青海省西宁市2017_2018学年七年级数学11月月考试题新人教版256
新人教版2017年七年级下数学第一次月考试卷及答案

2018年春季七年级下册第一次阶段性测试数 学 试 卷(考试时间:120分钟 满分:150分)一、选择题(本题共有12个小题,每小题都有A 、B 、C 、D 四个选项,请你把你认为适当的选项前的代号填入题后的括号中,每题4分,共48分) 1、4的算术平方根是( )A 、2B 、-2C 、±2D 、4 2、如图1所示,∠1与∠2是对顶角的图形是( )A 、B 、C 、D 、3、实数1162,0.3,,2,,749π--中,无理数的个数是( ) A 、2 B 、3 C 、4 D 、54、已知:如图2所示,直线AB 、CD 被直线EF 所截,则∠EMB 的同位角是( )A 、∠AMFB 、∠BMFC 、∠ENCD 、∠END5、已知:如图3所示,直线AB 、CD 相交于O ,OD 平分∠BOE,∠AOC=42°,则∠AOE 的度数为( )A 、126°B 、96°C 、102°D 、138° 6、若3a -是一个数的算术平方根,则( )A 、0a ≥B 、3a ≥C 、0a >D 、3a > 7、在实数范围内下列判断正确的是( )A 、若||||m n =,则m n =B 、若22a b >,则a b >21121221(图2) NMF E D CBA(图3) OEDCBAC 、 若33a b =,则a b = D 、若22()a b =,则a b =8、如图4所示,下列条件中,能判断直线1l ∥2l 的是( )A 、∠2=∠3 B、∠1=∠3 C 、∠4+∠5=180° D、∠2=∠49、过一点画已知直线的平行线( )A 、有且只有一条B 、不存在C 、有两条D 、不存在或有且只有一条 10、如图5所示,AC⊥BC 与C ,CD⊥AB 于D ,图中能表示点到直线(或线段)的距离的线段有( ) A 、1条 B 、2条 C 、3条 D 、5条 11、2a =25,b =3,则a+b=( )A 、-8B 、8±C 、2±D 、8±或2±12、若有理数a 和b 在数轴上所表示死亡点分别在原点的右边和左边,则b a b --2等于( )A 、aB 、-aC 、b+aD 、b-a二、填空题(本题共有6个小题,每小题4分,共24分)11、若一个数的立方根与它的算术平方根相同则这个数是_______________。
2017年青海省西宁市中考数学试卷(含答案)

2017年青海省西宁市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)在下列各数中,比﹣1小的数是()A.1 B.﹣1 C.﹣2 D.02.(3分)下列计算正确的是()A.3m﹣m=2 B.m4÷m3=m C.(﹣m2)3=m6D.﹣(m﹣n)=m+n 3.(3分)下列图形中,是轴对称图形但不是中心对称图形的是()A.等边三角形B.平行四边形C.正六边形D.圆4.(3分)下列调查中,适合采用全面调查(普查)方式的是()A.了解西宁电视台“教育在线”栏目的收视率B.了解青海湖斑头雁种群数量C.了解全国快递包裹产生包装垃圾的数量D.了解某班同学“跳绳”的成绩5.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.6.(3分)在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为()A.(﹣3,﹣2)B.(2,2) C.(﹣2,2)D.(2,﹣2)7.(3分)如图,点O是矩形ABCD的对角线AC的中点,OM∥AB交AD于点M,若OM=3,BC=10,则OB的长为()A.5 B.4 C.D.8.(3分)如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A. B.2 C.2D.89.(3分)西宁市创建全国文明城市已经进入倒计时!某环卫公司为清理卫生死角内的垃圾,调用甲车3小时只清理了一半垃圾,为了加快进度,再调用乙车,两车合作1.2小时清理完另一半垃圾.设乙车单独清理全部垃圾的时间为x小时,根据题意可列出方程为()A.+=1 B.+=C.+=D.+=110.(3分)如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度运动,同时点N自D点出发沿折线DC﹣CB以每秒2cm的速度运动,到达B点时运动同时停止,设△AMN的面积为y(cm2),运动时间为x (秒),则下列图象中能大致反映y与x之间函数关系的是()A.B.C.D.二、填空题(本大题共10小题,每小题2分,共20分)11.(2分)x2y是次单项式.12.(2分)市民惊叹西宁绿化颜值暴涨,2017年西宁市投资25160000元实施生态造林绿化工程建设项目,将25160000用科学记数法表示为.13.(2分)若一个正多边形的一个外角是40°,则这个正多边形的边数是.14.(2分)计算:(2﹣2)2=.15.(2分)若x1,x2是一元二次方程x2+3x﹣5=0的两个根,则x12x2+x1x22的值是.16.(2分)圆锥的主视图是边长为4cm的等边三角形,则该圆锥侧面展开图的面积是cm2.17.(2分)如图,四边形ABCD内接于⊙O,点E在BC的延长线上,若∠BOD=120°,则∠DCE=.18.(2分)如图,点A在双曲线y=(x>0)上,过点A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于点B,当AC=1时,△ABC的周长为.19.(2分)若点A(m,n)在直线y=kx(k≠0)上,当﹣1≤m≤1时,﹣1≤n ≤1,则这条直线的函数解析式为.20.(2分)如图,将▱ABCD沿EF对折,使点A落在点C处,若∠A=60°,AD=4,AB=6,则AE的长为.三、解答题(本大题共8小题,共70分)21.(7分)计算:﹣22+(﹣π)0+|1﹣2sin60°|22.(7分)先化简,再求值:(﹣m﹣n)÷m2,其中m﹣n=.23.(8分)如图,四边形ABCD中,AC,BD相交于点O,O是AC的中点,AD ∥BC,AC=8,BD=6,.(1)求证:四边形ABCD是平行四边形;(2)若AC⊥BD,求▱ABCD的面积.24.(8分)如图,建设“幸福西宁”,打造“绿色发展样板城市”.美丽的湟水河宛如一条玉带穿城而过,已形成“水清、流畅、岸绿、景美”的生态环境新格局.在数学课外实践活动中,小亮在海湖新区自行车绿道北段AC上的A,B两点分别对南岸的体育中心D进行测量,分别测得∠DAC=30°,∠DBC=60°,AB=200米,求体育中心D到湟水河北岸AC的距离约为多少米(精确到1米,≈1.732)?25.(8分)西宁市教育局在局属各初中学校设立“自主学习日”,规定每周三学校不得以任何形式布置家庭作业,为了解各学校的落实情况,从七、八年级学生中随机抽取了部分学生的反馈表,针对以下六个项目(每人只能选一项):A.课外阅读;B.家务劳动;C.体育锻炼;D.学科学习;E.社会实践;F.其他项目进行调查,根据调查结果绘制了如下尚不完整的统计图,请你根据统计图解答下列问题:(1)此次抽查的样本容量为,请补全条形统计图;(2)全市约有4万名在校初中学生,试估计全市学生中选择体育锻炼的人数约有多少人?(3)七年级(1)班从选择社会实践的2名女生和1名男生中选派2名参加校级社会实践活动,请你用树状图或列表法求出恰好选到1男1女的概率是多少?并列举出所有等可能的结果.26.(10分)如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D,过点D作⊙O的切线DE交AC于点E,交AB延长线于点F.(1)求证:DE⊥AC;(2)若AB=10,AE=8,求BF的长.27.(10分)首条贯通丝绸之路经济带的高铁线﹣﹣宝兰客专进入全线拉通试验阶段,宝兰客专的通车对加快西北地区与“一带一路”沿线国家和地区的经贸合作、人文交流具有十分重要的意义,试运行期间,一列动车从西安开往西宁,一列普通列车从西宁开往西安,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示y与x之间的函数关系,根据图象进行一下探究:【信息读取】(1)西宁到西安两地相距千米,两车出发后小时相遇;(2)普通列车到达终点共需小时,普通列车的速度是千米/小时.【解决问题】(3)求动车的速度;(4)普通列车行驶t小时后,动车到达终点西宁,求此时普通列车还需行驶多少千米到达西安?28.(12分)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交BE于点F,点D,E的坐标分别为(3,0),(0,1).