九年级数学练习卷(2008年4月)
数学练习卷: 《二次函数》(含答案)

数学九年级(下)单元练习卷:《二次函数》第Ⅰ卷(选择题)一.选择题1.已知二次函数y=﹣x2+3mx﹣3n图象与x轴没有交点,则()A.2m+n>B.2m+n<C.2m﹣n<D.2m﹣n>2.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=a2(x+1)2+k(a,k为常数,且a≠0)上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y2 3.若抛物线y=x2+bx+c与x轴只有一个公共点,且过点A(m,n),B(m﹣8,n),则n的值为()A.8 B.12 C.15 D.164.二次函数y=ax2+bx+c的部分对应值如表x﹣3 ﹣2 ﹣1 0 1 2y﹣7 0 5 8 9 8利用该二次函数的图象判断,当函数值y>0时,x的取值范围是()A.0<x<8 B.x<0或x>8 C.﹣2<x<4 D.x<﹣2或x>4 5.抛物线y=x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是()A.y=(x﹣1)2﹣2 B.y=(x+1)2﹣2 C.y=(x+1)2+2 D.y=(x﹣1)2+2 6.函数y=ax2+bx+c的图象如图所示,关于x的一元二次方程ax2+bx+c﹣4=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.有两个异号的实数根7.已知抛物线y=ax2+bx+c经过点(﹣4,m),(﹣3,n),若x1,x2是关于x的一元二次方程ax2+bx+c=0的两个根,且﹣4<x1<﹣3,x2>0,则下列结论一定正确的是()A.m+n>0 B.m﹣n<0 C.m•n<0 D.>08.抛物线y=ax2+bx+c与直线y=ax+c(a≠0)在同一直角坐标系中的图象可能是()A.B.C.D.9.已知抛物线y=ax2+bx+c(a≠0)上部分点的横坐标x与纵坐标y的对应值如下表:x…﹣2 ﹣1 0 1 2 3 …y…﹣4 0 2 2 0 ﹣4 …下列结论:①抛物线开口向下;②当x>1时,y随x的增大而减小;③抛物线的对称轴是直线x=;④函数y=ax2+bx+c(a≠0)的最大值为2.其中所有正确的结论为()A.①②③B.①③C.①③④D.①②③④10.向空中发射一枚炮弹,第x秒时的高度为y米,且高度与时间的关系为y=ax2+bx+c (a≠0),若此炮弹在第6秒与第17秒时的高度相等,则在下列时间中炮弹所在高度最高的是()A.第8秒B.第10秒C.第12秒D.第15秒11.如图所示,二次函数y=ax2+bx+c的图象开口向上,且对称轴在(﹣1,0)的左边,下列结论一定正确的是()A.abc>0 B.2a﹣b<0 C.b2﹣4ac<0 D.a﹣b+c>﹣1 12.抛物线y=ax2+bx+c经过点(1,0),且对称轴为直线x=﹣1,其部分图象如图所示.对于此抛物线有如下四个结论:①abc<0;②2a+b=0;③9a﹣3b+c=0;④若m>n >0,则x=m﹣1时的函数值小于x=n﹣1时的函数值.其中正确结论的序号是()A.①③B.②④C.②③D.③④第Ⅱ卷(非选择题)二.填空题13.已知二次函数的图象开口向上,则m的值为.14.若点(1,5),(5,5)是抛物线y=ax2+bx+c(a≠0)上的两个点,则此抛物线的对称轴是直线.15.函数y=ax2+bx+c(0≤x≤3)的图象如图所示,则该函数的最小值是.16.扫地机器人能够自主移动并作出反应,是因为它发射红外信号反射回接收器,机器人在打扫房间时,若碰到障碍物则发起警报.若某一房间内A、B两点之间有障碍物,现将A、B两点放置于平面直角坐标系xOy中(如图),已知点A,B的坐标分别为(0,4),(6,4),机器人沿抛物线y=ax2﹣4ax﹣5a运动.若机器人在运动过程中只触发一次报警,则a的取值范围是.17.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b<0;③a﹣b+c<0;④a+c>0;其中正确的说法有(写出正确说法的序号).三.解答题18.已知抛物线的解析式是y=x2﹣(k+2)x+2k﹣2.