黟县二中2014-2015学年上学期第一次段考
黟县第二中学校2018-2019学年高二上学期第二次月考试卷数学

黟县第二中学校2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知函数f (x )是R 上的奇函数,且当x >0时,f (x )=x 3﹣2x 2,则x <0时,函数f (x )的表达式为f (x )=( ) A .x 3+2x 2B .x 3﹣2x 2C .﹣x 3+2x 2D .﹣x 3﹣2x 22. 某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,俯视图是半径为 1的半圆,则其侧视图的面积是( )A .B .C .1D .3. 偶函数f (x )的定义域为R ,若f (x+2)为奇函数,且f (1)=1,则f (89)+f (90)为( ) A .﹣2 B .﹣1 C .0 D .1 4. 一个四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形,那么原四边形的面积是( )A .2+B .1+C .D .5. 高考临近,学校为丰富学生生活,缓解高考压力,特举办一场高三学生队与学校校队的男子篮球比赛.由于爱好者众多,高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队.首发要求每个班至少1人,至多2人,则首发方案数为( ) A .720 B .270 C .390 D .3006. 函数f (x )在x=x 0处导数存在,若p :f ′(x 0)=0:q :x=x 0是f (x )的极值点,则( ) A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件7. 已知定义域为R 的偶函数)(x f 满足对任意的R x ∈,有)1()()2(f x f x f -=+,且当]3,2[∈x 时,18122)(2-+-=x x x f .若函数)1(log )(+-=x x f y a 在),0(+∞上至少有三个零点,则实数的取值范围是( )111] A .)22,0( B .)33,0( C .)55,0( D .)66,0(8. 若直线y=kx ﹣k 交抛物线y 2=4x 于A ,B 两点,且线段AB 中点到y 轴的距离为3,则|AB|=( ) A .12 B .10 C .8 D .69. 过直线3x ﹣2y+3=0与x+y ﹣4=0的交点,与直线2x+y ﹣1=0平行的直线方程为( ) A .2x+y ﹣5=0B .2x ﹣y+1=0C .x+2y ﹣7=0D .x ﹣2y+5=010.棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应截面面积 为1S 、2S 、3S ,则( )A .123S S S <<B .123S S S >>C .213S S S <<D .213S S S >>11.i 是虚数单位,=( )A .1+2iB .﹣1﹣2iC .1﹣2iD .﹣1+2i12.设m ,n 是正整数,多项式(1﹣2x )m +(1﹣5x )n 中含x 一次项的系数为﹣16,则含x 2项的系数是( ) A .﹣13 B .6 C .79 D .37二、填空题13.一船以每小时12海里的速度向东航行,在A 处看到一个灯塔B 在北偏东60°,行驶4小时后,到达C 处,看到这个灯塔B 在北偏东15°,这时船与灯塔相距为 海里.14.三角形ABC 中,2,60AB BC C ==∠=,则三角形ABC 的面积为 .15.【启东中学2018届高三上学期第一次月考(10月)】已知函数()f x xlnx ax =-+在()0e ,上是增函数,函数()22xa g x e a =-+,当[]03x ln ∈,时,函数g (x )的最大值M 与最小值m 的差为32,则a 的值为______.16.若直线:012=--ay x 与直线2l :02=+y x 垂直,则=a .17.在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 .18.若复数34sin (cos )i 55z αα=-+-是纯虚数,则tan α的值为 . 【命题意图】本题考查复数的相关概念,同角三角函数间的关系,意在考查基本运算能力.三、解答题19.某港口的水深y(米)是时间t(0≤t≤24,单位:小时)的函数,下面是每天时间与水深的关系表:t 0 3 6 9 12 15 18 21 24y 10 13 9.9 7 10 13 10.1 7 10经过长期观测,y=f(t)可近似的看成是函数y=Asinωt+b(1)根据以上数据,求出y=f(t)的解析式;(2)若船舶航行时,水深至少要11.5米才是安全的,那么船舶在一天中的哪几段时间可以安全的进出该港?20.已知函数f(x)=ax2+bx+c,满足f(1)=﹣,且3a>2c>2b.(1)求证:a>0时,的取值范围;(2)证明函数f(x)在区间(0,2)内至少有一个零点;(3)设x1,x2是函数f(x)的两个零点,求|x1﹣x2|的取值范围.21.已知函数f(x)=x2﹣ax+(a﹣1)lnx(a>1).(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)若a=2,数列{a n}满足a n+1=f(a n).(1)若首项a1=10,证明数列{a n}为递增数列;(2)若首项为正整数,且数列{a n}为递增数列,求首项a1的最小值.22.如图,在四棱锥O﹣ABCD中,底面ABCD四边长为1的菱形,∠ABC=,OA⊥底面ABCD,OA=2,M为OA的中点,N为BC的中点.(Ⅰ)证明:直线MN∥平面OCD;(Ⅱ)求异面直线AB与MD所成角的大小;(Ⅲ)求点B到平面OCD的距离.23.函数。
安徽省2014届皖南八校第一次联考数学试题(理)及详细答案.doc