(1)求抛物线的解析式;(2)猜想△EDB的形状并加以证明;(3)点M在对称轴右侧的抛物线上,点N在x轴上,请问是否存在以点A,F,M,N为顶点的四边形是平行四边形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.2017年青海省西宁市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•西宁)在下列各数中,比﹣1小的数是()A.1 B.﹣1 C.﹣2 D.0【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣2<﹣1<0<1,所以各数中,比﹣1小的数是﹣2.故选:C.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.(3分)(2017•西宁)下列计算正确的是()A.3m﹣m=2 B.m4÷m3=m C.(﹣m2)3=m6D.﹣(m﹣n)=m+n【分析】根据合并同类项、同底数幂的除法以及幂的乘方和去括号的知识进行判断即可.【解答】解:A、3m﹣m=2m,此选项错误;B、m4÷m3=m,此选项正确;C、(﹣m2)3=﹣m6,此选项错误;D、﹣(m﹣n)=n﹣m,此选项错误;故选B.【点评】本题主要考查了合并同类项、同底数幂的除法以及幂的乘方和去括号的知识,解题的关键是掌握运算法则,此题难度不大.3.(3分)(2017•西宁)下列图形中,是轴对称图形但不是中心对称图形的是()A.等边三角形B.平行四边形C.正六边形D.圆【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,是中心对称图形,不合题意;C、是轴对称图形,也是中心对称图形,不合题意;D、是轴对称图形,也是中心对称图形,不合题意;.故选:A.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)(2017•西宁)下列调查中,适合采用全面调查(普查)方式的是()A.了解西宁电视台“教育在线”栏目的收视率B.了解青海湖斑头雁种群数量C.了解全国快递包裹产生包装垃圾的数量D.了解某班同学“跳绳”的成绩【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、对西宁电视台“教育在线”栏目的收视率情况的调查,适合抽样调查,故A选项错误;B、对青海湖斑头雁种群数量情况的调查,适合抽样调查,故B选项错误;C、对全国快递包裹产生包装垃圾的数量情况的调查,适于抽样调查,故C选项错误;D、对某班同学“跳绳”的成绩情况的调查,适合全面调查,故D选项正确.故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.(3分)(2017•西宁)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式﹣2x+1<3,得:x>﹣1,∴不等式组的解集为﹣1<x≤1,故选:B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.(3分)(2017•西宁)在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为()A.(﹣3,﹣2)B.(2,2) C.(﹣2,2)D.(2,﹣2)【分析】首先根据横坐标右移加,左移减可得B点坐标,然后再根据关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.【解答】解:点A(﹣1,﹣2)向右平移3个单位长度得到的B的坐标为(﹣1+3,﹣2),即(2,﹣2),则点B关于x轴的对称点B′的坐标是(2,2),故选:B.【点评】此题主要考查了坐标与图形变化﹣平移,以及关于x轴对称点的坐标,关键是掌握点的坐标变化规律.7.(3分)(2017•西宁)如图,点O是矩形ABCD的对角线AC的中点,OM∥AB 交AD于点M,若OM=3,BC=10,则OB的长为()A.5 B.4 C.D.【分析】已知OM是△ADC的中位线,再结合已知条件则DC的长可求出,所以利用勾股定理可求出AC的长,由直角三角形斜边上中线的性质则BO的长即可求出.【解答】解:∵四边形ABCD是矩形,∴∠D=90°,∵O是矩形ABCD的对角线AC的中点,OM∥AB,∴OM是△ADC的中位线,∵OM=3,∴DC=6,∵AD=BC=10,∴AC==2,∴BO=AC=,故选D.【点评】本题考查了矩形的性质,勾股定理的运用,直角三角形斜边上中线的性质以及三角形的中位线的应用,解此题的关键是求出AC的长.8.(3分)(2017•西宁)如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A. B.2 C.2D.8【分析】作OH⊥CD于H,连结OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP=2,BP=6可计算出半径OA=4,则OP=OA﹣AP=2,接着在Rt△OPH中根据含30度的直角三角形的性质计算出OH=OP=1,然后在Rt△OHC中利用勾股定理计算出CH=,所以CD=2CH=2.【解答】解:作OH⊥CD于H,连结OC,如图,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=30°,∴OH=OP=1,在Rt△OHC中,∵OC=4,OH=1,∴CH==,∴CD=2CH=2.故选C.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理以及含30度的直角三角形的性质.9.(3分)(2017•西宁)西宁市创建全国文明城市已经进入倒计时!某环卫公司为清理卫生死角内的垃圾,调用甲车3小时只清理了一半垃圾,为了加快进度,再调用乙车,两车合作1.2小时清理完另一半垃圾.设乙车单独清理全部垃圾的时间为x小时,根据题意可列出方程为()A.+=1 B.+=C.+=D.+=1【分析】根据题意可以得到甲乙两车的工作效率,从而可以得到相应的方程,本题得以解决.【解答】解:由题意可得,,故选B.【点评】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,找出题目中的等量关系,列出相应的方程.10.(3分)(2017•西宁)如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度运动,同时点N自D点出发沿折线DC﹣CB以每秒2cm的速度运动,到达B点时运动同时停止,设△AMN的面积为y(cm2),运动时间为x(秒),则下列图象中能大致反映y与x之间函数关系的是()A.B.C.D.【分析】分两部分计算y的关系式:①当点N在CD上时,易得S△AMN的关系式,S△AMN的面积关系式为一个一次函数;②当点N在CB上时,底边AM不变,表示出S△AMN 的关系式,S△AMN的面积关系式为一个开口向下的二次函数.【解答】解:∵点N自D点出发沿折线DC﹣CB以每秒2cm的速度运动,到达B 点时运动同时停止,∴N到C的时间为:t=3÷2=1.5,分两部分:①当0≤x≤1.5时,如图1,此时N在DC上,S△AMN=y=AM•AD=x×3=x,②当1.5<x≤3时,如图2,此时N在BC上,∴DC+CN=2x,∴BN=6﹣2x,=y=AM•BN=x(6﹣2x)=﹣x2+3x,∴S△AMN故选A.【点评】本题考查动点问题的函数图象问题;根据自变量不同的取值范围得到相应的函数关系式是解决本题的关键.二、填空题(本大题共10小题,每小题2分,共20分)11.(2分)(2017•西宁)x2y是3次单项式.【分析】利用单项式的次数的定义求解.【解答】解:x2y是3次单项式.故答案为3.【点评】本题考查了单项式:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.12.(2分)(2017•西宁)市民惊叹西宁绿化颜值暴涨,2017年西宁市投资25160000元实施生态造林绿化工程建设项目,将25160000用科学记数法表示为 2.516×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:将2516 0000用科学记数法表示为2.516×107.故答案为:2.516×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.(2分)(2017•西宁)若一个正多边形的一个外角是40°,则这个正多边形的边数是9.【分析】利用任意凸多边形的外角和均为360°,正多边形的每个外角相等即可求出答案.【解答】解:多边形的每个外角相等,且其和为360°,据此可得=40,解得n=9.故答案为9.【点评】本题主要考查了正多边形外角和的知识,正多边形的每个外角相等,且其和为360°,比较简单.14.