对碱金属光谱精细结构的解释
§21碱金属双线

式中 l r me
电子的轨道角动量 电子的静止能量
U 电子磁矩(内禀磁矩)s在磁场中的势能: s B
E0=mec2
1 s s( s 1), s ; s g s B s s s(s 1) gs B ; 2 1 Zg s B e s l 所以,在电子坐标系中 U 3 4 0 E0 r
钠的黄色D线
但要计算钠3P能级的分裂 却不很容易,(5)式不能直 接用.因为钠的原子核外 有10个电子屏蔽着,使最 后一个单电子感受到的Ze 并非核的电荷,而是有效 电荷z有效e。Z有效=3.5
需要指出,对原子的自旋角动量、轨道角动量和 总角动量有贡献的电子数目不止一个时,理论上 可以证明自旋轨道相互作用引起的附加能量U也 正比于 S L,但公式(5)有的可用,但(6)不能。
(4)
把式(4)和(3)代入式(2),得到自旋一轨道耦合 项: ( Z )4 E [ j ( j 1) s( s 1) l (l 1)] 0 U , l 0 (5) 3 1
4n
对于单电子:
l (l )(l 1) 2
( Z )4 E0 U 3 ; 2n (2l 1)(l 1) ( Z )4 E0 U 3 ; 2n l (2l 1)
假设是圆轨道;可证明,对任意形状的轨道都适用 电流i在中心处(电子所在位置)产生的磁场大小为: 1 2i 1 Ze B 2 4 0 c r 4 0 c 2 r 2
B Ze 1 Ze ( ) r l 2 3 3 4 0 c r 4 0 E0 r 1
1 当j l , l 0 2 1 当j l , l 0 2
双能级差值
原子物理学褚圣麟第四、五章复习

第四章:碱金属原子和电子自旋锂、钠、钾、铷、铯、钫化学性质相仿、都是一价、电离电势都比较小,容易被电离,具有金属的一般性质。
一、碱金属原子的光谱1、四个线系(锂为例):其他碱金属光谱系相仿,只是波长不同主线系:波长范围最广,第一条线是红色的,其余在紫外,系限2299.7埃;第一辅线系(漫线系):在可见部分;第二辅线系(锐线系):第一条线在红外,其余在可见部分;伯格漫线系(基线系):全在红外。
2、巴尔末氢原子光谱规律: ,5,4,3),1-21(1~22===n nR v H λ 碱金属原子光谱:2*∞-~~nR v v n = R 为里德伯常数,当,所以∞v ~是线系限的波数,且有效量子数*n 不是整数,Δ==-*n TR n 3、碱金属原子的光谱项:22*Δ)-(n R n R T == 4、同一线系的有效量子数与主量子数差别不大;与某一量子数对应不同线系的有效量子数差别明显,引进角量子数加以区分:5、每一线系线系限波数恰好是另一线系第二谱项值中最大的那个。
共振线:主线系第一条。
6、碱金属原子氢原子能级的比较n 很大时,碱金属原子能级 很接近氢原子能级;n 较小时,碱金属原子能级 与氢原子能级相差大; 且n 相同,l 不同的能级高低差别很大。
二、原子实极化和轨道贯穿:原子=原子实+价电子1、原子实:碱金属原子中的电子具有规则组合,共同点是在一个完整的结构之外,多余一个电子,这个完整而稳固的结构称为原子实。
由于原子实的存在,发生原子实的极化和轨道在原子实中的贯穿。
2、价电子:原子实外的那个电子称作价电子。
价电子在较大的轨道上运动,与原子实结合不是很强,容易脱离。
它决定元素的化学性质,在较大的轨道上运动。
3、原子实的极化:由于价电子的电场的作用,原子实中带正电的原子核和带负电的电子的中心发生微小相对位移,于是负电的中心不再在原子核上,形成一个电偶极子。
① 角量子数l 小:轨道偏心率大(椭圆),极化强,能量影响大;② 角量子数l 大:轨道偏心率小(接近圆),极化弱,能量影响小。
《氢原子与碱金属原子光谱精细结构的讨论》