(1)求证:此抛物线与x轴必有两个不同的交点;(2)若抛物线与直线y=x+k2﹣1的一个交点在y轴上,求该二次函数的顶点坐标.19.在平面直角坐标系xOy中,抛物线y=ax2﹣4ax+c(a≠0)与y轴交于点A,将点A 向右平移2个单位长度,得到点b.直线y=x﹣3与x轴,y轴分别交于点C,D.(1)求抛物线的对称轴;(2)若点A与点D关于x轴对称,①求点B的坐标;②若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.20.如图,抛物线y=ax2﹣x+c与x轴相交于点A(﹣2,0)、B(4,0),与y轴相交于点C,连接AC,BC,以线段BC为直径作⊙M,过点C作直线CE∥AB,与抛物线和⊙M分别交于点D,E,点P在BC下方的抛物线上运动.(1)求该抛物线的解析式;(2)当△PDE是以DE为底边的等腰三角形时,求点P的坐标;(3)当四边形ACPB的面积最大时,求点P的坐标并求出最大值.21.在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点为A(﹣3,0),B(1,0)两点,与y轴交于点C(0,﹣3),顶点为D,其对称轴与x轴交于点E.(1)求二次函数的解析式;(2)点P为第三象限内抛物线上一点,△APC的面积记为S,求S的最大值及此时点P 的坐标.22.下面给出六个函数解析式:y=x2,y=x2+1,y=﹣x2﹣|x|,y=2x2﹣3|x|﹣1,y=﹣x2+2|x|+1,y=﹣3x2﹣|x|﹣4.小明根据学习二次函数的经验,分析了上面这些函数解析式的特点,研究了它们的图象和性质.下面是小明的分析和研究过程,请补充完整:(1)观察上面这些函数解析式,它们都具有共同的特点,可以表示为形如:y=,其中x为自变量;(2)如图,在平面直角坐标系xOy中,画出了函数y=﹣x2+2|x|+1的部分图象,用描点法将这个函数的图象补充完整;(3)对于上面这些函数,下列四个结论:①函数图象关于y轴对称②有些函数既有最大值,同时也有最小值③存在某个函数,当x>m(m为正数)时,y随x的增大而增大,当x<﹣m时,y随x的增大而减小④函数图象与x轴公共点的个数只可能是0个或2个或4个所有正确结论的序号是;(4)结合函数图象,解决问题:若关于x的方程﹣x2+2|x|+1=﹣x+k有一个实数根为3,则该方程其它的实数根为.参考答案一.选择题1.解:∵二次函数y=﹣x2+3mx﹣3n图象与x轴没有交点,∴△<0,即(3m)2﹣4×(﹣1)×(﹣3n)<0,9m2﹣12n<0,3m2<4n,∵抛物线开口向下,与x轴没有交点,∴﹣3n≤0,∴n≥0,当x=2时,y<0,即﹣4+6m﹣3n<0解得2m﹣n<故选:C.2.解:∵抛物线抛物线y=a2(x+1)2+k(a,k为常数,且a≠0)的开口向上,对称轴为直线x=﹣1,而A(﹣2,y1)离直线x=﹣1的距离最近,C(2,y3)点离直线x=﹣1最远,∴y1<y2<y3.故选:C.3.解:由题意b2﹣4c=0,∴b2=4c,又∵抛物线过点A(m,n),B(m﹣8,n),∴A、B关于直线x=﹣对称,∴A(﹣+4,n),B(﹣﹣4,n),把点A坐标代入y=x2+bx+c,n=(﹣+4)2+b(﹣+4)+c=﹣b2+16+c,∵b2=4c,∴n=16.故选:D.4.解:由表中的数据知,抛物线顶点坐标是(1,9),当x<1时,y的值随x的增大而增大,当x>1时,y的值随x的增大而减小,则该抛物线开口方向向上,所以根据抛物线的对称性质知,点(﹣2,0)关于直线直线x=1对称的点的坐标是(4,0).所以,当函数值y>0时,x的取值范围是﹣2<x<4.故选:C.5.解:抛物线y=x2向右平移1个单位,得:y=(x﹣1)2;再向下平移2个单位,得:y=(x﹣1)2﹣2.故选:A.6.解:由函数图象可知,函数y=ax2+bx+c的最大值是4,即4=ax2+bx+c对应的x的值只有一个,即一元二次方程ax2+bx+c﹣4=0有两个相等的实数根,故选:A.7.解:∵抛物线y=ax2+bx+c经过点(﹣4,m),(﹣3,n),x1,x2是关于x的一元二次方程ax2+bx+c=0的两个根,且﹣4<x1<﹣3,x2>0,∴m>0,n<0或m<0,n>0,∴当m>0,n<0时,m+n的正负不好确定,m﹣n>0,mn<0,<0,当m<0,n>0时,m+n的正负不好确定,m﹣n<0,mn<0,<0,由上可得,一定正确的结论是mn<0,故选:C.8.