(2分)(2017•西宁)计算:(2﹣2)2=16﹣8.【分析】根据完全平方公式即可求出答案.【解答】解:原式=4﹣8+12=16﹣8故答案为:16﹣8【点评】本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.15.(2分)(2017•西宁)若x1,x2是一元二次方程x2+3x﹣5=0的两个根,则x12x2+x1x22的值是15.【分析】由根与系数的关系可求得(x1+x2)与x1x2的值,代入计算即可.【解答】解:∵x1,x2是一元二次方程x2+3x﹣5=0的两个根,∴x1+x2=﹣3,x1x2=﹣5,∴x12x2+x1x22=x1x2(x1+x2)=﹣5×(﹣3)=15,故答案为:15.【点评】本题主要考查根与系数的关系,由根与系数的关系求得(x1+x2)与x1x2的值是解题的关键.16.(2分)(2017•西宁)圆锥的主视图是边长为4cm的等边三角形,则该圆锥侧面展开图的面积是8πcm2.【分析】根据题意确定出圆锥的底面半径与母线,进而确定出侧面展开图面积即可.【解答】解:根据题意得:圆锥的底面半径为2cm,母线长为4cm,则该圆锥侧面展开图的面积是8πcm2.故答案为:8π【点评】此题考查了简单几何体的三视图,几何体的展开图,以及圆锥的计算,熟练掌握公式是解本题的关键.17.(2分)(2017•西宁)如图,四边形ABCD内接于⊙O,点E在BC的延长线上,若∠BOD=120°,则∠DCE=60°.【分析】先根据圆周角定理求出∠A的度数,再由圆内接四边形的性质即可得出结论.【解答】解:∵∠BOD=120°,∴∠A=∠BOD=60°.∵四边形ABCD是圆内接四边形,∴∠DCE=∠A=60°.故答案为:60°.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.18.(2分)(2017•西宁)如图,点A在双曲线y=(x>0)上,过点A作AC ⊥x轴,垂足为C,OA的垂直平分线交OC于点B,当AC=1时,△ABC的周长为+1.【分析】由OA的垂直平分线交OC于点B,可得出OB=AB,结合三角形的周长公式可得出△ABC的周长=OC+CA,由AC的长度利用反比例函数图象上点的坐标特征,即可得出点A的坐标,进而即可得出△ABC的周长.【解答】解:∵OA的垂直平分线交OC于点B,∴OB=AB,=AB+BC+CA=OB+BC+CA=OC+CA.∴C△ABC∵点A在双曲线y=(x>0)上,AC=1,∴点A的坐标为(,1),=OC+CA=+1.∴C△ABC故答案为:+1.【点评】本题考查了反比例函数图象上点的坐标特征以及线段垂直平分线的性质,根据线段垂直平分线的性质找出C=OC+CA是解题的关键.△ABC19.(2分)(2017•西宁)若点A(m,n)在直线y=kx(k≠0)上,当﹣1≤m≤1时,﹣1≤n≤1,则这条直线的函数解析式为y=x或y=﹣x.【分析】分别把(﹣1,﹣1),(﹣1,1)代入可得直线解析式.【解答】解:∵点A(m,n)在直线y=kx(k≠0)上,﹣1≤m≤1时,﹣1≤n≤1,∴点(﹣1,﹣1)或(﹣1,1)都在直线上,∴k=﹣1或1,∴y=x或y=﹣x,故答案为:y=x或y=﹣x.【点评】本题考查了待定系数法求正比例函数的解析式,把(﹣1,﹣1)和(1,1)分别代入求出k的值是解题的关键.20.(2分)(2017•西宁)如图,将▱ABCD沿EF对折,使点A落在点C处,若∠A=60°,AD=4,AB=6,则AE的长为.【分析】过点C作CG⊥AB的延长线于点G,易证△D′CF≌△ECB(ASA),从而可知D′F=EB,CF=CE,设AE=x,在△CEG中,利用勾股定理列出方程即可求出x 的值.【解答】解:过点C作CG⊥AB的延长线于点G,在▱ABCD中,∠D=∠EBC,AD=BC,∠A=∠DCB,由于▱ABCD沿EF对折,∴∠D′=∠D=∠EBC,∠D′CE=∠A=∠DCB,D′C=AD=BC,∴∠D′CF+∠FCE=∠FCE+∠ECB,∴∠D′CF=∠ECB,在△D′CF与△ECB中,∴△D′CF≌△ECB(ASA)∴D′F=EB,CF=CE,∵DF=D′F,∴DF=EB,AE=CF设AE=x,则EB=6﹣x,CF=x,∵BC=4,∠CBG=60°,∴BG=BC=2,由勾股定理可知:CG=2,∴EG=EB+BG=6﹣x+2=8﹣x在△CEG中,由勾股定理可知:(8﹣x)2+(2)2=x2,解得:x=AE=故答案为:【点评】本题考查平行四边形的综合问题,解题的关键是证明△D′CF≌△ECB,然后利用勾股定理列出方程,本题属于中等题型.三、解答题(本大题共8小题,共70分)21.(7分)(2017•西宁)计算:﹣22+(﹣π)0+|1﹣2sin60°|【分析】根据乘方、零指数幂、绝对值、特殊角的三角函数值进行计算即可.【解答】解:原式=﹣4+1+|1﹣2×|=﹣3+﹣1=﹣4.【点评】本题考查了实数的运算,掌握乘方、零指数幂、绝对值、特殊角的三角函数值是解题的关键.22.(7分)(2017•西宁)先化简,再求值:(﹣m﹣n)÷m2,其中m﹣n=.【分析】现根据分式的混合运算顺序和法则化简原式,再代入求解即可得.【解答】解:原式=[﹣(m+n)]•=•=•=,∵m﹣n=,∴n﹣m=﹣,则原式==﹣.【点评】本题主要考查分式的化简求值,熟练掌握分式的混合运算顺序和运算法则是解题的关键.23.(8分)(2017•西宁)如图,四边形ABCD中,AC,BD相交于点O,O是AC 的中点,AD∥BC,AC=8,BD=6,.(1)求证:四边形ABCD是平行四边形;(2)若AC⊥BD,求▱ABCD的面积.【分析】(1)由已知条件易证△AOD≌△COB,由此可得OD=OB,进而可证明四边形ABCD是平行四边形;(2)由(1)和已知条件可证明四边形ABCD是菱形,由菱形的面积公式即可得解.【解答】解:(1)∵O是AC的中点,∴OA=OC,∵AD∥BC,∴∠ADO=∠CBO,在△AOD和△COB中,,∴△AOD≌△COB,∴OD=OB,∴四边形ABCD是平行四边形;(2)∵四边形ABCD是平行四边形,AC⊥BD,∴四边形ABCD是菱形,∴▱ABCD的面积=AC•BD=24.【点评】此题主要考查平行四边形的判定和菱形的判断和性质.熟练掌握各种特殊四边形的性质定理和判定定理是解题的关键.24.(8分)(2017•西宁)如图,建设“幸福西宁”,打造“绿色发展样板城市”.美丽的湟水河宛如一条玉带穿城而过,已形成“水清、流畅、岸绿、景美”的生态环境新格局.在数学课外实践活动中,小亮在海湖新区自行车绿道北段AC上的A,B两点分别对南岸的体育中心D进行测量,分别测得∠DAC=30°,∠DBC=60°,AB=200米,求体育中心D到湟水河北岸AC的距离约为多少米(精确到1米,≈1.732)?【分析】如图,过点D作DH⊥AC于点H.通过解直角△BHD得到sin60°===,由此求得DH的长度.【解答】解:过点D作DH⊥AC于点H.∵∠HBD=∠DAC+∠BDA=60°,而∠DAC=30°,∴∠BDA=∠DAC=30°,∴AB=DB=200.在直角△BHD中,sin60°===,∴DH=100≈100×1.732≈173.答:体育中心D到湟水河北岸AC的距离约为173米.【点评】本题考查了解直角三角形的应用.主要是正切概念及运算,关键把实际问题转化为数学问题加以计算.25.(8分)(2017•西宁)西宁市教育局在局属各初中学校设立“自主学习日”,规定每周三学校不得以任何形式布置家庭作业,为了解各学校的落实情况,从七、八年级学生中随机抽取了部分学生的反馈表,针对以下六个项目(每人只能选一项):A.课外阅读;B.家务劳动;C.体育锻炼;D.学科学习;E.社会实践;F.其他项目进行调查,根据调查结果绘制了如下尚不完整的统计图,请你根据统计图解答下列问题:(1)此次抽查的样本容量为1000,请补全条形统计图;(2)全市约有4万名在校初中学生,试估计全市学生中选择体育锻炼的人数约有多少人?(3)七年级(1)班从选择社会实践的2名女生和1名男生中选派2名参加校级社会实践活动,请你用树状图或列表法求出恰好选到1男1女的概率是多少?并列举出所有等可能的结果.【分析】(1)根据=百分比,计算即可;(2)用样本估计总体的思想,即可解决问题;(3)画出树状图,求出所有可能,以及一男一女的可能数,利用概率公式计算即可;【解答】解:(1)总人数=200÷20%=1000,故答案为1000,B组人数=1000﹣200﹣400﹣200﹣50﹣50=100人,条形图如图所示:(2)参加体育锻炼的人数的百分比为40%,用样本估计总体:40%×40000=16000人,答:全市学生中选择体育锻炼的人数约有16000人.(3)设两名女生分别用A1,A2,一名男生用B表示,树状图如下:共有6种情形,恰好一男一女的有4种可能,所以恰好选到1男1女的概率是=.