∠C=90°,BC=12,AB=13,AC=______.10.如图,△ABC≌△DBC,∠A=45°,∠ACD=86°,则∠ABC=______°.11.如图,在△ABC中,∠ACB=90°,分别以AC、AB为边长向外作正方形,且它们的面积分别为9和25,则Rt△ABC的面积为______.12.如图,在△ABC中,AB=AC,∠DBC=28°,且BD⊥AC,则∠A=______°.13.如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行______米.14.如图,在△ABC中,AB=10,AC=8,∠ABC、∠ACB的平分线相交于点O,MN过点O,且MN//BC,分别交AB、AC于点M、N.则△AMN的周长为______.15.如图,在△ABC中,∠BAC=90°,AC=16,BC=20,AD⊥BC,垂足为D,则AD的长为______.16.如图,已知AD平分∠BAC,AB=AC,则此图中全等三角形有______ 对.17.在等腰三角形ABC中,∠A=2∠B,则∠C的度数为______.18.如图,在Rt△ABC中,∠ACB=90°,AC=9,BC=12,AD是∠BAC的平分线.若P、Q分别是AD和AC上的动点,则PC+PQ的最小值是______.三、计算题(本大题共2小题,共20.0分)19.如图,△ABC中,AD是高,E、F分别是AB、AC的中点.(1)若AB=10,AC=8,求四边形AEDF的周长;(2)EF与AD有怎样的位置关系?请证明你的结论.20.已知:如图,将矩形纸片ABCD沿对角线BD对折,点C落在点E的位置,AD与BE相交于点F.(1)求证:△BDF是等腰三角形;(2)若AB=8,AD=10,求BF的长.四、解答题(本大题共8小题,共76.0分)21.如图,已知△ABC,用直尺和圆规作△ABC的角平分线BD和高AE.(不写作法,保留作图痕迹)22.已知:如图,点E、F在CD上,且∠A=∠B,AC//BD,CF=DE.求证:△AEC≌△BFD.23.已知:如图,∠A=∠D=90°,AB=DC,AC、BD相交于点E.求证:∠ABE=∠DCE.24.如图,小明爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算这块土地的面积,以便估算产量.小明测得AB=8m,AD=6m,CD=24m,BC=26m,又已知∠A=90°.求这块土地的面积.25.已知:如图,在△ABC中,AB=AC,角平分线BD、CE相交于点O.求证:OA平分∠BAC.26.已知:如图,△ABC和△CDE都是等边三角形,且点A、C、E在一条直线上,AD与BE相交于点P,AD与BC相交于点M,BE与CD相交于点N.求证:(1)∠APB=60°;(2)CM=CN.27.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)求证:DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,试问DE、AD、BE具有怎样的等量关系?并说明理由.28.已知:如图,在△ABC中,∠BAC=100°,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA.(1)求∠DAE的度数;(2)如果把题目中“AB=AC”的条件去掉,其他条件不变,那么∠DAE的度数会改变吗?请说明理由;(3)若∠BAC=α,其他条件与(2)相同,则∠DAE的度数是多少?为什么?答案和解析1.【答案】B【解析】解:A、是轴对称图形,故错误;B、不是轴对称图形,故正确;C、是轴对称图形,故错误;D、是轴对称图形,故错误.故选:B.2.【答案】C【解析】解:(1)若2为腰长,5为底边长,由于2+2<5,则三角形不存在;(2)若5为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为5+5+2=12.故选:C.3.