【解答】解:A、一次函数y=ax+c与y轴交点应为(0,c),二次函数y=ax2+bx+c与y轴交点也应为(0,c),图象不符合,故本选项错误;B、由抛物线可知,a>0,由直线可知,a<0,a的取值矛盾,故本选项错误;C、由抛物线可知,a<0,由直线可知,a>0,a的取值矛盾,故本选项错误;D、由抛物线可知,a<0,由直线可知,a<0,且抛物线与直线与y轴的交点相同,故本选项正确.故选:D.9.解:由表格可知,解得∴抛物线的解析式为y=﹣x2+x+2,∵a=﹣1<0,抛物线开口向下,①正确;抛物线的对称轴是直线x==,故②③正确,抛物线的顶点坐标是(,),故④错误,故选:A.10.解:∵此炮弹在第6秒与第17秒时的高度相等,∴抛物线的对称轴是:x==11.5,∴炮弹所在高度最高时:时间是第12秒.故选:C.11.解:A、如图所示,抛物线经过原点,则c=0,所以abc=0,故不符合题意;B、如图所示,对称轴在直线x=﹣1的左边,则﹣<﹣1,又a>0,所以2a﹣b<0,故符合题意;C、如图所示,图象与x轴有2个交点,依据根的判别式可知b2﹣4ac>0,故不符合题意;D、如图所示,当x=﹣1时y<0,即a﹣b+c<0,但无法判定a﹣b+c与﹣1的大小,故不符合题意.故选:B.12.解:①观察图象可知:a<0,b<0,c>0,∴abc>0,所以①错误;②∵对称轴为直线x=﹣1,即﹣=﹣1,解得b=2a,即2a﹣b=0,所以②错误;③∵抛物线y=ax2+bx+c经过点(1,0),且对称轴为直线x=﹣1,∴抛物线与x轴的另一个交点为(﹣3,0),当a=﹣3时,y=0,即9a﹣3b+c=0,所以③正确;根据选择题的筛选法,只有D正确.故选:D.二.填空题(共5小题)13.解:∵二次函数的图象开口向上,∴,解得,m=2,故答案为:2.14.解:∵点(1,5),(5,5)是抛物线y=ax2+bx+c上的两个点,且纵坐标相等.∴根据抛物线的对称性知道抛物线对称轴是直线x==3.故答案为:x=3.15.解:由函数图象可知,此函数的顶点坐标为(1,﹣1),∵此抛物线开口向上,∴此函数有最小值,最小值为﹣1;故答案为:﹣1.16.解:由题意可知:∵点A、B坐标分别为(0,4),(6,4),∴线段AB的解析式为y=4.机器人沿抛物线y=ax2﹣4ax﹣5a运动.抛物线对称轴方程为:x=2,机器人在运动过程中只触发一次报警,所以抛物线与线段y=4只有一个交点.所以抛物线经过点A下方.∴﹣5a<4解得a>﹣.4=ax2﹣4ax﹣5a,△=0即36a2+16a=0,解得a1=0(不符合题意,舍去),a2=.当抛物线恰好经过点B时,即当x=6,y=4时,36a﹣24a﹣5a=4,解得a=综上:a的取值范围是﹣<a<17.解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的右侧,∴x=﹣>0,∴b>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,故①错误;∵﹣<1,a<0,∴2a+b<0,故②正确;∵当x=﹣1时,y>0,∴a﹣b+c>0,故③错误;∵a﹣b+c>0,∴a+c>b,∵b>0,∴a+c>0,故④正确.综上所述,正确结论是②④2;故答案为②④.三.解答题18.解:(1)∵△=[﹣(k+2)]2﹣4×1×(2k﹣2)=k2﹣4k+12=(k﹣2)2+8>0,∴此抛物线与x轴必有两个不同的交点;(2)∵抛物线与直线y=x+k2﹣1的一个交点在y轴上,∴2k﹣2=k2﹣1,解得k=1,则抛物线解析式为y=x2﹣3x=(x﹣)2﹣,所以该二次函数的顶点坐标为(,﹣).19.解:(1)∵y=ax2﹣4ax+c=a(x﹣2)2﹣4a+c,∴抛物线的对称轴是直线x=2;(2)①∵直线y=x﹣3与x轴,y轴分别交于点C、D,∴点C的坐标为(5,0),点D的坐标为(0,﹣3).∵抛物线与y轴的交点A与点D关于x轴对称,∴点A的坐标为(0,3).∵将点A向右平移2个单位长度,得到点B,∴点B的坐标为(2,3).②抛物线顶点为P(2,3﹣4a).(ⅰ)当a>0时,如图1.