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了扇形统计图和条形统计图.26.(10分)(2017•西宁)如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D,过点D作⊙O的切线DE交AC于点E,交AB延长线于点F.(1)求证:DE⊥AC;(2)若AB=10,AE=8,求BF的长.【分析】(1)连接OD、AD,由AB=AC且∠ADB=90°知D是BC的中点,由O是AB中点知OD∥AC,根据OD⊥DE可得;(2)证△ODF∽△AEF得=,据此可得答案.【解答】解:(1)连接OD、AD,∵DE切⊙O于点D,∴OD⊥DE,∵AB是直径,∴∠ADB=90°,∵AB=AC,∴D是BC的中点,又∵O是AB中点,∴OD∥AC,∴DE⊥AC;(2)∵AB=10,∴OB=OD=5,由(1)得OD∥AC,∴△ODF∽△AEF,∴==,设BF=x,AE=8,∴=,解得:x=,经检验x=是原分式方程的根,且符合题意,∴BF=.【点评】本题主要考查等腰三角形的性质、切线的性质及相似三角形的判定与性质,熟练掌握等腰三角形的性质、切线的性质及相似三角形的判定与性质是解题的关键.27.(10分)(2017•西宁)首条贯通丝绸之路经济带的高铁线﹣﹣宝兰客专进入全线拉通试验阶段,宝兰客专的通车对加快西北地区与“一带一路”沿线国家和地区的经贸合作、人文交流具有十分重要的意义,试运行期间,一列动车从西安开往西宁,一列普通列车从西宁开往西安,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示y与x之间的函数关系,根据图象进行一下探究:【信息读取】(1)西宁到西安两地相距1000千米,两车出发后3小时相遇;(2)普通列车到达终点共需12小时,普通列车的速度是千米/小时.【解决问题】(3)求动车的速度;(4)普通列车行驶t小时后,动车到达终点西宁,求此时普通列车还需行驶多少千米到达西安?【分析】(1)由x=0时y=1000及x=3时y=0的实际意义可得答案;(2)根据x=12时的实际意义可得,由速度=可得答案;(3)设动车的速度为x千米/小时,根据“动车3小时行驶的路程+普通列出3小时行驶的路程=1000”列方程求解可得;(4)先求出t小时普通列车行驶的路程,继而可得答案.【解答】解:(1)由x=0时,y=1000知,西宁到西安两地相距1000千米,由x=3时,y=0知,两车出发后3小时相遇,故答案为:1000,3;(2)由图象知x=t时,动车到达西宁,∴x=12时,普通列车到达西安,即普通列车到达终点共需12小时,普通列车的速度是=千米/小时,故答案为:12,;(3)设动车的速度为x千米/小时,根据题意,得:3x+3×=1000,解得:x=250,答:动车的速度为250千米/小时;(4)∵t==4(小时),∴4×=(千米),∴1000﹣=(千米),∴此时普通列车还需行驶千米到达西安.【点评】本题主要考查一次函数的应用,根据题意弄懂函数图象中各拐点坐标的实际意义及行程问题中蕴含的相等关系是解题的关键.28.(12分)(2017•西宁)如图,在平面直角坐标系中,矩形OABC的顶点A,C 分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交BE于点F,点D,E的坐标分别为(3,0),(0,1).(1)求抛物线的解析式;(2)猜想△EDB的形状并加以证明;(3)点M在对称轴右侧的抛物线上,点N在x轴上,请问是否存在以点A,F,M,N为顶点的四边形是平行四边形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.【分析】(1)由条件可求得抛物线的顶点坐标及A点坐标,利用待定系数法可求得抛物线解析式;(2)由B、D、E的坐标可分别求得DE、BD和BE的长,再利用勾股定理的逆定理可进行判断;(3)由B、E的坐标可先求得直线BE的解析式,则可求得F点的坐标,当AF 为边时,则有FM∥AN且FM=AN,则可求得M点的纵坐标,代入抛物线解析式可求得M点坐标;当AF为对角线时,由A、F的坐标可求得平行四边形的对称中心,可设出M点坐标,则可表示出N点坐标,再由N点在x轴上可得到关于M点坐标的方程,可求得M点坐标.【解答】解:(1)在矩形OABC中,OA=4,OC=3,∴A(4,0),C(0,3),∵抛物线经过O、A两点,∴抛物线顶点坐标为(2,3),∴可设抛物线解析式为y=a(x﹣2)2+3,把A点坐标代入可得0=a(4﹣2)2+3,解得a=﹣,∴抛物线解析式为y=﹣(x﹣2)2+3,即y=﹣x2+3x;(2)△EDB为等腰直角三角形.证明:由(1)可知B(4,3),且D(3,0),E(0,1),∴DE2=32+12=10,BD2=(4﹣3)2+32=10,BE2=42+(3﹣1)2=20,∴DE2+BD2=BE2,且DE=BD,。
青海省西宁市2017-2018学年七年级数学11月月考试题 新人教版

青海省西宁市2017-2018学年七年级数学11月月考试题一、选择题(每小题3分,共8小题,共24分)1.已知下列方程:①;②0.3x=1;③;④x2﹣4x=3;⑤x=6;⑥x+2y=0.其中一元一次方程的个数是()A.2 B.3 C.4 D.52.多项式x2+3x﹣2中,下列说法错误的是()A.这是一个二次三项式 B.二次项系数是1C.一次项系数是3 D.常数项是23.下列利用等式的性质,错误的是()A.由a=b,得到5﹣2a=5﹣2b B.由=,得到a=bC.由a=b,得到ac=bc D.由a=b,得到=4.下列去括号正确的是()A. B.C. D.5.若x=1是方程2x+m﹣6=0的解,则m的值是()A.﹣4 B.4 C.﹣8 D.86.在解方程时,去分母正确的是()A.3(x﹣1)﹣2(2x+3)=6 B.3(x﹣1)﹣2(2x+3)=1C.2(x﹣1)﹣2(2x+3)=6 D.3(x﹣1)﹣2(2x+3)=37.已知﹣x2m﹣3+1=7是关于x的一元一次方程,则m的值是()A.﹣1 B.1 C.﹣2 D.28.某校社团活动课中,手工制作社的同学用一种彩色硬纸板制作某种长方体小礼品的包装盒,每张硬纸板可制作盒身12个,或制作盒底18个,1个盒身与2个盒底配成一套,现有42张这种彩色硬纸板,要使盒身和盒底刚好配套,若设需用x张做盒身,则下面所列方程正确的是()A.18(42﹣x)=12x B.2×18(42﹣x)=12xC.18(42﹣x)=2×12x D.18(21﹣x)=12x二、填空题(每空2分,共20分)9.单项式﹣的系数是 ,次数是 _ ___ .10.苹果原价是每千克x 元,按8折优惠出售,该苹果现价是每千克 元(用含x 的代数式表示).11.由方程x+5= 6得到x= 1,依据是 .12.若2x 3y n 与﹣5x m y 是同类项,则n m = .13.用式子表示“比a 的平方的2倍小1的数”为14.当x= 时,代数式x ﹣1与2x+10的值互为相反数。
2017-2018学年度第二学期人教版七年级第三次月考数学试卷

……外…………………装…○………___________姓名:_班级:_______……○…………装………………订……………线…………○绝密★启用前2017-2018学年度第二学期 人教版七年级第三次月考数学试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.本卷25题,答卷时间100分,满分120分 案是( )A. B. C. D.2.(本题3分)(河北)a ,b 是两个连续整数,若a < 7<b ,则a ,b 分别是( ) A. 2,3 B. 3,2 C. 3,4 D. 6,8 3.(本题3分)如图所示,若点E 的坐标为(-2,1),点F 的坐标为(1,-1),则点G 的坐标为( )A. (1,2)B. (2,2)C. (2,1)D. (1,1) 4.(本题3分)如图,在方格纸上画出的小红旗图案,若用(0,0)表示点A ,(0,4)表示点B ,那么点C 的坐标是( )A. (﹣3,0)B. (﹣2,3)C. (﹣3,2)D. (﹣3,﹣2) 5.(本题3分)“珍爱生命,拒绝毒品”,学校举行的2017年禁毒知识竞赛共有60道题,曾浩同学答对了x 道题,答错了y 道题(不答视为答错),且答对题数比答错题数的7倍还多4道,那么下面列出的方程组中正确的是( )○………装……………订…………○※※要※※在※※装※※※内※※答※※题※※ ………………6.(本题3分)某班有x 人,分y 个学习小组,若每组7人,则余下3人;若每组8人,则不足5人,求全班人数及分组数.正确的方程组为( ) A. 73{85y x y x =-=+ B. 73{85y x y x =+=-C. 73{85y x x y =+=- D. 73{85x y x y =-=+7.