安徽省2014届皖南八校高三第一次联考数学(理科)试题一、选择题 1.已知复数21iz i-=+,则在复平面内对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限2.已知集合{1|,|()2x A x y B y y ⎧⎫====⎨⎬⎩⎭,则R A C B ⋂=A .{}|01x x <<B .{}|1x x ≤C .{}|1x x ≥D .∅3.若“01x <<”是“()[(2)]0x a x a --+≤”的充分不必要条件,则实数a 的取值范围是A .[1,0]-B .(1,0)-C .(,0][1,)-∞⋃+∞D .(,1)(0,)-∞-⋃+∞ 4.设()4xf x e x =+-,则函数()f x 的零点位于区间 A .(1,0)- B .(0,1) C .(1,2) D .(2,3)5.已知(0,),cos 2a πα∈=cos()6πα+等于A .12-.1 C .12-+.1- 6.已知向量a 、b 满足||1,()(2)0a a b a b =+⋅-= ,则||b的取值范围为A .[1,2]B .[2,4]C .11[,]42D .1[,1]27.已知函数()f x 满足()()f x f x π=-,且当(,)22x ππ∈-时,()sin x f x e x =+,则 A .(1)(2)(3)f f f << B .(2)(3)(1)f f f << C .(3)(2)(1)f f f << D .(3)(1)(2)f f f <<8.已知ABC ∆为等边三角形,2AB =,设,P Q 满足,(1)()AP AB AQ AC R λλλ==-∈,若32BQ CP ⋅=-,则λ等于A .12BCD9.已知函数211()sin 2sin cos cos sin()(0)222f x x x πϕϕϕϕπ=+-+<<,将函数()f x 的图象向左平移12π个单位后得到函数()g x 的图象,且1()42g π=,则ϕ=A .6πB .4πC .3πD .23π10.函数()f x 的定义域为D,若对于任意12,x x D ∈,当12x x <时都有12()()f x f x ≤,则称函数()f x 在D 上为非减函数,设函数()f x 在[0,1]上为非减函数,且满足以下三个条件:①(0)0f =;②1()()32x f f x =;③(1)1()f x f x -=-,则11()()38f f +等于 ( )A. 12B. 34C.1D.43二、填空题11.若(1,2),(1,0)a b ==-,则2a b -= 。
黟县第二高级中学2018-2019学年高二上学期第二次月考试卷数学

黟县第二高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 设复数z 满足(1﹣i )z=2i ,则z=( ) A .﹣1+i B .﹣1﹣i C .1+i D .1﹣i2. sin 3sin1.5cos8.5,,的大小关系为( ) A .sin1.5sin 3cos8.5<< B .cos8.5sin 3sin1.5<< C.sin1.5cos8.5sin 3<<D .cos8.5sin1.5sin 3<<3. 如图所示是一样本的频率分布直方图,则由图形中的数据,可以估计众数与中位数分别为( )A .10 13B .12.5 12C .12.5 13D .10 154. 已知等差数列{a n }中,a 6+a 8=16,a 4=1,则a 10的值是( ) A .15 B .30C .31D .645. 以的焦点为顶点,顶点为焦点的椭圆方程为( )A .B .C .D .6. 已知A ,B 是以O 为圆心的单位圆上的动点,且||=,则•=( )A .﹣1B .1C .﹣D .7. 已知数列{}n a 是各项为正数的等比数列,点22(2,log )M a 、25(5,log )N a 都在直线1y x =-上,则数列{}n a 的前n 项和为( )A .22n- B .122n +- C .21n - D .121n +-8. 在△ABC 中,AB 边上的中线CO=2,若动点P 满足=(sin 2θ)+(cos 2θ)(θ∈R ),则(+)•的最小值是( )A .1B .﹣1C .﹣2D .09. 将y=cos (2x+φ)的图象沿x轴向右平移个单位后,得到一个奇函数的图象,则φ的一个可能值为( )A.B.﹣C.﹣D.10.已知一组函数f n (x )=sin n x+cos n x ,x ∈[0,],n ∈N *,则下列说法正确的个数是( )①∀n ∈N *,f n (x )≤恒成立②若f n (x )为常数函数,则n=2 ③f 4(x )在[0,]上单调递减,在[,]上单调递增.A .0B .1C .2D .311.奇函数f (x )在(﹣∞,0)上单调递增,若f (﹣1)=0,则不等式f (x )<0的解集是( ) A .(﹣∞,﹣1)∪(0,1) B .(﹣∞,﹣1)(∪1,+∞) C .(﹣1,0)∪(0,1) D .(﹣1,0)∪(1,+∞)12.阅读如图所示的程序框图,运行相应的程序,若输出的的值等于126,则判断框中的①可以是( )A .i >4?B .i >5?C .i >6?D .i >7?二、填空题13.在等差数列}{n a 中,20161-=a ,其前n 项和为n S ,若2810810=-S S ,则2016S 的值等于 . 【命题意图】本题考查等差数列的通项公式、前n 项和公式,对等差数列性质也有较高要求,属于中等难度.14.设R m ∈,实数x ,y 满足23603260y m x y x y ≥⎧⎪-+≥⎨⎪--≤⎩,若182≤+y x ,则实数m 的取值范围是___________.【命题意图】本题考查二元不等式(组)表示平面区域以及含参范围等基础知识,意在考查数形结合的数学思想与运算求解能力.15.抛物线y 2=4x 上一点M 与该抛物线的焦点F 的距离|MF|=4,则点M 的横坐标x= .16.直线ax+by=1与圆x 2+y 2=1相交于A ,B 两点(其中a ,b 是实数),且△AOB 是直角三角形(O 是坐标原点),则点P (a ,b )与点(1,0)之间距离的最小值为 .17.设p :f (x )=e x +lnx+2x 2+mx+1在(0,+∞)上单调递增,q :m ≥﹣5,则p 是q 的 条件.18.函数()y f x =图象上不同两点()()1122,,,A x y B x y 处的切线的斜率分别是A B k k ,,规定(),A Bk k A B ABϕ-=(AB 为线段AB 的长度)叫做曲线()y f x =在点A 与点B 之间的“弯曲度”,给 出以下命题:①函数321y x x =-+图象上两点A 与B 的横坐标分别为1和2,则(),A B ϕ ②存在这样的函数,图象上任意两点之间的“弯曲度”为常数; ③设点A,B 是抛物线21y x =+上不同的两点,则(),2A B ϕ≤;④设曲线xy e =(e 是自然对数的底数)上不同两点()()112212,,,,1A x y B x y x x -=且,若(),1t A B ϕ⋅<恒成立,则实数t 的取值范围是(),1-∞.其中真命题的序号为________.(将所有真命题的序号都填上)三、解答题19.