【答案】D【解析】解:A、32+42≠62,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;B、52+62≠72,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;C、62+82≠92,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;D、72+242=252,故符合勾股定理的逆定理,能组成直角三角形,故正确.故选:D.4.【答案】C【解析】解:A、根据ASA(∠A=∠A,∠C=∠B,AB=AC)能推出△ABE≌△ACD,正确,故本选项错误;B、根据SAS(∠A=∠A,AB=AC,AE=AD)能推出△ABE≌△ACD,正确,故本选项错误;C、两边和一角对应相等的两三角形不一定全等,错误,故本选项正确;D、根据AAS(∠A=∠A,AB=AC,∠AEB=∠ADC)能推出△ABE≌△ACD,正确,故本选项错误;故选:C.5.【答案】B【解析】解:∵∠EFB=65°,AD//CB,∴∠DEF=65°,由折叠可得∠NEF=∠DEF=65°,∴∠AEN=180°−65°−65°=50°,故选:B.6.【答案】C【解答】解:如图所示:,共5种,故选:C.7.【答案】B【解析】解:∵DE是AB的垂直平分线,∴EA=EB,由题意得,BC+CE+BE=18,则BC+CE+AE=18,即BC+AC=18,又BC=8,∴AC=10,故选:B.8.【答案】A【解析】解:(1)∵∠ACB=90°,AC=BC=2,AB=√22+22=2√2∴∠A=∠B=45°,∵点D是AB的中点,∴CD⊥AB,且AD=BD=CD=12AB=√2,∴∠DCB=45°,∴∠A=∠DCF,在△ADE和△CDF中{AD=CD ∠A=∠DCF AE=CF∴△ADE≌△CDF(SAS),∴DE=DF,∠ADE=∠CDF,∵CD⊥AB,∴∠ADC=90°,∴∠EDF=∠EDC+∠CDF=∠EDC+∠ADE=∠ADC=90°,∴△DEF是等腰直角三角形;∵△ADE≌△CDF,∴△ADE和△CDF的面积相等,∵D为AB中点,∴△ADC的面积=12△ABC的面积,∴S四边形CEDF =S△EDC+S△CDF=S△EDC+S△ADE=S△ADC=12S△ABC;当DE⊥AC,DF⊥BC时,EF2值最小,根据勾股定理得:EF2=DE2+DF2,∵此时四边形CEDF是矩形,即EF=CD=√2,所以EF2=(√2)2=2;即正确的个数是4个,故选:A.9.【答案】5【解析】解:∵在△ABC中,∠C=90°,BC=12,AB=13,∴AC=√AB2−BC2=5.故答案为:5.10.【答案】92【解析】解:∵△ABC≌△DBC,∴∠ACB=∠DCB,∵∠ACD=86°,∴∠ACB=43°,∵∠A=45°,∴∠ABC=180°−∠A−∠ACB=92°,故答案为:92.11.【答案】6【解析】解:∵∠ACB=90°,∴AC2+BC2=AB2,∴9+BC2=25,∴BC2=25−9=16,∴BC=4,∴Rt△ABC的面积=4×√9÷2=6.故答案为:6.12.【答案】56【解析】解:∵BD是AC边上的高,∴∠DBC+∠C=90°,∠DBC=28°.∴∠C=62°∵AB=AC,∴∠A=180°−2∠C=180°−124°=56°,故答案为:56.13.【答案】10【解析】解:如图,设大树高为AB=12m,小树高为CD=6m,过C点作CE⊥AB于E,则四边形EBDC是矩形,连接AC,∴EB=6m,EC=8m,AE=AB−EB=12−6=6(m),在Rt△AEC中,AC=√62+82=10(m).故小鸟至少飞行10m.故答案为:10.14.【答案】18【解析】解:∵在△ABC中,∠ABC、∠ACB的平分线相交于点O,∴∠ABO=∠OBC,∠ACO=∠BCO,∵MN//BC,∴∠MOB=∠OBC,∠NOC=∠OCB,∴∠ABO=∠MOB,∠ACO=∠NOC,∴BM=OM,CN=ON,∴△AMN的周长是:AM+NM+AN=AM+OM+ON+AN=AM+BM+CN+AN= AB+AC=10+8=18.