(本题3210a b -+=,则()2015b a -=( )A. -1B. 1C. 52015D. -520158.(本题3分)如图,直线a ∥b ,∠1=72∘ ,则∠2的度数是 ( )A. 118∘B. 108∘C. 98∘D. 72∘ 9.(本题3分)一个正数的平方根是x -5和x +1,则x 的值为( ) A. 2 B. -2 C. 0 D. 无法确定 10.(本题3分)如图,设他们中有x 个成人,y 个儿童.根据图中的对话可得方程组( )A. x+y=30{30x+15y=195 B. x+y=195{30x+15y=8C. x+y=8{30x+15y=195D. x+y=15{30x+15y=195二、填空题(计32分)11.(本题4分)如图利用直尺和三角板过已知直线l 外一点p 作直线l 平行线的方法,其理由是_____________○…………装………订………○…………线学校:___________姓___________考号:_______……○…………订…………○…………………○…………内…………12.(本题4分)若x ,y (2x +3y -13)2=0,则2x -y 的值为________. 13.(本题4分)一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了_____道题. 14.(本题4分)如图,一所学校的平面示意图中,如果图书馆的位置记作(3,2),实验楼的位置记作(1,﹣1),则校门的位置记作________.15.(本题4分)在直角坐标系中,如图有△ABC ,现另有一点D 满足以A 、B 、D 为顶点的三角形与△ABC 全等,则D 点坐标为____________16.(本题4分)已知方程组4{2ax by ax by -=+=的解为2{1x y ==,求23a b -的值___________.17.(本题4分)若x 3m ﹣3﹣2y n ﹣1=5是二元一次方程,则m n=________. 18.(本题4分)如图,在平面直角坐标系中,点A 是x 轴正半轴上的一个动点,点C 是y 轴正半轴上的点,BC ⊥AC 于点C .已知AC=8,BC=3. (1)线段AC 的中点到原点的距离是_____; (2)点B 到原点的最大距离是_____.三、解答题(计58分)(1()20171-(231-○…………外………○………※※在※※装※※订※※线…………线20.(本题8分)解方程组:(1)2{ 15233x y x y +=-=;(2)22{ 3210x y x y +=-=.21.(本题8分)如图, AD BE , 12∠=∠,试说明: A E ∠=∠.22.(本题8分)如图所示,直线AB 与CD 相交于点O ,OE 平分∠AOD ,∠BOC=80°,求∠BOD 和∠AOE 的度数.装…………○…………_姓名:___________班级:________…………○…………线…………○… 23.(本题8分)已知x -9的平方根是±3,x +y 的立方根是3. (1)求x ,y 的值;(2)x -y 的平方根是多少?24.(本题9分)已知点A (a ,0)、B (b ,0)+|b ﹣2|=0.(1)求a 、b 的值. (2)在y 轴的正半轴上找一点C ,使得三角形ABC 的面积是15,求出点C 的坐标. (3)过(2)中的点C 作直线MN ∥x 轴,在直线MN 上是否存在点D ,使得三角形ACD 的面积是三角形ABC 面积的12?若存在,求出点D 的坐标;若不存在,请说明理由.25.(本题9分)某专卖店有A,B两种商品.已知在打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元;A,B两种商品打相同折以后,某人买500件A商品和450件B商品一共比不打折少花1960元,计算打了多少折?参考答案1.C【解析】解:A .通过翻折变换得到.故本选项错误; B .通过旋转变换得到.故本选项错误; C .通过平移变换得到.故本选项正确; D .通过旋转变换得到.故本选项错误. 故选C . 2.A【解析】解:根据题意,可知 < ,可得a =2,b =3.故选A . 3.A【解析】根据点E ,F 的坐标分别确定出坐标轴及原点的位置并建立平面直角坐标系,即可得出点G 的坐标. 解:由点E 坐标为(−2,1),点F 坐标为(1,−1)可知左数第四条竖线是y 轴,点E 与点F 中间的横线是x 轴,其交点是原点,则点G 的坐标为(1,2). 故选A.点睛:本题主要考查点的坐标.根据已知条件正确建立平面直角坐标系是解题的关键. 4.C【解析】根据题意,以点A 为坐标原点(0,0),(0,4)表示点B ,建立平面直角坐标系,然后根据平面直角坐标系如图,可求出点C 的坐标是(﹣3,2). 故选:C. 5.A【解析】解:由题意可得, {x +y =60x −7y =4,故选A .点睛:本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,找出题目中的等量关系,列出相应的方程组. 6.A【解析】根据题意:(1)由“若每组7人,则余下3人”可得: 73y x =-;(2)由“若每组8人,则不足5人”可得: 85y x =+; 综上可得:正确的方程组是73{ 85y x y x =-=+ .故选A. 7.A2a b 10-+=, ∴5{21a b a b +=--=-,解得: 2{3a b =-=-,则(b −a)2015=(−3+2)2015=−1. 故选:A. 8.B【解析】试题解析:∵直线a ∥b , ∴∠2=∠3, ∵∠1=72°, ∴∠3=108°, ∴∠2=108°, 故选B .9.A【解析】试题解析:由题意得,x −5+x +1=0, 解得:x =2. 故选A.点睛:根据一个正数的两个平方根应该互为相反数,由此即可列方程解出x 的值. 10.C【解析】根据题意,(1)由“我们8个人去看电影”可得: 8x y +=;(2)由“每张成人票30元,每张儿童票15元,买门票一共花了195元”可得: 3015195x y +=; 综上可得正确的方程组是: 8{3015195x y x y +=+= .故选C.11.同位角相等,两直线平行【解析】试题解析:由图形得,有两个相等的同位角存在,所以依据:同位角相等,两直线平行,即可得到所得的直线与已知直线平行. 故答案为:同位角相等,两直线平行.点睛:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行. 12.1【解析】利用非负数的性质列出方程组,求出方程组的解得到x 与y 的值,代入原式计算即可得到结果.+(2x +3y -13)2=0,∴235{2313x y x y -=-+=,解得: 2{ 3x y ==,则2x −y =4−3=1, 故答案为:1. 13.5【解析】试题解析:设答对x 道题,答错了y 道题,根据题意可得:20{5265x y x y +=-=,解得: 15{5x y ==,故他答错了5道题. 故答案为:5. 14.(﹣2,0)【解析】解:建立坐标系如图所示,由图象可知,校门的位置记作(﹣2,0).故答案为:(﹣2,0).点睛:本题考查坐标确定位置,解题的关键是坐标系的建立,学会根据条件建立坐标系. 15.(2,2)(0,-2)(2,-2)【解析】解:∵A (﹣1,0)、B (3,0)、C (0,2),∴BC情况:①AD =BC =②BD =BC即符合条件的D 点坐标是(0,﹣2),(﹣2,﹣2),(2,2). 故答案为:(0,﹣2),(2,﹣2),(2,2).16.6【解析】试题分析:把2{1x y ==代入4{2ax by ax by -=+=中,得: 24{22a b a b -=+=,解得: 3{21a b -==,所以2a -3b =2×32-3×(-1)=6. 故答案为6.点睛:考查了解二元一次方程组和二元一次方程组的解的定义,所谓“方程组”的解,指的是该数值满足方程组中的每一方程. 17.169【解析】试题解析由题意得:3m-3=1,n-1=1,解得:m=43,n=2, ∴m n=(43)2=169.故答案为: 169.18. 4 9【解析】(1)因为∠AOC =90°,AC =8,所以线段AC 的中点到原点的距离是: 12,AC =4, (2)取AC 的中点E ,连接BE,OE,OB, 因为∠AOC =90°,AC =8,所以OE=CE =12,AC =4, 因为BC ⊥AC,BC =3, 所以BE=5,若点O,E,B 不在一条直线上,则OB<OE+BE=9,若点O,E,B 在一条直线上,则OB=OE+BE =9,故答案为:4,9.19.