若函数f (x )=sin ωxcos ωx+sin 2ωx ﹣(ω>0)的图象与直线y=m (m 为常数)相切,并且切点的横坐标依次构成公差为π的等差数列. (Ⅰ)求ω及m 的值;(Ⅱ)求函数y=f (x )在x ∈[0,2π]上所有零点的和.20.已知函数f (x )=sin ωxcos ωx ﹣cos 2ωx+(ω>0)经化简后利用“五点法”画其在某一个周期内的图象时,列表并填入的部分数据如下表:π π(Ⅰ)请直接写出①处应填的值,并求函数f (x )在区间[﹣,]上的值域;(Ⅱ)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知f (A+)=1,b+c=4,a=,求△ABC 的面积.21.(本小题满分12分)已知函数2()(21)ln f x x a x a x =-++(a R ∈).(I )若12a >,求)(x f y =的单调区间; (II )函数()(1)g x a x =-,若0[1,]x e ∃∈使得00()()f x g x ≥成立,求实数a 的取值范围.22.如图,摩天轮的半径OA 为50m ,它的最低点A 距地面的高度忽略不计.地面上有一长度为240m 的景观带MN ,它与摩天轮在同一竖直平面内,且AM=60m .点P 从最低点A 处按逆时针方向转动到最高点B 处,记∠AOP=θ,θ∈(0,π).(1)当θ= 时,求点P 距地面的高度PQ ;(2)试确定θ 的值,使得∠MPN 取得最大值.23.已知函数f (x )=log a (x 2+2),若f (5)=3; (1)求a 的值;(2)求的值;(3)解不等式f (x )<f (x+2).24.在平面直角坐标系xOy 中,过点(2,0)C 的直线与抛物线24y x 相交于点A 、B 两点,设11(,)A x y ,22(,)B x y .(1)求证:12y y 为定值;(2)是否存在平行于y 轴的定直线被以AC 为直径的圆截得的弦长为定值?如果存在,求出该直线方程 和弦长,如果不存在,说明理由.黟县第二高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】A【解析】解:∵复数z 满足z (1﹣i )=2i ,∴z==﹣1+i故选A .【点评】本题考查代数形式的除法运算,是一个基础题,这种题目若出现一定是一个送分题目,注意数字的运算.2. 【答案】B 【解析】试题分析:由于()cos8.5cos 8.52π=-,因为8.522πππ<-<,所以cos8.50<,又()sin3sin 3sin1.5π=-<,∴cos8.5sin 3sin1.5<<. 考点:实数的大小比较. 3. 【答案】C【解析】解:众数是频率分布直方图中最高矩形的底边中点的横坐标, ∴中间的一个矩形最高,故10与15的中点是12.5,众数是12.5而中位数是把频率分布直方图分成两个面积相等部分的平行于Y 轴的直线横坐标 第一个矩形的面积是0.2,第三个矩形的面积是0.3,故将第二个矩形分成3:2即可 ∴中位数是13 故选:C .【点评】用样本估计总体,是研究统计问题的一个基本思想方法.频率分布直方图中小长方形的面积=组距×,各个矩形面积之和等于1,能根据直方图求众数和中位数,属于常规题型.4. 【答案】A【解析】解:∵等差数列{a n }, ∴a 6+a 8=a 4+a 10,即16=1+a 10, ∴a 10=15, 故选:A .5. 【答案】D【解析】解:双曲线的顶点为(0,﹣2)和(0,2),焦点为(0,﹣4)和(0,4).∴椭圆的焦点坐标是为(0,﹣2)和(0,2),顶点为(0,﹣4)和(0,4).∴椭圆方程为.故选D .【点评】本题考查双曲线和椭圆的性质和应用,解题时要注意区分双曲线和椭圆的基本性质.6. 【答案】B【解析】解:由A ,B 是以O 为圆心的单位圆上的动点,且||=,即有||2+||2=||2,可得△OAB 为等腰直角三角形,则,的夹角为45°,即有•=||•||•cos45°=1××=1.故选:B .【点评】本题考查向量的数量积的定义,运用勾股定理的逆定理得到向量的夹角是解题的关键.7. 【答案】C【解析】解析:本题考查等比数列的通项公式与前n 项和公式.22log 1a =,25log 4a =,∴22a =,516a =,∴11a =,2q =,数列{}n a 的前n 项和为21n-,选C .8. 【答案】 C【解析】解:∵ =(sin 2θ)+(cos 2θ)(θ∈R ),且sin 2θ+cos 2θ=1,∴=(1﹣cos 2θ)+(cos 2θ)=+cos 2θ•(﹣),即﹣=cos 2θ•(﹣),可得=cos 2θ•,又∵cos 2θ∈[0,1],∴P 在线段OC 上,由于AB 边上的中线CO=2,因此(+)•=2•,设||=t ,t ∈[0,2],可得(+)•=﹣2t (2﹣t )=2t 2﹣4t=2(t ﹣1)2﹣2,∴当t=1时,(+)•的最小值等于﹣2.故选C .【点评】本题着重考查了向量的数量积公式及其运算性质、三角函数的图象与性质、三角恒等变换公式和二次函数的性质等知识,属于中档题.9.【答案】D【解析】解:将y=cos(2x+φ)的图象沿x轴向右平移个单位后,得到一个奇函数y=cos=cos(2x+φ﹣)的图象,∴φ﹣=kπ+,即φ=kπ+,k∈Z,则φ的一个可能值为,故选:D.10.【答案】D【解析】解:①∵x∈[0,],∴f(x)=sin n x+cos n x≤sinx+cosx=≤,因此正确;n②当n=1时,f1(x)=sinx+cosx,不是常数函数;当n=2时,f2(x)=sin2x+cos2x=1为常数函数,当n≠2时,令sin2x=t∈[0,1],则f n(x)=+=g(t),g′(t)=﹣=,当t∈时,g′(t)<0,函数g(t)单调递减;当t∈时,g′(t)>0,函数g(t)单调递增加,因此函数f n(x)不是常数函数,因此②正确.③f4(x)=sin4x+cos4x=(sin2x+cos2x)2﹣2sin2xcos2x=1﹣==+,当x∈[0,],4x∈[0,π],因此f4(x)在[0,]上单调递减,当x∈[,],4x∈[π,2π],因此f4(x)在[,]上单调递增,因此正确.综上可得:①②③都正确.故选:D.【点评】本题考查了三角函数的图象与性质、倍角公式、平方公式、两角和差的正弦公式,考查了推理能力与计算能力,属于中档题.11.【答案】A【解析】解:根据题意,可作出函数图象:∴不等式f(x)<0的解集是(﹣∞,﹣1)∪(0,1)故选A.12.