《氢原子与碱金属原子光谱精细结构的讨论》
本文旨在分析氢原子与碱金属原子光谱精细结构。
随着科学技术的不断发展,氢原子与碱金属原子光谱精细结构呈现出更加复杂的变化,引起了人们的广泛关注。
氢原子光谱的精细结构是指氢原子在不同能级、不同态间由电磁波吸收而跳转改变能量状态,这种改变最终形成一组特有的光谱线。
氢原子产生这些变化的原因是粒子占有一个被称为可视极性的定向角。
碱金属原子的光谱的精细结构是指其中的原子吸收特定的电磁波来改变其能量状态,从而形成一系列特有的光谱线,也称为精细结构。
氢原子与碱金属原子的光谱精细结构在自然界有重要的意义。
其中,氢原子的跃迁过程可以提供有关物质结构、内能改变规律等重要信息,从而帮助科学研究者探索细胞内电子运动规律。
碱金属原子的光谱精细结构可以提供有关原子结构、能量关系和化学特性的有价值信息,从而为科学研究者帮助实现原子结构及有关变化的规律。
综上所述,氢原子与碱金属原子的光谱精细结构对于促进科学的发展具有重要的意义,帮助研究者探索原子及化学特性的有价值信息,因此必须得到科学家广泛关注和研究。
碱金属原子光谱的精细结构

l
分量,与j垂直的分量对外的平均效 果抵消了(由于绕j转动的缘故)。
j
对外起作用的是它沿j的延线的分量, j
这就是电子的总磁矩
单电子磁矩与角动量的关系
对图示进行分析,利用三角形的余弦定理
可求出 j
lˆ l(l 1)
l
sˆ s(s 1)
ˆj
j( j 1)
1、载流闭合回路的磁矩 μ (IS)n 对应力矩: τ μ B
经典物理:封闭矩形线圈
1、载流闭合回路的磁矩 (IS)n 力矩τ μ B
2、回转运动电子的角动量与磁矩 μ e L L
2m
1、载流闭合回路的磁矩 (IS)n 力矩τ μ B
观察到两个取向;
难道是轨道角动量矢量合成?
第四章:原子的精细结构:电子的自旋
第一节 原子中电子轨道运动磁矩 第二节 史特恩—盖拉赫实验 第三节 电子自旋的假设 第四节 碱金属双线 第五节 塞曼效应 第六节 氢原子能谱研究进展
埃伦费斯特和他的学生,1924年,莱顿. 左起: 第开, 古兹密特, 汀柏根, 埃 伦费斯特, 克罗尼格, 和费米。
原子处于基态。
沿着-x方向观察:
沿X水平方向运动的氢原子束,其速度:v
3kT m
为了使进入磁场的氢原子 束受到力的作用,这个磁 场必须是不均匀的磁场区 (0.1nm的线度范围内)。
N
S
磁场沿Z 方向是变化的,即
Bz 0, Bz Bz 0
z
x y
在磁场中,磁矩在磁场中的势能:
ˆj2 lˆ2 sˆ2
ˆj2 sˆ2 lˆ2
g j gl
钠金属光谱

碱金属原子光谱碱金属原子光谱,特指碱金属锂、钠、钾、铷、铯等元素的光谱。
它们具有相似的结构,明显地分成几个线系。
通常观察到的有主线系、第一辅线系(漫线系)、第二辅线系(锐线系)和伯格曼线系(基线系)。
众所熟知的钠黄光波长为589.3纳米,就是钠光谱主线系的第一条谱线。
碱金属原子都具有相似的结碱金属原子光谱构,内层的z-1 个电子与原子核组成原子实,最外层只有一个价电子,与氢原子有些类似,不同的是电子运动对原子实有极化和贯穿作用,引起不同轨道的电子能态的较大分裂,能级对l的简并解除。
另外由于电子自旋取向不同,引起自旋轨道耦合的能量微小分裂,因此碱金属原子的能级除S态是单层的外,其他P、D、F态都是双层的。
根据单价原子光谱的选择定则,可得出,主线系和锐线系是双线结碱金属原子光谱构,漫线系和基线系为三线结构。
观察结果图1画出了锂原子光谱的四个线系。
从图中可以看到主线系的波长范围最宽、第一条是红色的,碱金属原子光谱其余的都在紫外。