(1)-1.6;(2)4;【解析】试题分析:(1)第一项表示0.16的算术平方根,第二项表示-27的立方根,第三项表示4的算术平方根,第四项-1的奇次幂仍是-1;(2)先判断绝对值内的式子的正负性,然后再去绝对值化简.(1)解:原式=0.4﹣3+2﹣1=﹣1.6(2)解:原式=﹣ ﹣3+ + ﹣1=2 ﹣4 20.(1)1{ 1x y ==;(2)2{ 2x y ==-.【解析】试题分析:(1)将方程②×3后,再加上①消去y ,据此求得x 的值,将x 的值代入方程①可得y ;(2)方程①×2后,加上方程②消去y ,据此求得x 的值,将x 的值代入方程①可得y . 试题解析:(1)原方程组整理得2{65x y x y +=-=①②, ①+②,得:7x=7,解得:x=1,将x=1代入①,得:1+y=2,解得:y=1,∴方程组的解为1{ 1x y ==;(2)22{ 3210x y x y +=-=①②,①×2,得:4x+2y=4 ③,②+③,得:7x=14,解得:x=2,将x=2代入①,得:4+y=2,解得:y=﹣2,∴方程组的解为2{2x y ==-.21.见解析【解析】试题分析:根据平行线的性质,得到3A ∠=∠.根据12∠=∠,得到DE AC , 再根据平行线的性质,得到3E ∠=∠,根据等量代换即可证明.试题解析:因为AD //BE ,所以3A ∠=∠.因为12∠=∠,所以DE //AC ,所以3E ∠=∠,所以A E ∠=∠.22.∠AOE=40°.【解析】试题分析: 根据∠BOD 与∠BOC 是邻补角,∠BOC =80°,可求得:∠BOD =180°—∠BOC =100°,再根据∠AOD 与∠BOC 是对顶角,可得:∠AOD =∠BOC =80°,因为OE 平分∠AOD ,所以∠AOE =12∠BOC =40°. 试题解析:因为∠BOD 与∠BOC 是邻补角,∠BOC =80°,所以∠BOD =180°—∠BOC =100°,又因为∠AOD 与∠BOC 是对顶角,所以∠AOD =∠BOC =80°,又因为OE 平分∠AOD ,所以∠AOE =12∠BOC =40°. 23.(1) y =9;(2) x -y 的平方根是±3. 【解析】试题分析:(1)根据平方根和立方根的概念列出方程,解方程求出x ,y 的值;根(2)据平方根的概念解答即可.试题解析:(1)∵x -9的平方根是±3,∴x -9=9,解得x =18.∵27的立方根是3,∴x +y =27,∴y =9;(2)由(1)得x -y =18-9=9,9的平方根是±3,∴x -y 的平方根是±3.24.(1)a=﹣4,b=2;(2)C (0,5);(3)D (3,5)或(﹣3,5).【解析】试题分析:(1)根据非负数的性质列方程,解方程即可得到结论;(2)由A (﹣4,0)、B (2,0),得到AB =6,根据三角形ABC 的面积是15,列方程求解即可得到结论;(3)根据三角形ABC 的面积是15列方程,解方程即可得到结论.试题解析:解:(1)∵(a +4)2+|b ﹣2|=0,∴a +4=0,b ﹣2=0,∴a =﹣4,b =2;(2)如图1,∵A (﹣4,0)、B (2,0),∴AB =6,∵三角形ABC 的面积是15,∴ 12AB •OC =15,∴OC =5,∴C (0,5);(3)存在,如图2,∵三角形ABC 的面积是15,∴S △ACD =12CD •OC =12×15,∴12CD ×5=12×15,∴CD =3,∴D (3,5)或(﹣3,5).点睛:本题考查了坐标与图形的性质,非负数的性质,三角形的面积,正确作出图形是解题的关键.25.打了八折.【解析】试题分析:设打折前A商品的单价为x元/件、B商品的单价为y元/件,根据“买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元”,即可得出关于x、y的二元一次方程组,解之即可得出x、y的值,再算出打折前购买500件A商品和450件B商品所需钱数,结合少花钱数即可求出折扣率.试题解析:设打折前A商品的单价为x元/件、B商品的单价为y元/件,根据题意得:60x+30y=108050x+10y=840,解得:x=16y=4,500×16+450×4=9800(元),9800−19609800=0.8.答:打了八折.考点:二元一次方程组的应用.。
青海省西宁市七年级上学期数学第一次月考试卷

青海省西宁市七年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共10题,每小题3分,共30分.在每小题给出的 (共10题;共30分)1. (3分)下列每组数中,相等的是()A . -(-3)和-3;B . +(-3)和-(-3);C . -(-3)和|-3|;D . -(-3)和-|-3|.2. (3分) (2018七上·青山期中) 下列计算结果为负数的是()A . ﹣(﹣2)3B . ﹣(﹣2)4C . (﹣1)﹣(﹣3)D . 16÷(﹣4)23. (3分) (2019七上·铜仁期中) 给出下列各数式,① ② ③ ④ 计算结果为负数的有()A . 1个B . 2个C . 3个D . 4个4. (3分) (2018七上·衢州月考) 2018的绝对值是()A . 2018B . -2018C .D . -5. (3分) (2017七上·建昌期末) 在5,1,﹣2,﹣7这四个数中,比﹣5小的数是()A . ﹣2B . ﹣7C . 5D . 16. (3分)计算:(+﹣)×24的结果是()A . -2B . -1C . 2D . 17. (3分)如果a>0,b<0,且│a│<│b│,则下列结论错误的是()A . a+b<0B . a-b<0C . ab<0D . <08. (3分)下列各式:①a0=1;②a2•a3=a5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x2+x2=2x2 ,其中正确的是()A . ①②③B . ①③⑤C . ②③④D . ②④⑤9. (3分)下列叙述:①几个非零数相乘,如果有偶数个负因数,则积为正数;②相反数等于本身的数只有0;③倒数等于本身的数是0和±1;④﹣>﹣.错误的个数是()A . 0B . 1C . 2D . 310. (3分)对于非零有理数a:0+a=a,1×a=a,1+a=a,0×a=a,a×0=a,a÷1=a,0÷a=a,a÷0=a,a1=a,a÷a=1中总是成立的有()A . 5个B . 6个C . 7个D . 8个二、填空题(本大题共10题,每小题3分,共30分.) (共10题;共30分)11. (3分)(2017·六盘水) 定义:A={b,c,a},B={c},A∪B={a,b,c},若M={﹣1},N={0,1,﹣1},则M∪N={________}.12. (3分) (2019七下·川汇期末) 的绝对值是________.13. (3分) (2019七上·北京月考) 比较大小:﹣3________﹣2.1,﹣(﹣2)________﹣|﹣2|(填>”,“<”或“=”).14. (3分)﹣7+4=________15. (3分) (2019七上·南通月考) 对任意一个四位数,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称为“幸运数”;如果一个正整数是另一个正整数的平方,则称正整数是完全平方数.若四位数为“幸运数”,且的三十三分之一是完全平方数,则符合条件的最大一个的值为________.16. (3分)(2020·荆州) 若,则a,b,c的大小关系是________.(用<号连接)17. (3分) (2019七上·博兴期中) 数轴上A、B两点离开原点的距离分别为2和3,则两点间的距离为________.18. (3分) (2016七上·汉滨期中) 如果x2﹣2y=1,那么4x2﹣8y+5=________.19. (3分)如果“□×(- )=1”,那么“□”内应填的数是________.20. (3分) (2019七上·江津期中) 现规定一种新的运算△:a△b=ab如4△2=42=16,则()△3的值为________.三、解答题(本大题共8题,共60分.) (共6题;共60分)21. (16分) (2018七上·彝良期末) 计算:(1);(2).22. (8分) (2018七下·福清期中) 计算:(1)(2)23. (8分) (2016七下·翔安期末) 将下列一组数有选择的填入相应集合的圈内:5,7,﹣2.5,﹣100,0,99.9,﹣0.01,﹣424. (8分) (2020七上·茶陵期末) 数轴是初中数学的一个重要工具,利用数轴可以将数与形进行完美地结合.研究数轴我们发现了很多重要的规律.譬如:数轴上点A、点B表示的数分别为 a、b,则 A、B两点之间的距离,线段AB的中点表示的数为.如图,数轴上点A表示的数为-2,点B表示的数为1.(1)求线段AB的长和线段AB的中点表示的数.(2)找出所有符合条件的整数x,使得.并由此探索猜想,对于任意的有理数x,是否有最小值,如果有,写出最小值;如果没有,请说明理由.(3)点C在数轴上对应的数为x,且x是方程的解.数轴上是否存在一点P,使得PA+PB=PC,若存在,写出点P对应的数;若不存在,请说明理由.25. (8分) (2020七上·咸阳月考) 一场游戏规则如下:( 1 )每人每次抽4张卡片,如果抽到形如的卡片,那么加上卡片上的数字,如果抽到形如的卡片,那么减去卡片上的数字;( 2 )比较两人所抽到的4张卡片的计算结果,结果大的为胜者.请你通过计算(要求有计算过程)回答本次游戏获胜的是谁?小亮抽到的卡片如图所示:小丽抽到的卡片如图所示:26. (12分) (2011七下·河南竞赛) 阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为∣AB∣。