【答案】C【解析】解:模拟执行程序框图,可得S=0,i=1S=2,i=2不满足条件,S=2+4=6,i=3不满足条件,S=6+8=14,i=4不满足条件,S=14+16=30,i=5不满足条件,S=30+32=62,i=6不满足条件,S=62+64=126,i=7由题意,此时应该满足条件,退出循环,输出S的值为126,故判断框中的①可以是i>6?故选:C.【点评】本小题主要考查循环结构、数列等基础知识.根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,属于基本知识的考查.二、填空题-13.【答案】2016-.14.【答案】[3,6]【解析】15.【答案】3.【解析】解:∵抛物线y2=4x=2px,∴p=2,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,∴|MF|=4=x+=4,∴x=3,故答案为:3.【点评】活用抛物线的定义是解决抛物线问题最基本的方法.抛物线上的点到焦点的距离,叫焦半径.到焦点的距离常转化为到准线的距离求解.16.【答案】.【解析】解:∵△AOB是直角三角形(O是坐标原点),∴圆心到直线ax+by=1的距离d=,即d==,整理得a 2+2b 2=2,则点P (a ,b )与点Q (1,0)之间距离d==≥,∴点P (a ,b )与点(1,0)之间距离的最小值为.故答案为:.【点评】本题主要考查直线和圆的位置公式的应用以及两点间的距离公式,考查学生的计算能力.17.【答案】 必要不充分【解析】解:由题意得f ′(x )=e x++4x+m , ∵f (x )=e x +lnx+2x 2+mx+1在(0,+∞)内单调递增, ∴f ′(x )≥0,即e x++4x+m ≥0在定义域内恒成立,由于+4x ≥4,当且仅当=4x ,即x=时等号成立,故对任意的x ∈(0,+∞),必有e x++4x >5 ∴m ≥﹣e x﹣﹣4x 不能得出m ≥﹣5但当m ≥﹣5时,必有e x++4x+m ≥0成立,即f ′(x )≥0在x ∈(0,+∞)上成立∴p 不是q 的充分条件,p 是q 的必要条件,即p 是q 的必要不充分条件 故答案为:必要不充分18.【答案】②③ 【解析】试题分析:①错:(1,1),(2,5),|||7,A B A B AB k k -=(,)A B ϕ∴=<②对:如1y =;③对;(,)2A B ϕ==≤;④错;1212(,)x x x x A B ϕ==,1211,(,)A B ϕ==因为1(,)t A B ϕ<恒成立,故1t ≤.故答案为②③.111] 考点:1、利用导数求曲线的切线斜率;2、两点间的距离公式、最值问题、不等式恒成立问题.【方法点晴】本题通过新定义“弯曲度”对多个命题真假的判断考查利用导数求曲线的切线斜率、两点间的距离公式、最值问题、不等式恒成立问题以及及数学化归思想,属于难题.该题型往往出现在在填空题最后两题,综合性较强,同学们往往因为某一点知识掌握不牢就导致本题“全盘皆输”,解答这类问题首先不能慌乱更不能因贪快而审题不清,其次先从最有把握的命题入手,最后集中力量攻坚最不好理解的命题.三、解答题19.【答案】【解析】解:(Ⅰ)∵f (x )=sin ωxcos ωx+sin 2ωx﹣=ωx+(1﹣cos2ωx)﹣=2ωx﹣2ωx=sin (2ωx﹣),依题意得函数f (x )的周期为π且ω>0, ∴2ω=,∴ω=1,则m=±1;(Ⅱ)由(Ⅰ)知f (x )=sin (2ωx﹣),∴,∴.又∵x ∈[0,2π],∴.∴y=f (x )在x ∈[0,2π]上所有零点的和为.【点评】本题主要考查三角函数两倍角公式、辅助角公式、等差数列公差、等差数列求和方法、函数零点基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归转化思想,是中档题.20.【答案】【解析】解:(Ⅰ)①处应填入.=.∵T=,∴,,即.∵,∴,∴,从而得到f(x)的值域为.(Ⅱ)∵,又0<A<π,∴,得,.由余弦定理得a2=b2+c2﹣2bccosA==(b+c)2﹣3bc,即,∴bc=3.∴△ABC的面积.【点评】本小题主要考查三角函数的图象与性质、两角和与差的三角函数、解三角形等基础知识,考查运算求解能力,考查化归与转化思想,属于中档题.21.【答案】【解析】【命题意图】本题考查导数的应用等基础知识,意在考查转化与化归思想的运用和综合分析问题解决问题的能力.请22.【答案】【解析】解:(1)由题意得PQ=50﹣50cosθ,从而当时,PQ=50﹣50cos=75.即点P距地面的高度为75米.(2)由题意得,AQ=50sinθ,从而MQ=60﹣50sinθ,NQ=300﹣50sinθ.又PQ=50﹣50cosθ,所以tan,tan.从而tan∠MPN=tan(∠NPQ﹣∠MPQ)==.令g(θ)=.θ∈(0,π)则,θ∈(0,π).由g′(θ)=0,得sinθ+cosθ﹣1=0,解得.当时,g′(θ)>0,g(θ)为增函数;当x时,g′(θ)<0,g(θ)为减函数.所以当θ=时,g(θ)有极大值,也是最大值.因为.所以.从而当g(θ)=tan∠MNP取得最大值时,∠MPN取得最大值.即当时,∠MPN取得最大值.【点评】本题考查了与三角函数有关的最值问题,主要还是利用导数研究函数的单调性,进一步求其极值、最值.23.【答案】【解析】解:(1)∵f(5)=3,∴,即log a27=3解锝:a=3…(2)由(1)得函数,则=…(3)不等式f(x)<f(x+2),即为化简不等式得…∵函数y=log3x在(0,+∞)上为增函数,且的定义域为R.∴x2+2<x2+4x+6…即4x>﹣4,解得x>﹣1,所以不等式的解集为:(﹣1,+∞)…x .24.【答案】(1)证明见解析;(2)弦长为定值,直线方程为1【解析】(2 ,进而得1a =时为定值.试题解析:(1)设直线AB 的方程为2my x =-,由22,4,my x y x =-⎧⎨=⎩得2480y my --=,∴128y y =-, 因此有128y y =-为定值.111](2)设存在直线:x a =满足条件,则AC 的中点112(,)22x y E +,AC =,因此以AC 为直径圆的半径12r AC ===E 点到直线x a =的距离12||2x d a +=-,所以所截弦长为===当10a -=,即1a =时,弦长为定值2,这时直线方程为1x =.考点:1、直线与圆、直线与抛物线的位置关系的性质;2、韦达定理、点到直线距离公式及定值问题.。
学年上黟县初中联考试卷