故答案为:18.15.【答案】485【解析】解:∵∠BAC=90°,AC=16,BC=20,∴AB=√BC2−AC2=12,∵S△ABC=12AB⋅AC=12BC⋅AD,∴12×12×16=12×20AD,∴AD=485.故答案为:485.16.【答案】4【解析】解:全等三角形有:△ABD≌△ACD,△BDE≌△CDF,△AED≌△AFD,△AFB ≌△AEC,共4对,故答案为:4.17.【答案】45°或72°【解析】解:设∠B=x°,则∠A=2x°,当∠A是顶角时,∠A+2∠B=180°,即:4x=180,解得:x=45,此时∠C=∠B=45°;当∠A是底角时,2∠A+∠B=180°,即5x=180,解得:x=36°,此时∠C=2∠B=72°,故答案为:45°或72°.18.【答案】365【解析】解:过点D作DE⊥AB于点E,过点E作EQ⊥AC于点Q,EQ交AD于点P,连接CP,此时PC+PQ=EQ取最小值,如图所示.在Rt△ABC中,∠ACB=90°,AC=9,BC=12,∴AB=√AC2+BC2═15.∵AD是∠BAC的平分线,∴∠CAD=∠EAD,在△ACD和△AED中,{∠CAD=∠EAD∠ACD=∠AED=90°AD=AD∴△ACD≌△AED(AAS),∴AE=AC=9.∵EQ⊥AC,∠ACB=90°,∴EQ//BC,∴AEAB =QEBC,即915=QE12,∴EQ=365,故答案为365.19.【答案】解:(1)∵E、F分别是AB、AC的中点,∴AE=12AB=5,AF=12AC=4,∵AD是高,E、F分别是AB、AC的中点,∴DE=12AB=5,DF=12AC=4,∴四边形AEDF的周长=AE+ED+DF+FA=18;(2)EF垂直平分AD.证明:∵AD是△ABC的高,∴∠ADB=∠ADC=90°,∵E是AB的中点,∴DE=AE,同理:DF=AF,∴E、F在线段AD的垂直平分线上,∴EF垂直平分AD.20.【答案】解:(1)由折叠可知∠EBD=∠CBD,∵AD//BC,∴∠ADB=∠CBD,∴∠EBD=∠ADB,∴BF=DF,∴△BDF是等腰三角形.(2)设BF=x,则DF=x,AF=10−x,在Rt△ABF中,根据勾股定理有82+(10−x)2=x2.解得:x=415,∴BF的长为415.21.【答案】解:如图所示,BD和AE即为△ABC的角平分线和高.22.【答案】证明:∵AC//BD,∴∠C=∠D,∵CF=DE,∴CF+EF=DE+EF,即CE=DF,在△AEC和△BFD中{∠A=∠B ∠C=∠D CE=DF,∴△AEC≌△BFD(AAS).23.【答案】证明:在△ABE 和△DCE 中,{∠A =∠D ∠AEB =∠DEC AB =DC∴△ABE ≌△DCE(AAS),∴∠ABE =∠DCE .24.【答案】解:连接BD ,∵∠A =90°,∴BD 2=AD 2+AB 2=100则BD 2+CD 2=100+576=676=262=BC 2,因此∠CBD =90°,S 四边形ABCD =S △ADB +S △CBD =12AD ⋅AB +12BD ⋅CD =12×6×8+12×24×10=144(平方米).25.【答案】证明:∵AB =AC ,∴∠ABC =∠ACB ,∵BD 、CE 分别平分∠ABC 和∠ACB ,∴∠CBD =12∠ABC ,∠BCE =12∠ACB , ∴∠CBD =∠BCE ,∴OB =OC ,在△ABO 和△ACO 中{AB =AC AO =AO OB =OC∴△ABO ≌△ACO(SSS),∴∠BAO =∠CAO ,即OA 平分∠BAC .26.【答案】证明:(1)∵△ABC 和△CDE 都是等边三角形, ∴AC =BC ,DC =EC ,∠ACB =∠DCE =60°,∴∠ACB +∠BCD =∠DCE +∠BCD ,即∠ACD =∠BCE ,在△ACD 和△BCE 中{AC =BC ∠ACD =∠BCE DC =EC∴△ACD ≌△BCE(SAS),∴∠CAD =∠CBE .