线系限是229.97nm;第一辅线系在可见光区部分;第二辅线系的第一条在红外区,其余在可见光区,这二线系有同一线系限,伯格曼线系在红外区,其他碱金属原子也有相似的光谱线系,只是波长不同,例如钠的主线系的第一条线是大家熟悉的黄色光,波长为589.3nm。
原子结构碱金属原子与氢原子光谱规律相似,是由于它们的原子结构相似,虽然碱金属元素与氢元素的性质极不相同,但它们都只有一个外层电子,称为价电子。
内满充壳层电子与原子核组成原子实,价电子即处于原子实的中心势场中。
按锂、钠、钾、铷、铯的次序原子实内的电子数分别是2、10、18、36、54、86,价电子所在的轨道的主量子数分别为n≥2、n≥3、n≥4、n≥5、n≥6。
能级公式碱金属原子的能级公式与氢原子相似公式式中墹l为量子亏损,是一个与角动量量子数l有关的正数,R是碱金属的里德伯常数。
显然,碱金属的能级不但与n有关,而且与l有关。
上式还可写为Z*称为有效核电荷数。
碱金属原子光谱的精细结构形成的原因

碱金属原子光谱的精细结构形成的原因首先,要了解碱金属原子光谱的形成原因,需要了解碱金属原子的电子结构。
碱金属原子的电子层结构是由一个核心和一系列电子壳层组成。
核心是由质子和中子组成的,在其周围围绕着一系列电子壳层,每个壳层包含一定数量的电子。
这些电子被分布在壳层的不同能级上,根据每个能级上的电子数目不同,可以产生多种谱线。
其次,光谱的形成还与量子力学的原理有关。
根据量子力学的原理,原子的能量是量子化的,即只能取离散的能级。
当原子受到激发时,电子会从低能级跃迁到高能级,吸收能量,形成吸收谱线。
当电子从高能级回到低能级时,会释放出能量,形成发射谱线。
这些发射和吸收的能量差决定了谱线所对应的波长和频率。
具体到碱金属原子的光谱,碱金属原子由于电子结构的特殊性质,光谱呈现出特定的精细结构。
碱金属原子的电子结构具有剩余电子,这些电子并非完全填满最外层的壳层,而是具有一个不完全填满的外层电子,称为价电子。
这一特点导致了碱金属原子光谱的精细结构。
具体来说,碱金属原子的光谱通常由两个部分组成:主谱线和杂谱线。
主谱线是由于电子在基态到第一激发态之间的跃迁产生的,这些跃迁是由于价电子从外层壳层跃迁到内层壳层所导致的。
杂谱线是由于电子在激发态之间的跃迁产生的,这些跃迁是由于价电子在外层壳层之间的跃迁所导致的。
这种精细结构的形成可以归因于量子力学的选择定则和电子的自旋。
量子力学的选择定则规定了电子跃迁的条件,只有符合一定的选择定则的电子跃迁才是允许的。
电子的自旋是一个量子力学的属性,具有两个可能的取值,分别为自旋向上和自旋向下。
当电子在不同能级之间跃迁时,必须满足量子力学的选择定则和自旋守恒定律。
总之,碱金属原子光谱的精细结构形成的原因主要与碱金属原子的电子结构和量子力学的选择定则和自旋守恒定律有关。
通过理解碱金属原子的电子结构和量子力学的原理,我们能够更好地解释碱金属原子光谱中的谱线形成和精细结构的特点。
碱金属原子形成精细结构光谱的选择定则为

碱金属原子因其复杂的内部结构,其光谱发射和吸收特性极其复杂。
这些原子可以形成精细结构光谱,这些光谱特性受到原子内部结构的影响,因此被称为精细结构光谱。
精细结构光谱选择定则是特定原子的精细结构光谱发射和吸收特性的定义。
碱金属原子的精细结构光谱选择定则可以分为两类:外层电子配对和内层电子配对。
外层电子配对定则指的是原子的外层电子受量子数的影响而形成的可观察的能级,外层电子的配对越完善,原子的精细结构光谱行为就越接近理想状态。
内层电子配对定则指的是由内层电子形成的值支配原子的精细结构光谱行为,内层电子的配对越完美,原子的精细结构光谱行为就越接近理想状态。
碱金属原子形成精细结构光谱的选择定则是指原子内部结构和外层电子配对定则,它们决定了碱金属原子形成精细结构光谱的发射和吸收特性。