2014学年(上)黟县初中联考试卷学年(上)黟县初中联考试卷(二)七年级语文(温馨提示:卷面有3分哟,但它的意义远不止三分!)一、积累运用:(28分)1.下列加点字的注音全都正确的一项是()(2分)A.酝酿(niàng)黄晕(yùn)朗润(lùn)着落(zhuó)B.看护(kàn)水藻(zǎo)贮蓄(chǔ)澄清(chéng)C.唱和(hè)湛蓝(zhàn)葡萄蔓(wàn)清澈(chè)D.肥硕(shuò)枯涸(hé)栖息(xī)寥阔(liáo)2.找出下列成语中的四处错别字并改正。
(4分)瘦骨粼峋温故知新玲珑剔透刻骨明心头晕目炫小心翼翼绝处逢生获益非浅错别字改正3.根据句意依次填入空缺处的词语,最恰当的一项是()(2分)①信任是友谊之蜜的花朵,理解是心灵的桥梁。
②羡慕不是奋斗的同义词,不是的代名词。
A.酝酿沟通追求盲从B.酿造交流盲从追求C.酝酿交流嫉妒竞争D.酿造沟通嫉妒竞争4.下列场合的标语使用不恰当的一项是()(2分)A.来也匆匆,去也冲冲。
(公共厕所)B.悄悄地来,悄悄地去。
(阅览室)C.我是美丽的花,请带回你的家。
(花圃或公园)D.谁知盘中餐,粒粒皆辛苦。
(食堂内)5..下列句子中没有语病的一句是()(2分)A.今天全班同学欢聚一堂,庆祝我13岁诞辰。
B.经过近几天的集中学习,我提高了自己的知识。
C.朋友说:那本来的生活历程就是这样。
它为了生命延续,必须好好活着。
D.王老师那和蔼可亲的笑脸和谆谆教导,常常浮现在我眼前。
6.仿写下面的句子(2分)例句:如果我是阳光,我将照亮所有的黑暗如果我是,我将。
7.默写(11分)(1)、曲径通幽处,。
(2)、,似曾相识燕归来。
(3)、乱花渐欲迷人眼,。
(4)、,江春入旧年。
(5)、,吹面不含杨柳风。
(6)曹操在《龟虽寿》中表达自己雄心壮志的千古名句,。
黟县高中2018-2019学年高二上学期第一次月考试卷数学

黟县高中2018-2019学年高二上学期第一次月考试卷数学班级__________ 姓名__________ 分数__________ 一、选择题1.若双曲线﹣=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相切,则此双曲线的离心率等于()A.B.C.D.22.下列语句所表示的事件不具有相关关系的是()A.瑞雪兆丰年B.名师出高徒C.吸烟有害健康D.喜鹊叫喜3.设函数f(x)=的最小值为﹣1,则实数a的取值范围是()A.a≥﹣2 B.a>﹣2 C.a≥﹣D.a>﹣4.已知变量,x y满足约束条件20170x yxx y-+≤⎧⎪≥⎨⎪+-≤⎩,则yx的取值范围是()A.9[,6]5B.9(,][6,)5-∞+∞C.(,3][6,)-∞+∞D.[3,6]5.已知函数f(x)=3cos(2x ﹣),则下列结论正确的是()A .导函数为B.函数f(x )的图象关于直线对称C.函数f(x )在区间(﹣,)上是增函数D.函数f(x)的图象可由函数y=3co s2x 的图象向右平移个单位长度得到6.与椭圆有公共焦点,且离心率的双曲线方程为()A.B.C.D.7. 已知某运动物体的位移随时间变化的函数关系为,设物体第n 秒内的位移为a n ,则数列{a n }是( ) A .公差为a 的等差数列 B .公差为﹣a 的等差数列C .公比为a 的等比数列D .公比为的等比数列8. 下列四个命题中的真命题是( )A .经过定点()000,P x y 的直线都可以用方程()00y y k x x -=-表示B .经过任意两个不同点()111,P x y 、()222,P x y 的直线都可以用方程()()()()121121y y x x x x y y --=-- 表示C .不经过原点的直线都可以用方程1x ya b+=表示 D .经过定点()0,A b 的直线都可以用方程y kx b =+表示9. 若cos (﹣α)=,则cos (+α)的值是( )A .B .﹣C .D .﹣10.圆C 1:(x+2)2+(y ﹣2)2=1与圆C 2:(x ﹣2)2+(y ﹣5)2=16的位置关系是( ) A .外离 B .相交 C .内切 D .外切11.已知全集U=R ,集合A={1,2,3,4,5},B={x ∈R|x ≥3},图中阴影部分所表示的集合为( )A .{1}B .{1,2}C .{1,2,3}D .{0,1,2}12.若复数(2+ai )2(a ∈R )是实数(i 是虚数单位),则实数a 的值为( ) A .﹣2 B .±2 C .0 D .2二、填空题13.若命题“∃x ∈R ,x 2﹣2x+m ≤0”是假命题,则m 的取值范围是 .14.如图,△ABC 是直角三角形,∠ACB=90°,PA ⊥平面ABC ,此图形中有 个直角三角形.O A B C的边长为1cm,它是水平放置的一个平面图形的直观图,则原图的15.如图,正方形''''周长为.1111]16.已知f(x)=x(e x+a e-x)为偶函数,则a=________.17.已知点F是抛物线y2=4x的焦点,M,N是该抛物线上两点,|MF|+|NF|=6,M,N,F三点不共线,则△MNF 的重心到准线距离为.18.在正方体ABCD﹣A1B1C1D1中,异面直线A1B与AC所成的角是°.三、解答题19.设,证明:(Ⅰ)当x>1时,f(x)<(x﹣1);(Ⅱ)当1<x<3时,.20.已知:函数f(x)=log2,g(x)=2ax+1﹣a,又h(x)=f(x)+g(x).(1)当a=1时,求证:h(x)在x∈(1,+∞)上单调递增,并证明函数h(x)有两个零点;(2)若关于x的方程f(x)=log2g(x)有两个不相等实数根,求a的取值范围.21.设不等式的解集为.(1)求集合;(2)若,∈,试比较与的大小。
安徽省黄山市黟县中学高二物理联考试题带解析

安徽省黄山市黟县中学高二物理联考试题含解析一、选择题:本题共5小题,每小题3分,共计15分.每小题只有一个选项符合题意1. (多选)两个振动情况完全一样的波源S1和S2相距6m,它们在空间产生的干涉图样如图所示,图中实线表示振动加强的区域,虚线表示振动减弱的区域。