又∵∠AMC =∠BMP ,∴∠APB =∠ACB =60°;(2)在△ACM 和△BCN 中{∠CAD =∠CBE AC =BC ∠ACB =∠BCD∴△ACM ≌△BCN(ASA),∴CM =CN .27.【答案】证明:(1)∵AD ⊥DE ,BE ⊥DE ,∴∠ADC =∠BEC =90°,∵∠ACB =90°,∴∠ACD +∠BCE =90°,∠DAC +∠ACD =90°,∴∠DAC =∠BCE ,在△ADC 和△CEB 中{∠CDA =∠BEC∠DAC =∠ECB AC =BC∴△ADC ≌△CEB(AAS),∴AD =CE ,CD =BE ,∵DC +CE =DE ,∴AD +BE =DE .(2)DE =AD −BE ,理由:∵BE ⊥EC ,AD ⊥CE ,∴∠ADC =∠BEC =90°,∴∠EBC+∠ECB=90°,∵∠ACB=90°,∴∠ECB+∠ACE=90°,∴∠ACD=∠EBC,在△ADC和△CEB中,{∠ACD=∠CBE ∠ADC=∠BEC AC=BC,∴△ADC≌△CEB(AAS),∴AD=CE,CD=BE,∴DE=EC−CD=AD−BE.28.【答案】解:(1)∵AB=AC,∠BAC=100°,∴∠B=∠ACB=40°,∵BD=BA,∴∠BAD=∠BDA=12(180°−∠B)=70°,∵CE=CA,∴∠CAE=∠E=12∠ACB=20°,在△ABE中,∠BAE=180°−∠B−∠E=120°,∴∠DAE=∠BAE−∠BAD=50°;(2)不改变,设∠CAE=x°,∵CE=CA,∴∠E=∠CAE=x°,∴∠ACB=∠E+∠CAE=2x°,∵在△ABC中,∠BAC=100°,∴∠B=180°−∠BAC−∠ACB=80°−2x°,又∵BD=BA,∴∠BAD=∠BDA=12(180°−∠B)=50°+x°,∴∠DAE=∠BAE−∠BAD=(100°+x°)−(50°+x°)=50°;(3)∠DAE=12α,∵BD=BA,∴∠BAD=∠BDA=12(180°−∠B),∴∠DAC=∠BAC−∠BAD=α−12(180°−∠B)=α−90°+12∠B,∵CE=CA,∴∠CAE=∠E=12∠ACB,∴∠DAE=∠DAC+∠CAE=α−90°+12∠B+12∠ACB=α−90°+12(180°−α)=12α.1、三人行,必有我师。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年苏科版八年级数学上册期中复习试卷十一.填空题(每题3分,共30分)1.在下列某品牌T恤的四个洗涤说明图案的设计中,不是轴对称图形的是()A.B.C.D.2.在0.030030003,3.14,,﹣,,π,0 这六个数中,无理数有()A.0个B.1个C.2个D.3个3.1.0149精确到百分位的近似值是()A.1.0149 B.1.015 C.1.01 D.1.04.若代数式有意义,则x的取值范围是()A.x>1且x≠2 B.x≥1 C.x≠2 D.x≥1且x≠25.下列各组数据分别是三角形的三边长,其中不能构成直角三角形的是()A.5cm,12cm,13cm B.1cm,1cm, cmC.1cm,2cm, cm D. cm,2cm, cm6.若m+=,则m﹣的值是()A.±2 B.±1 C.1 D.27.如图,在数轴上表示﹣1,﹣的对应点为A,B,若点A是线段BC的中点,则点C表示的数为()A.1﹣B.2﹣C.﹣1 D.﹣28.如图,在Rt△ABC中,∠BAC=90°,过顶点A的直线DE∥BC,∠ABC,∠ACB的平分线分别交DE于点E、D,若AC=3,BC=5,则DE的长为()A.6 B.7 C.8 D.99.如图,已知在△ABC中,AB=AC,AB的垂直平分线DE交AC于点E,CE的垂直平分线正好经过点B,与AC相交于点F,求∠A的度数是()A.30° B.35° C.45° D.36°10.平面直角坐标系中,已知A(8,0),△AOP为等腰三角形且面积为16,满足条件的P点有()A.12个B.10个C.8个D.6个二、填空题(每空3分,共30分)11.