青海省西宁市七年级上学期数学第一次月考试卷

青海省西宁市七年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共10题,每小题3分,共30分.在每小题给出的 (共10题;共30分)1. (3分)如图,数轴上有四个点M,P,N,Q,若点M,N表示的数互为相反数,则图中表示绝对值最大的数对应的点是()A . 点MB . 点NC . 点PD . 点Q2. (3分)(2014·宁波) 下列各数中,既不是正数也不是负数的是()A . 0B . ﹣1C .D . 23. (3分)下面关于有理数的说法正确的是A . 整数和分数统称为有理数B . 正整数集合与负整数集合合在一起就构成整数集合C . 有限小数和无限循环小数不是有理数D . 正数、负数和零统称为有理数4. (3分)下列运算正确的是()A . -2(3x-1)=-6x-1B . -2(3x-1)=-6x+1C . -2(3x-1)=-6x-2D . -2(3x-1)=-6x+25. (3分) (2018七上·深圳期中) 点P在数轴上的位置如图所示,化简|P-1|+|P+2|=()A . 2P﹣3B . 2P+1C . ﹣3D . 16. (3分) (2017七上·衡阳期中) 若|m|=3,|n|=2,且mn<0,则m﹣n的值是()A . ﹣1或1B . 5C . ﹣5或5D . ﹣17. (3分)化简-[-(5x-4y)]的结果是()A . 5x-4yB . 4y-5xC . 5x+4yD . -5x-4y8. (3分)数轴上的点A、B分别表示和,则线段AB的中点所表示的数是()A .B .C .D .9. (3分)若,则三者之间的大小关系满足()A .B .C .D .10. (3分) (2017七下·肇源期末) 下列运算中,正确的是().A . -|-3|= 3B .C . ﹣2(x﹣3y)=﹣2x+3yD . 5x2﹣2x2=3x2二、填空题(本大题共10题,每小题3分,共30分.) (共10题;共30分)11. (3分) (2010七下·浦东竞赛) 三个连续的自然数的最小公倍数是168,那么这三个自然数的和等于________ .12. (3分) (2017七上·临川月考) 数轴上表示有理数-3.5与4.5两点的距离是________.13. (3分) (2018七上·长春月考) 的倒数为________14. (3分) (2017七上·昆明期中) 某种圆形零件的尺寸要求是mm(φ表示其直径,单位是毫米),经检查,某个零件的直径是19.9mm,该零件________ (填“合格”或“不合格”)15. (3分) (2016七上·牡丹期末) 我们知道,无限循环小数都可以转化为分数.例如,将0.3转化为分数时,可设x=0. ,则10x=3. =3+0. ,所以10x=3+x,解得x= 即0. = .仿此方法,将0. 化为分数是________.16. (3分) (2017七上·临川月考) 测得某乒乓球厂生产的五个乒乓球的质量误差(g)如下表.检验时,通常把比标准质量大的克数记为正,比标准质量小的克数记为负.请你选出最接近标准质量的球,是________号.号码12345误差(g)0.10.217. (3分) (2018七上·大石桥期末) 已知A、B、C三点在同一条直线上,M、N分别为线段AB、BC的中点,且AB=60,BC=40,则MN的长为________.18. (3分) (2017七下·常州期末) 若实数x、y满足方程组,则代数式2x+3y﹣4的值是________.19. (3分)(2016·新疆) 如图,下面每个图形中的四个数都是按相同的规律填写的,根据此规律确定x的值为________.20. (3分)(2018·南山模拟) 定义新运算:对于任意有理数a、b都有a⊗b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算.比如:2⊗5=2×(2﹣5)+1=2×(3)+1=6+1=5.则4⊗x=13,则x=________.三、解答题(本大题共8题,共60分.) (共6题;共60分)21. (16分) (2019七上·确山期中) 计算:(1)(﹣7)×(﹣5)﹣90÷(﹣15)(2)(﹣1)3﹣(1﹣)÷3×[(﹣2)2﹣5](3)(﹣1 )2× ÷|﹣3|+(﹣0.25)÷()6(4)﹣32﹣12×(﹣)+4÷()22. (8分)(2017七上·江门月考) 用简便方法计算:(1);(2) .23. (8分)写出同时满足下列三个条件的五个有理数:①其中三个数是整数;②其中三个数是负数;③这五个数在数轴上的点的位置都在﹣3与+3之间.24. (8分)数轴上,A点表示的数为10,B点表示的数为-6,A点运动的速度为4单位/秒,B点运动的速度为2单位/秒.(1) B点先向右运动2秒,A点再开始向左运动,当它们在C点相遇时,C点表示的数;(2) A、B两点都向左运动,B点先运动2秒时,A点再开始运动,当A点到原点的距离和B点到原点的距离相等时,求A点运动的时间;(3) A、B两点都向左运动,B先运动2秒,A再运动t秒时,求A、B两点之间的距离.25. (8分)实数a,b,c在数轴上的位置如图所示,化简|c|﹣|a|+|﹣b|+|﹣a|.26. (12分)小明家的鱼塘养了某种鱼2000条,现准备打捞出售,为了估计鱼塘中的这种鱼的总质量,现从鱼塘中捕捞了3次,得到数据如下:鱼的条数平均每条鱼的质量第一次捕捞15 1.6千克第二次捕捞15 2.0千克第三次捕捞10 1.8千克(1)鱼塘中这种鱼平均每条质量约是1千克,鱼塘中所有这种鱼的总质量约是2千克;若将这些鱼不分大小,按每千克7.5元的价格出售,小明家约可收入3元;(2)若鱼塘中这种鱼的总质量是(1)中估计的值,现在鱼塘中的鱼分大鱼和小鱼两类出售,大鱼每千克10元,小鱼每千克6元,要使小明家的此项收入不低于(1)中估计的收入,问:鱼塘中大鱼总质量应至少有多少千克?参考答案一、选择题(本大题共10题,每小题3分,共30分.在每小题给出的 (共10题;共30分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(本大题共10题,每小题3分,共30分.) (共10题;共30分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题(本大题共8题,共60分.) (共6题;共60分)21-1、21-2、21-3、21-4、22-1、22-2、23-1、24-1、24-2、24-3、25-1、26-1、26-2、。
青海省西宁市2017_2018学年七年级数学9月月考试题新人教版20171208132