下列说法正确的是A.两波源的振动频率一定相同B.虚线一定是波谷与波谷相遇处C.两列波的波长都是2mD.两列波的波长都是1m参考答案:AC2. 在研究微型电动机的性能时,应用如图所示的实验电路.调节滑动变阻器R并控制电动机停止转动时,电流表和电压表的示数分别为0.50 A和2.0 V.重新调节R并使电动机恢复正常运转,此时电流表和电压表的示数分别为2.0 A和24.0 V.则这台电动机正常运转时输出功率为A.32 WB.44 WC.47 WD.48 W参考答案:A3. 关于场强与电势的关系,下列说法正确的是()A.场强相等的各点,电势也一定相等B.电势为零的位置,场强也一定为零C.电势高的位置,场强一定大D.沿场强的反方向,电势逐渐升高参考答案:D4. 如图所示,A、B为平行金属板,两板相距为d,分别与电源两极相连,两板的中央各有一个小孔M、N,今有一带电质点,自A板上方相距为d的P点由静止自由下落(P、M、N在同一竖直线上),空气阻力不计,到达N孔时速度恰好为零,然后沿原路返回,若保持两极板间的电压不变,则() A.把A板向上平移一小段距离,质点自P点自由下落后仍能返回B.把A板向下平移一小段距离,质点自P点自由下落后将穿过N孔继续下落C.把B板向上平移一小段距离,质点自P点自由下落后仍能返回D.把B板向下平移一小段距离后,质点自P点自由下落后将穿过N孔继续下落参考答案:ACD5. 如图所示的电路中,电源电动势为E,线圈L的电阻不计.以下判断正确的是 () A.闭合S,稳定后,电容器两端电压为0B.闭合S,稳定后,电容器的a极带正电C.断开S的瞬间,电容器的a极板将带正电D.断开S的瞬间,电容器的a极板将带负电参考答案:AC二、填空题:本题共8小题,每小题2分,共计16分6. 如图所示,一定质量的理想气体从状态a变化到状态b,已知在此过程中,气体内能增加300J,则该过程中气体(选填“吸收”或“放出”)热量为J。
安徽省黟县中学2018-2019学年高一数学上学期第一次月考试题

黟县中学2018-2019学年高一上学期第一次月考数学试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合{1,0,1}M =-,集合{0,1,2}N =,则MN 等于( )A.{0,1}B.{1,0,1}-C.{0,1,2}D.{1,0,1,2}-2.集合{1,0,1}A =-的子集中,含有元素0的子集共有( ) A.2个 B.4个 C.6个 D.8个3.下列各组函数是同一函数的是( )①()f x =()g x = ②()f x x =与2()g x =;③0()f x x =与01()g x x=; ④2()21f x x x =--与2()21g t t t =--。
A.①② B.①③ C.③④ D.①④4.下列函数中,既是奇函数又是增函数的为( ) A.1y x =+ B.2y x =-C.1y x=D.||y x x =5.已知函数84)(2--=kx x x h 在[5,20]上是单调函数,则k 的取值范围是( ) A.]40,(-∞ B.),160[+∞ C. (,40][160,)-∞+∞ D.φ6.已知集合A ={x|x <a },B ={x|1<x <2},且()R AC B R =,则实数a 的取值范围( )a ≤a <1 C.a ≥2 D.a >27.已知1)(35++=bx ax x f 且,7)5(=f 则)5(-f 的值是( ) A.5- B.7- C.5 D.7 8.已知()f x 的定义域为[2,3]-,则(1)-f x 的定义域是( )A 、[1,4]-B 、[-3,2]C 、[5,5]-D 、[3,7]-9.已知,11)1(22x xx x x f ++=+则()f x 的解析式是( ) A 、)0(1)(2≠+-=x x x x f B 、)0(11)(22≠++=x x xx x f C 、)1(1)(2≠+-=x x x x f D 、)1(11)(22≠++=x x x x x f 10. 若函数43)(2--=x x x f 的定义域为[0,m],值域为 , 则m 的取值范围是( )A .(0,4]B .C .D .11.已知函数⎪⎩⎪⎨⎧≤---=)1()1(,5)(2x >xa x ax x x f 是R 上的增函数,则a 的取值范围是( )A.3-≤a <0B.3-≤a ≤2-C.a ≤2-D.a <012、定义在R 上的奇函数f(x)为增函数,偶函数g(x)在区间0[,)+∞的图象与f(x)的图象重合,设a>b>0,给出下列不等式,其中成立的是_________. ①f(b)-f(-a)>g(a)-g(-b); ②f(b)-f(-a)<g(a)-g(-b); ③f(a)-f(-b)>g(b)-g(-a); ④f(a)-f(-b)<g(b)-g(-a). A 、①④ B 、②④ C 、②③ D 、①③二、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题卷中的相应横线上) 13.5y x =-的定义域为14.若函数2()(2)(1)3f x k x k x =-+-+是偶函数,则)(x f 的递减区间是15.若21,,{0,,}b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20172017a b +的值为16.已知()y f x =在定义域(1,1)-上是减函数,且(1)(21)f a f a -<-,则a 的取值范围是三、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤) 17.(10分)设{|||6}A x Z x =∈<,{1,2,3},{3,4,5}B C ==,求: (Ⅰ)()A B C ;(Ⅱ)()A A C B C18.(12分)设集合{}|14A x x =-<<,3|52B x x ⎧⎫=-<<⎨⎬⎩⎭,{}|122C x a x a =-<<. (Ⅰ)若C φ=,求实数a 的取值范围; (Ⅱ)若C φ≠且()C A B ⊆,求实数a 的取值范围.19.(12分)已知函数1()f x x x=+(Ⅰ)判断函数的奇偶性,并加以证明; (Ⅱ)用定义证明()f x 在(0,1)上是减函数;(Ⅲ)函数()f x 在(1,0)-上是单调增函数还是单调减函数?(直接写出答案,不要求写证明过程).20.(12分)求下列函数的值域。
黟县第二中学校2018-2019学年上学期高二数学12月月考试题含解析