这些定则是通过电子的配对和内层电子的值支配得出的,因此,可以精确地控制碱金属原子形成精细结构光谱的发射和吸收特性。
原子物理 (4)

-e
2021/1/12
24
二、原子实极化与轨道贯穿
1、原子实极化 (影响小)
价电子产生的电场,使原子实中原子核和电子的中心会发 生微小的相对位移。原子实中的电子的中心不在原子核上,形 成一个电偶极子。
+-
P (z 1)el
虚线:极化前
实线:极化后
2021/1/12
25
原子实极化 的作用 极化产生的电偶极子的电场作用于价电子,使它受到除库
R (n p )2
R
R
第二辅线系: vsn (3 p )2 (n s )2
n=3.4.5… np 3s n=4.5.6…. ns 3 p
第一辅线系:
vdn
R (3 p )2
R (n d )2
n=3.4.5….. nd 3 p
柏格曼系:
R
R
v fn (3 d )2 (n f )2
s,l=0
0.40
n* 1.589 2.596 3.598 4.599 5.599 6.579
T 28581.4 12559.9 7017.0 4472.8 3094.4 2268.9 主线系 p, l=1 n* 1.960 2.956 3.954 4.954 5.955 6.954 0.05
第一辅
用2两021/个1/1量2 子数 n, l 来描述
4
类比H原子光谱
v
RH
(1 m2
1 n2
)
m=1,2,3……; 对每个m, n=m+1,m+2,m+3……构成谱线系
n n>m
m
每一个线系的每一条光谱线的波数都可表示为两个光谱项
之差
vn
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
H原子:主量子数n是整数
碱金属原子:n *、m* 不是整数有效量子数
2.量子数亏损
n* 、m*和整数之间有一个差值,用 l表示,
l n n* 量子数亏损
l
l
与 n 无关, 与 l 有关,
0、1、2、3…… s, p,d,
l
f
大,
l
小,
3.光谱项
Tn*
R n*2
T
(
n
(
n
R
d
)2
~ 3 p nd
柏格曼系:
~
R
( 3 d
)2
R
( n f
)2
~ 3d nf
§4.2 原子实的极化和轨道贯穿 (解释n-Δ)
价电子与原子实
Li:Z=3=212+1 Na:Z=11=2(12+22)+1 K: Z=19=2(12+22+22)+1 Rb:Z=37=2(12+22+32+22)+1 Cs:Z=55=2(12+22+32+32+22)+1 Fr:Z=87=2(12+22+32+42+32+22)+1
§4.1 碱金属原子的光谱
一、碱金属原子的光谱特点 各个碱金属原子的光谱具有相似的结构,光谱线也类似于
氢原子光谱,有如下特征:
主要特征有四条: 1.有四组谱线:—每一组的初始位置不同,即有四套初
项,四套线系。(主线系,第一辅线系(漫线系),第二辅 线系(锐线系),柏格曼线系(基线系)。)
2.有三个终端:—有三套固定项。 3.两个量子数 —主量子数n和轨道角动量量子数 l。
E n ,l
hc
(
n
R
l
)2
ห้องสมุดไป่ตู้
nx(
ns,np,nd )
Tn ,l
R
( n l
)2
nx( ns,np,nd )
碱金属原子的能量与n、l两个量子数有关,表示为
。一E n个,l n,对应n个能级。而且
Ens Enp End Enf En
表4.1列出了从锂原子的各个线系算出的T、n*以及 ,
(2 s)2 (n p)2
~ 2s np
第二辅线系
~
R (2 p)2
(n
R s)2
~ 2 p ns
第一辅线系
~
(2
R p)2
(n
R d )2
~ 2 p nd
柏格曼系
~ R R