的平方根是.12.已知一个正数的两个不同的平方根是3x﹣2和4﹣x,则x= .13.已知x<1,则化简的结果是.14.黑板上写着在正对着黑板的镜子里的像是.15.在平面直角坐标系中,若点M(﹣2,6)与点N(x,6)之间的距离是3,则x的值是.16.若直角三角形的两直角边之和为7,面积为6,则斜边长为.17.如图,在△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=25°,则∠ADE= °.18.如图,在△ABC中,AB=AC=5cm,AB的垂直平分线交AB于点D,交BC于点E,若△ACE的周长是12cm,则△ABC的周长是.19.直角三角形三角形两直角边长为5和12,三角形内一点到各边距离相等,那么这个距离为.20.如图,正方形ABCD的边长为4,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值是.三.解答题21.计算:(1)﹣|1﹣|+()2﹣(2)﹣32+(﹣1)2016+(﹣π)0﹣﹣(﹣)﹣2.22.求下列各式中的x的值:(1)4(2x﹣1)2=(2)8(x3+1)=﹣56.23.如图,在长度为1个单位长度的小正方形组成的正方形中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△AB′C′;(2)五边形ACBB′C′的周长为;(3)四边形ACBB′的面积为;(4)在直线l上找一点P,使PB+PC的长最短,则这个最短长度为.24.如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE.25.如图所示,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点,若AB=17,BD=12,(1)求证:△BCD≌△ACE;(2)求DE的长度.26.如图所示,在△ABC中,AB=10,AC=6,BC=8,把△ABC折叠,使AB落在直线AC上,求重叠部分(阴影部分)的面积.27.如图,△ABC中,CF⊥AB,垂足为F,M为BC的中点,E为AC上一点,且ME=MF.(1)求证:BE⊥AC;(2)若∠A=50°,求∠FME的度数.28.如图,在Rt△ABC中,∠ABC=90°,点D是AC的中点,作∠ADB的角平分线DE交AB于点E,(1)求证:DE∥BC;(2)若AE=3,AD=5,点P为线段BC上的一动点,当BP为何值时,△DEP为等腰三角形.请求出所有BP 的值.29.如图①,在平面直角坐标系中,A(a,0),C(b,2),且满足(a+2)2+=0,过C作CB⊥x轴于B.(1)求三角形ABC的面积.(2)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.(3)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图②,求∠AED的度数.参考答案1.C.2.C.3.C.4.D.5.D.6.B.7.D.8.B.9.D.10.B11.答案为:.12.答案为:﹣1.13.答案为1﹣x.14.答案为:50281.15.答案为:1或﹣5.16.答案为:5.17.答案为:40.18.答案为:17cm.19.答案为:2.20.答案为:2.21.解:(1)原式=2﹣+1+9+=13.5﹣;(2)原式=﹣9+1+1﹣4﹣4=﹣15.22.解:(1)4(2x﹣1)2=,4(2x﹣1)2=9,(2x﹣1)2=,2x﹣1=±,解得x1=﹣,x2=;(2)8(x3+1)=﹣56,x3+1=﹣7,x3=﹣8,x=﹣2.23.解:(1)如图:△AB′C′即为所求;(2)∵AC′=AC==2,BC=BC′==,BB′=2,∴五边形ACBB′C′的周长为:2×2+2×+2=4+2+2;故答案为:4+2+2;(3)如图,S△ABC=S梯形AEFB﹣S△AEC﹣S△BCF=×(1+2)×4﹣×2×2﹣×2×1=3,S△ABB′=×2×4=4,∴S四边形ACBB′=S△ABC+S△ABB′=3+4=7.