黟县第二中学校2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 设0<a <b 且a+b=1,则下列四数中最大的是( )A .a 2+b 2B .2abC .aD .2. 以下四个命题中,真命题的是( ) A .2,2x R x x ∃∈≤-B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数D .已知m ,n 表示两条不同的直线,α,β表示不同的平面,并且m α⊥,n β⊂,则“αβ⊥”是 “//m n ”的必要不充分条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力. 3. 某程序框图如图所示,则该程序运行后输出的S 的值为( )A .1B .C .D .4. 在△ABC 中,已知a=2,b=6,A=30°,则B=( )A .60°B .120°C .120°或60°D .45° 5. 已知向量,,其中.则“”是“”成立的( )A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分又不必要条件6.如图,正六边形ABCDEF中,AB=2,则(﹣)•(+)=()A.﹣6 B.﹣2C.2D.67.如图所示,阴影部分表示的集合是()A.(∁U B)∩A B.(∁U A)∩B C.∁U(A∩B)D.∁U(A∪B)8.数列{a n}满足a1=3,a n﹣a n•a n+1=1,A n表示{a n}前n项之积,则A2016的值为()A.﹣B.C.﹣1 D.19.已知函数f(x)=2x,则f′(x)=()A.2x B.2x ln2 C.2x+ln2 D.10.设定义域为(0,+∞)的单调函数f(x),对任意的x∈(0,+∞),都有f[f(x)﹣lnx]=e+1,若x0是方程f(x)﹣f′(x)=e的一个解,则x0可能存在的区间是()A.(0,1) B.(e﹣1,1)C.(0,e﹣1)D.(1,e)11.已知a>0,实数x,y满足:,若z=2x+y的最小值为1,则a=()A.2 B.1 C.D.12.某几何体的三视图如图所示,则该几何体的体积为()A.16163π-B.32163π-C.1683π-D.3283π-【命题意图】本题考查三视图、圆柱与棱锥的体积计算,意在考查识图能力、转化能力、空间想象能力.二、填空题13.在ABC ∆中,已知角C B A ,,的对边分别为c b a ,,,且B c C b a sin cos +=,则角B 为 .14.下图是某算法的程序框图,则程序运行后输出的结果是____.15.设函数f (x )=,则f (f (﹣2))的值为 .16.一质点从正四面体A ﹣BCD 的顶点A 出发沿正四面体的棱运动,每经过一条棱称为一次运动.第1次运动经过棱AB 由A 到B ,第2次运动经过棱BC 由B 到C ,第3次运动经过棱CA 由C 到A ,第4次经过棱AD 由A 到D ,…对于N ∈n *,第3n 次运动回到点A ,第3n+1次运动经过的棱与3n ﹣1次运动经过的棱异面,第3n+2次运动经过的棱与第3n 次运动经过的棱异面.按此运动规律,质点经过2015次运动到达的点为 .17.(本小题满分12分)点M (2pt ,2pt 2)(t 为常数,且t ≠0)是拋物线C :x 2=2py (p >0)上一点,过M 作倾斜角互补的两直线l 1与l 2与C 的另外交点分别为P 、Q .(1)求证:直线PQ 的斜率为-2t ;(2)记拋物线的准线与y 轴的交点为T ,若拋物线在M 处的切线过点T ,求t 的值.18.已知三棱锥ABC D -的四个顶点均在球O 的球面上,ABC ∆和DBC ∆所在的平面互相垂直,3=AB ,3=AC ,32===BD CD BC ,则球O 的表面积为 . 三、解答题19.【淮安市淮海中学2018届高三上第一次调研】已知函数()133x x af x b+-+=+.(1)当1a b ==时,求满足()3xf x =的x 的取值;(2)若函数()f x 是定义在R 上的奇函数①存在t R ∈,不等式()()2222f t t f t k -<-有解,求k 的取值范围; ②若函数()g x 满足()()()12333x xf xg x -⎡⎤⋅+=-⎣⎦,若对任意x R ∈,不等式()()211g x m g x ≥⋅-恒成立,求实数m 的最大值.20.(本小题满分12分)某超市销售一种蔬菜,根据以往情况,得到每天销售量的频率分布直方图如下:(Ⅰ)求频率分布直方图中的a 的值,并估计每天销售量的中位数;(Ⅱ)这种蔬菜每天进货当天必须销售,否则只能作为垃圾处理.每售出1千克蔬菜获利4元,未售出的蔬菜,每千克亏损2元.假设同一组中的每个数据可用该组区间的中点值代替,估计当超市每天的进货量为75千克时获利的平均值.0.02a频率组距千克21.如图,在四棱锥P﹣ABCD中,平面PAB⊥平面ABCD,AB∥CD,AB⊥AD,CD=2AB,E为PA的中点,M在PD上.(I)求证:AD⊥PB;(Ⅱ)若,则当λ为何值时,平面BEM⊥平面PAB?(Ⅲ)在(II)的条件下,求证:PC∥平面BEM.22.某公司春节联欢会中设一抽奖活动:在一个不透明的口袋中装入外形一样号码分别为1,2,3,…,10的十个小球.活动者一次从中摸出三个小球,三球号码有且仅有两个连号的为三等奖;奖金30元,三球号码都连号为二等奖,奖金60元;三球号码分别为1,5,10为一等奖,奖金240元;其余情况无奖金.(1)员工甲抽奖一次所得奖金的分布列与期望;(2)员工乙幸运地先后获得四次抽奖机会,他得奖次数的方差是多少?23.已知函数f(x)=log2(m+)(m∈R,且m>0).(1)求函数f(x)的定义域;(2)若函数f(x)在(4,+∞)上单调递增,求m的取值范围.24.某农户建造一座占地面积为36m2的背面靠墙的矩形简易鸡舍,由于地理位置的限制,鸡舍侧面的长度x 不得超过7m,墙高为2m,鸡舍正面的造价为40元/m2,鸡舍侧面的造价为20元/m2,地面及其他费用合计为1800元.(1)把鸡舍总造价y表示成x的函数,并写出该函数的定义域.(2)当侧面的长度为多少时,总造价最低?最低总造价是多少?黟县第二中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】解:∵0<a<b且a+b=1∴∴2b>1∴2ab﹣a=a(2b﹣1)>0,即2ab>a又a2+b2﹣2ab=(a﹣b)2>0∴a2+b2>2ab∴最大的一个数为a2+b2故选A2.【答案】D3.【答案】C【解析】解:第一次循环第二次循环得到的结果第三次循环得到的结果第四次循环得到的结果…所以S是以4为周期的,而由框图知当k=2011时输出S∵2011=502×4+3所以输出的S是故选C4.【答案】C【解析】解:∵a=2,b=6,A=30°,∴由正弦定理可得:sinB===,∵B∈(0°,180°),∴B=120°或60°.故选:C.5.【答案】A【解析】【知识点】平面向量坐标运算【试题解析】若,则成立;反过来,若,则或所以“”是“”成立的充分而不必要条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黟县二中2014-2015学年上学期第一次段考
九年级数学试题
(满分150分; 考试时间120分钟)
一、选择题(本大题共10小题,每小题4分,满分40分)
【每小题都给出代号为A 、B 、C 、D 的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号 内)一律得0分.】