青海省西宁市 2017-2018学年七年级数学 9月月考试题一、精心选一选,慧眼识金!(本题共 8个小题,每小题 3分,共 24分) 1、如果向东走2km 记作+2km ,那么-3km 表示().A.向东走3kmB.向南走3kmC.向西走3kmD.向北走3km 2、在-2,-3,-4,0四个数中,最小的一个是( )A 、-2B 、-3C 、-4D 、0 3、下列各组数中,互为相反数的是( ) 1 11A .2和-2B .-2和C .-2和-D . 和 2 2 2 2 4、下列各式中正确的是()A.-5-(-3)=-8B.+6-(-5)=1C. -7- 7 =0D.+5-(+6)=-11 35、|3| 的相反数是( )A .3B .3C .D .136、数轴上的点M 对应的数是-2,那么将点M 向右移动4个单位长度,此时点M 表示的数是 ( )A. -6B. 2C. -6或2D.都不正确7、如果 a 与 5互为相反数,则 a2 等于()A.2B.–2C. 3D.–38、有理数 a 、b 在数轴上的位置如图示,则 a+b 的值为( )abA 、大于0B 、小于0C 、等于0D 、无法确定二、耐心填一填,一锤定音!(本大题共10小题, 每题2分, 共20分) 9、3的相反数是.10、- 2 ______ .11、写出一个比-1小的数是______. 12、比较数的大小:2 45313、-5.2+(+4.8)=14、 -9 - 9=.15、绝对值小于 2的整数是_______16、如图 ,数轴上 A ,B 两点分别对应实数 a 、b ,则a 、b 的大小关系为.A B ab117、在数轴上,与原点的距离是3的点表示的数为.1 18、按一定规律排列的一列数依次为:1,-,2233,-,4455,-,…按此规律排列下去,6这列数中的第7个数为.三、认真算一算,又快又准!(本大题共6小题,每小题3分,共18分)19、计算(本小题共6小题,每小题3分,共18分)12(1)2312(2)23(3)180.12551+-(4)1234(5)-7.43-(-2.1) (6)64 20、计算(本小题共4小题,每小题4分,共16分)(1)971039(2)121467(3)-1(3)(2)1(4)4.25.7+(-8.7)4.2-+-+3434四.细心想一想,用心做一做!21(共8分)、把下列各数填在相应的集合里:1 12 014,1,-1,-2 013,0.5,,-,-0.75,0,20%.10 3正数集合:{…}负数集合:{…}整数集合:{…}2正分数集合:{…}22、(6分)把下列各数表示到数轴上,并将它们从小到大用“<”连接.1-1 ,0 ,,-3 ,2.53五、你一定是生活中的智者!23、(8分)某检修小组乘一辆检修车沿铁路检修,规定向东走为正,向西走为负,•小组的出发地记为0,某天检修完毕时,行走记录(单位:千米)如下:+10,-2,+3,-1,+9,-3,-2,+11,+3,-4,+6.(1)问收工时,检修小组距出发地有多远?在东侧还是西侧?(2)若检修车每千米耗油2.8升,求从出发到收工共耗油多少升?一、1,C 2,C 3,A 4,D 5,B 6,B7,C 8,B二,9,3 10,-2 11,-2 12,< 13,-0.414,-18 15,正负1,0 16,a<b 17, 正负318,七分之六3三,19, -11 6分之1 0 -46 -5.33 12分之720,0 20,-3 21,负2分之3 -321,正数2014, 1, 0.5, 10分之1 , 20%负数-1,-2013,-3分之1 -0.75整数2014, 1, -1,-2013,0正分数0.5, 10分之1 ,20%22.-3<-1<0<3分之1<2.523.30km 151.24。
青海省西宁市2017_2018学年高一数学上学期11月月考试题2017120502122

青海省西宁市2017-2018学年高一数学上学期11月月考试题一、选择题(本大题共12小题,每小题5分,共60分)1. 设全集U={x∈Z|-1≤x≤5},A={1,2,5},B={x∈N|-1<x<4},则B∩(∁U A)=()A. {3}B. {0,3}C. {0,4}D. {0,3,4}2. 下列函数中,在区间上是增函数的是()A. B. C. D.3、函数的定义域为( )A. B. C. D.4、设函数,则( )A. B. C. D.5、若,则实数a的取值范围是()A.(1,+∞) B.( ,+∞) C.(-∞,1) D.(-∞,)113 36、三个数0.3之间的大小关系是a0.32,b log0.3,c22A a c b. B. a b c C. b a c D.b c a7、设为定义在上的奇函数.当时, ( 为常数),则( )A.-3B.-1C.1D.38、若log a(a a2a<0,那么a的取值范围是( ).2+1)<log2+1)<logA.(0,1) B.(0,12) C.(12,1) D.(1,+∞)A. B. C. D.10、函数 f (x )=ax 2+bx +2a -b 是定义在[a -1,2a ]上的偶函数,则 a +b =( ) 1 1A .- B. C .0D .13311、偶函数 f (x )的定义域为 R ,当 x ∈[0,+∞)时,f (x )是增函数,则不等式 f (x )>f (1)的 解集是( ) A. (1,+∞)B. (-∞,1)C. (-1,1)D. (-∞,-1)∪(1,+∞)12、 函数 y =f (x )与 y =g (x )的图象如下图,则函数 y =f (x )·g (x )的图象可能是( )A. B. C.D. 题号 123456789101112答案二、填空题(本大题共 4小题,每小题 5分,共 20分) 13、函数(且 )的图像过定点 .11 114、 a1.22 ,0.9 2 , c 1.1 的大小关系为________b 215.若幂函数 y = f x的图象经过点(9,1 ), 则 f(25)的值是_________3, a a b16. 定义运算则函数 f (x )12x 的最大值为.a bb a b.三、解答题(本大题共 6小题,共 70分.解答时应写出文字说明、证明过程或演算步骤.) 17、已知集合 U=R ,A={x|x ≥3},B={x|1≤x ≤7},C={x|x ≥a-1}. (1)求 A ∩B ,A ∪B.(2)若 A ∪C=A ,求实数 a 的取值范围.- 2 -1 2321 318. 计算: 23log8(2)log2log(2)(9.6)(3)(1.5)0 2233394819、已知函数f(x)=x+,且此函数的图象过点(1,5).(1)求实数m的值;(2)判断f(x)的奇偶性;(3)讨论函数f(x)在[2,+∞)上的单调性,并写出证明过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
青海省西宁市2017-2018学年七年级数学11月月考试题
一、选择题(每小题3分,共8小题,共24分)
1.已知下列方程:①;②0.3x=1;③;④x2﹣4x=3;⑤x=6;⑥x+2y=0.其中一元一次方程的个数是()
A.2 B.3 C.4 D.5
2.多项式x2+3x﹣2中,下列说法错误的是()
A.这是一个二次三项式 B.二次项系数是1
C.一次项系数是3 D.常数项是2
3.下列利用等式的性质,错误的是()
A.由a=b,得到5﹣2a=5﹣2b B.由=,得到a=b
C.由a=b,得到ac=bc D.由a=b,得到=
4.下列去括号正确的是()
A. B.
C. D.
5.若x=1是方程2x+m﹣6=0的解,则m的值是()
A.﹣4 B.4 C.﹣8 D.8
6.在解方程时,去分母正确的是()
A.3(x﹣1)﹣2(2x+3)=6 B.3(x﹣1)﹣2(2x+3)=1
C.2(x﹣1)﹣2(2x+3)=6 D.3(x﹣1)﹣2(2x+3)=3
7.已知﹣x2m﹣3+1=7是关于x的一元一次方程,则m的值是()
A.﹣1 B.1 C.﹣2 D.2
8.某校社团活动课中,手工制作社的同学用一种彩色硬纸板制作某种长方体小礼品的包装盒,每张硬纸板可制作盒身12个,或制作盒底18个,1个盒身与2个盒底配成一套,现有42张这种彩色硬纸板,要使盒身和盒底刚好配套,若设需用x张做盒身,则下面所列方程正确的是()
A.18(42﹣x)=12x B.2×18(42﹣x)=12x
C.18(42﹣x)=2×12x D.18(21﹣x)=12x
二、填空题(每空2分,共20分)
9.单项式﹣的系数是 ,次数是 _ ___ .
10.苹果原价是每千克x 元,按8折优惠出售,该苹果现价是每千克 元(用含x 的代数式表示).
11.由方程x+5= 6得到x= 1,依据是 .
12.若2x 3y n 与﹣5x m y 是同类项,则n m = .
13.用式子表示“比a 的平方的2倍小1的数”为
14.当x= 时,代数式x ﹣1与2x+10的值互为相反数。
15.化简:a ﹣a+a= ,﹣7a 2b+7ba 2= .
16.几个人共同种一批树苗,如果每人种5棵,则剩下3棵树苗未种;如果每人种6棵,则缺4棵树苗.若设参与种树的人数为x 人,则根据题意可列方程为
三、解答题(共56分 )
17、计算下列各式(每小题5分,共15分)
(1)、)5(3)23(---a a (2)、222225533y y x y y x x +-++--
(3)、2(-2xy+3x )- 3(2x-xy)
18.解下列方程(每小题5分,共20分)
(1)6+2x=14﹣3x (2)5x+1=3(x ﹣1)+4
(3)2(2x ﹣2)+1=2x ﹣(x ﹣3) (4)
19.先化简,再求值(共8分)
(1) 8a2b +2(2a2b﹣3ab2)﹣3(4a2b﹣ab2),其中a=﹣2,b=3.
20、(6分)小明在静水中划船的速度为10千米/时,今往返于某条河,逆水用了9小时,顺水用了6小时,求该河的水流速度。
21、(7分)一份试卷共有25道题,每道题都给出了4个答案,其中只有一个正确答案,每道题选对得4分,不选或错选倒扣1分,如果一个学生得90分,那么他做对了多少道题。