故答案为:7;(4)如图,点B′是点B关于l的对称点,连接B′C,交l于点P,此时PB+PC的长最短,∴PB=PB′,∴PB+PC=PB′+PC=B′C==.故答案为:.24.证明:∵BE平分∠FBC,BE⊥CF,∴BF=BC,∴CE=EF,∴CF=2CE,∵∠BAC=90°,且AB=AC,∴∠FAC=∠BAC=90°,∠ABC=∠ACB=45°,∴∠FBE=∠CBE=22.5°,∴∠F=∠ADB=67.5°,在△ABD和△ACF中,∵,∴△ABD≌△ACF(AAS),∴BD=CF,∴BD=2CE.25.(1)证明:∵△ACB与△ECD都是等腰直角三角形,∴AC=BC,CE=CD,∵∠ACB=∠ECD=90°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,∴∠BCD=∠ACE,在△BCD和△ACE中∴△BCD≌△ACE(SAS).(2)解:由(1)知△BCD≌△ACE,则∠DBC=∠EAC,∵∠CAD+∠DBC=90°,∴∠EAC+∠CAD=90°,即∠EAD=90°∵AB=17,BD=12,∴AD=17﹣12=5,∵△BCD≌△ACE,∴AE=BD=12,在Rt△AED中,由勾股定理得:DE===13.26.解:∵AC2+BC2=62+82=100,AB2=102=100,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°,∵△ABC折叠AB落在直线AC上,∴AB′=AB=10,B′D=BD,∴B′C=AB′﹣AC=10﹣6=4,设CD=x,则B′D=BD=BC﹣CD=8﹣x,在Rt△B′CD中,由勾股定理得,B′C2+CD2=B′D2,即42+x2=(8﹣x)2,解得x=3,即CD=3,所以,阴影部分的面积=AC×CD=×6×3=9.27.(1)证明:∵CF⊥AB,垂足为F,M为BC的中点,∴MF=BM=CM=BC,∵ME=MF,∴ME=BM=CM=BC,∴BE⊥AC;(2)解:∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∵ME=MF=BM=CM,∴∠BMF+∠CME=+=360°﹣2(∠ABC+∠ACB)=360°﹣2×130°=100°,在△MEF中,∠FME=180°﹣100°=80°.28.(1)证明:∵∠ABC=90°,点D是AC的中点,∴BD=AD=AC,∵DE是∠ADB的角平分线,∴DE⊥AB,又∵∠ABC=90°,∴DE∥BC;(2)解:∵AE=3,AD=5,DE⊥AB,∴DE==4,∵DE⊥AB,AD=BD,∴BE=AE=3,①DE=EP时,BP==,②DP=EP时,BP=DE=×4=2,③DE=DP时,过点D作DF⊥BC于F,则DF=BE=3,由勾股定理得,FP==,点P在F下边时,BP=4﹣,点P在F上边时,BP=4+,综上所述,BP的值为,2,4﹣,4+.29.解:(1)∵(a+2)2+=0,∴a+2=0,b﹣2=0,解得a=﹣2,b=2,∴A(﹣2,0),C(2,2),∵CB⊥x轴,∴B(2,0),∴S△ABC=×(2+2)×2=4;(2)存在.如图③,AC交y轴于Q,则Q(0,1),设P(0,t),∵S△PAC=S△APQ+S△CPQ=S△ABC,∴•|t﹣1|•2+•|t﹣1|•2=4,解得t=3或t=﹣1,∴P点坐标为(0,3),(0,﹣1);(3)作EM∥AC,如图②,∵AC∥BD,∴AC∥EM∥BD,∴∠CAE=∠AEM,∠BDE=∠DEM,∴∠AED=∠CAE+∠BDE,∵AE,DE分别平分∠CAB,∠ODB,∴∠CAE=∠CAB,∠BDE=∠ODB,∴∠AED=(∠CAB+∠ODB),∵AC∥BD,∴∠CAB=∠OBD,∴∠CAB+∠ODB=∠OBD+∠ODB=90°,∴∠AED=×90°=45°.2017年2月14日。

相关文档
最新文档