1.若
2
1
-x 没有意义,则x 的取值范围 …………………………………… 【 】
A. x >2
B.x ≥ 2
C. x <2
D.x ≤2
2.下列方程中,一元二次方程的是 ………………………………………… 【 】
A.012=+
x
x B.02=++c bx ax C.()()121=+-x x D.052322=--y xy x 3.抛物线322
--=x x y 的顶点坐标是 ……………………………………… 【 】 A .(1,-3) B.(-1,-2) C.(1,-4) D .(0,-3)
4.关于x 的一元二次方程01322
2=+--a x x 的一个根为2,则a 的值是 …【 】 A.1
B .3
C .3-
D .3±
5.若一元二次方程022
=++m x x 有实数根,则m 的取值范围是 ……… 【 】 A.1-≤m B. 1≤m
C. 4≤m
D.2
1
≤
m 6.要得到抛物线1)4(22
--=x y ,可以将抛物线2
2x y = ………………… 【 】 A.向左平移4个单位长度,再向上平移1个单位长度 B.向左平移4个单位长度,再向下平移1个单位长度 C.向右平移4个单位长度,再向上平移1个单位长度 D.向右平移4个单位长度,再向下平移1个单位长度
7.已知二次函数()22
-++=m m x mx y 的图像经过原点,则m 的值 ……… 【 】
A.0或2
B.0
C.2
D.无法确定
班级: 姓名 考号: - - - - - - - - - - - - - - - - - - - - - - - - -答 题 书 写 不 要 超 过 此 装 订 线 - - - - - - - - - - - - - - - - - - - -
4=1+3 9=3+6
16=6+10 第13题
…
8.制造某种产品,原来每件的成本为100元,由于改进技术连续两次降低成本,现在的成本是64元,则平均每次降低成本 ………………………………………… 【 】
A.10%
B.18%
C.20%
D.80%
9.三角形的两边分别为2和6,第三边是方程021102
=+-x x 的解,则第三边的长为 …………………………………………………………………………… 【 】 A.7 B.3 C.7或3 D.无法确定 10.关于抛物线322--=x x y ,下列结论中正确的是( )
A.y 有最小值-3
B.当1>x 时,y 随x 的增大而增大
C.与y 轴交于点(0,3)
D.与x 轴交于点(3,0)、(1,0) 二、填空题 (本大题共4小题,每小题5分,满分20分)
11.将方程()()82213++=-x x x 化成一般形式为 ,
它的二次项系数为___ __,一次项系数是 ,常数项是 .
12.正方形的边长是3,若边长增加x ,则面积增加y ,y 与x 之间的关系式是 . 13.古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正方形数”.从图13中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是__ .(填序号)①13 = 3+10 ②25 = 9+16 ③36 = 15+21④49 = 18+31
14.已知二次函数()02
≠++=a c bx ax y
的图象右上图所示,它与x 轴的两个交点分别
为(﹣1,0),(3,0).对于下列命题:①ac b 42-<0;②02=-a b ;③abc >0;
④c b a +->0;⑤c b a 42+-<0;⑥c a +8>0.其中正确结论的是 .
三、(本大题共2小题,每小题8分,满分16分)
15.计算:()1
3312013823-⎪⎭
⎫
⎝⎛+----π
第14题图
16.解方程:6)3)(1(=-+x x
四、(本大题共2小题,每小题8分,满分16分)
17.已知二次函数的顶点坐标为(1,4),且其图像经过点(-2,-5),求此二次函数的解析式.
18.如图, 用一段长为30m 的篱笆围出一个一边靠墙的矩形菜园,墙长为18m .设矩形的一边长为xm ,面积为ym .
(1)求y 与x 的函数关系式,并写出自变量x 的取值范围; (2)怎样围才能使菜园的面积最大? 最大面积是多少?
xm
m
五、(本大题共2小题,每小题10分,共20分)
19.已知抛物线22
)1(4
1m x m x y ++-=
与x 轴有两个交点,回答下列问题: (1)求m 的取值范围;
(2)若两个交点的横坐标的平方和等于16,求m 的值.
20.菜农李伟种植的某蔬菜计划以5元/千克的单价对外批发销售,由于部分菜农盲目扩大种植,造成蔬菜滞销,李伟为了加快销售,减少损失,对价格进行两次下调后,以3.2元/千克的单价对外批发销售. (1)求平均每次下调的百分率.
(2)如果李伟按以前的调价方案再进行一次调价,蔬菜的批发价会跌破2.5元/千
克吗?
六、(本题满分12分)
21.抛物线()m x m x y +-+-=12与y 轴交于(0,3)点.
(1)求出m 的值. (2)在平面直角坐标系中画出这条抛物线.
(3)求这条抛物线与x 轴的交点坐标.
(4)观察图像回答:①当x 取什么值时,y >0? ②当x 取什么值时,y 随x 的增大而减小?
七、(本题满分12分)
22.如图所示,在△ABC 中,∠C =90°,AC =5cm ,BC =7cm ,
点P 从点A 出发沿边AC 向点C 以1cm/s 的速度移动,点Q 从C 点出发沿CB 边向点B 以2cm /s 的速度移动.
(1)如果P 、Q 同时出发,几秒钟后,可使△PCQ 的面积为4cm 2?
(2)点P 、Q 在移动过程中,是否存在某一时刻,使得△PCQ 的面积等于△ABC 的面积的一半.若存在,求出运动的时间;若不存在,说明理由.
班级: 姓名 考号: - - - - - - - - - - - - - - - - - - - - - - - - -答 题 书 写 不 要 超 过 此 装 订 线 - - - - - - - - - - - - - - - - - - - -
Q
P
C B
八、(本题满分14分)
23.某商店销售一种销售成本为40元/千克的水产品,若按50元/千克销售,一个月可售出500kg,销售价每涨价1元,月销售量就减少10kg.
(1)写出月销售利润y(单位:元)与售价x(单位:元/千克)之间的函数解析式.
(2)当销售单价定为55元时,计算月销售量和销售利润.
(3)商店想在月销售成本不超过3000元的情况下,使月销售利润达到8000元,销售单价应定为多少?
(4)当售价定为多少元时会获得最大利润?求出最大利润.。