(3 d )2 (n f )2
从表中可以看出:
(1) n*一般略小于 n , 只有个别例外。
(2) 同一线系的 差不多相同,即 l 相同的 大概相同
。
(3) 不同线系的 不同,且l愈大, 愈小。
(4) 每个线系的系限波数恰好等于另一个线系的第二项
的最大值。
总结以上所述,锂原子的四个线系,可用下列公式表 示:
主线系
~ R R
(3)第二辅线系(锐线系the sharp series): 第一条在红外,其余均在可见区,其谱线较宽,边缘 清晰,故又称锐线系。锐线系和漫线系的系限相同, 所以均称为辅线系。
(4)柏格曼系(基线系the fundamental series): 波长较长,在远红外区,它的光谱项与氢的光谱项相 差很小,又称基线系。
~ 3d nf
对钠原子光谱,也有同样形式的四个线系公式:
主线系: ~ R R
( 3 s )2 ( n p )2
~ 3s np
第二辅线系:~
(
3
R
p
)2
(
n
R
s
)2
~ 3 p ns
第一辅线系:~
(
R
3 p )2
第四章 碱金属原子和电子自旋
H原子:能级
En
Rhc n2
光谱项
T (n)
R n2
由 h En Em 谱线的波长解释实验规律
H原子光谱: 当 n 时,
T (m)
T (n)
R m2
R n2
系限。
~
~
T(m)
R m2
第1项是固定项,它决定系限及末态,第2项是动项,它决定初态。
碱金属原子和氢原子中,电子轨道的异同 共同之处:最外层只有一个电子价电子 其余部分和核形成一个紧固的团体原子实 碱金属原子:带一个正电荷的原子实+一个价电子 H原子:带一个正电荷的原子核+一个电子
首先是基态不同-Li、Na、K、Rb、Cs、Fr的基态依次为 :2s、3s、4s、5s、6s、7s。
4. 一条规则:—能级之间的跃迁有一条选择规则: Δl=0。
(1)主线系(the principal series): 谱线最亮,波长的分布范围最广,第一条呈红色,其 余均在紫外。
(2)第一辅线系(漫线系the diffuse series): 在可见光部分,其谱线较宽,边缘有些模糊而不清晰 ,故又称漫线系。
其次是能量不同
1.原子实极化
原子实是一个球形对称的结 构,它里边的原子核带有Ze正电 荷和(Z-1)e负电荷,在原子最 外层运动的价电子好象是处在一 个单位正电荷的库仑场中,当价 电子运动到靠近原子实时,由于 价电子的电场作用,原子实中带 正电的原子核与带负电的电子的 中心会发生微小的偏移,于是负 电的中心不再在原子核上,形成 一个电偶极子。这就是原子实的 极化。
)
R n2
RLi 1.09729 105 cm 1
4.电子状态符号
电子状态用量子数 n 、 l 、 ml 描述
对一定的n,l =0、1、2…… n -1,共n个值。
对一定的l, ml =0、1、2……l,共2 l +1个值。
l = 0、1、2、3、4…… s、p、d、f、g……
二、四个线系的表达方式(有4种表达方式)
里德伯研究发现,与氢光谱类似,碱金属原子的光谱线的 波数也可以表示为二项之差:
碱金属原子的里德伯公式
~
Tm*
Tn*
R(
1 m *2
1 n *2
)
n* m*
当 n 时,系限。
~ ~ Tm* n * m* 有效量子数。
1.有效量子数
极化而成的电偶极子的电场又作用于价电子,使它感受到 除库仑场以外的另加的吸引力,有效电荷不再为一个单位的 正电荷,这就引起能量的降低。对于同一n值, l值较小的轨 道是偏心率较大的椭圆轨道,当电子运动到一部分轨道上时 ,由于离原子实很近,所以引起较强的极化,对能量的影响 大;对l值较大的轨道来说,是偏心率不大的轨道,近似为圆 形轨道,极化效应弱,所以对能量的影响也小。