令x=5,得y=25a﹣20a+3=5a+3>0,即点C(5,0)总在抛物线上的点E(5,5a+3)的下方.∵y P<y B,∴点B(2,3)总在抛物线顶点P的上方,结合函数图象,可知当a>0时,抛物线与线段CB恰有一个公共点.(ⅱ)当a<0时,如图2.当抛物线过点C(5,0)时,25a﹣20a+3=0,解得a=﹣.结合函数图象,可得a≤﹣.综上所述,a的取值范围是:a≤﹣或a>0.20.解:(1)抛物线的表达式为:y=a(x+2)(x﹣4)=a(x2﹣2x﹣8),即﹣2a=﹣,解得:a=,故抛物线的表达式为:y=x2﹣x﹣3;(2)点C(0,﹣3),函数对称轴为:x=1,则点D(2,﹣3),点E(4,﹣3),则DE的中垂线为:x=(2+4)=3,当x=3时,y=x2﹣x﹣3=﹣,故点P(3,﹣);(3)由点B、C的坐标可得,直线BC的表达式为:y=x﹣3,故点P作y轴的平行线交BC于点H,设点P(x,x2﹣x﹣3),则点H(x,x﹣3);四边形ACPB的面积=S△ABC+S△BCP=3×6+HP×OB=9+×3×(x﹣3﹣x2+x+3)=﹣x2+3x+9,∵﹣<0,故四边形ACPB的面积有最大值为,此时,点P(2,﹣3).21.解:(1)∵二次函数过A(﹣3,0),B(1,0)两点,∴设二次函数解析式为y=a(x+3)(x﹣1),∵二次函数过C点(0,﹣3),∴﹣3=a(0+3)(0﹣1),解得,a=1,∴y=(x+3)(x﹣1)=x2+2x﹣3即二次函数解析式为y=x2+2x﹣3;(2)设直线AC解析式为:y=kx+b,∵A(﹣3,0),C(0,﹣3),∴,解得,,∴直线AC的解析式为y=﹣x﹣3,过点P作x轴的垂线交AC于点G,设点P的坐标为(x,x2+2x﹣3),则G(x,﹣x﹣3),∵点P在第三象限,∴PG=﹣x﹣3﹣(x2+2x﹣3)=﹣x﹣3﹣x2﹣2x+3=﹣x2﹣3x,∴===,∴当时,,点P(﹣,﹣).,即S的最大值是,此时点P的坐标是(﹣,﹣).22.解:(1)①观察上面这些函数解析式,它们都具有共同的特点,可以表示为形如:y=ax2+b|x|+c,(a,b,c是常数,a≠0)故答案为:y=ax2+b|x|+c,(a,b,c是常数,a≠0).(2)图象如图1所示.(3)观察图象可知:①函数图象关于y轴对称,正确;②有些函数既有最大值,同时也有最小值,不正确;③存在某个函数,y=x2,当x>m(m为正数)时,y随x的增大而增大,当x<﹣m时,y随x的增大而减小,正确;④函数图象与x轴公共点的个数只可能是0个或2个或4个,错误.故答案为①③.(4)观察图2可知,关于x的方程﹣x2+2|x|+1=﹣x+k有一个实数根为3,则该方程其它的实数根为﹣1,0.故答案为﹣1,0.。
(必考题)初中九年级数学上册第二十一章《一元二次方程》经典练习卷(答案解析)

一、选择题1.欧几里得在《几何原本》中,记载了用图解法解方程22x ax b +=的方法,类似地可以用折纸的方法求方程210x x +-=的一个正根,如图,裁一张边长为1的正方形的纸片ABCD ,先折出BC 的中点E ,再折出线段AE ,然后通过折叠使EB 落在线段EA 上,折出点B 的新位置F ,因而EF EB =,类似地,在AB 上折出点M 使AMAF =,表示方程210x x +-=的一个正根的线段是( )A .线段BMB .线段AMC .线段AED .线段EM B解析:B【分析】 设正方形的边长为1,AF =AM =x ,根据勾股定理即可求出答案.【详解】解:设正方形的边长为1,AF =AM =x ,则BE =EF =12,AE =x+12, 在Rt △ABE 中,∴AE 2=AB 2+BE 2,∴(x +12)2=1+(12)2, ∴x 2+x -1=0,∴AM 的长为x 2+x -1=0的一个正根,故选:B .【点睛】本题考查一元二次方程,解题的关键是根据勾股定理列出方程,本题属于中等题型. 2.用配方法解方程x 2﹣4x ﹣7=0,可变形为( )A .(x+2)2=3B .(x+2)2=11C .(x ﹣2)2=3D .(x ﹣2)2=11D解析:D【分析】方程常数项移到右边,两边加上4变形得到结果即可.【详解】解:x 2﹣4x ﹣7=0,移项得:247x x -=配方得:24474x x -+=+ ,即2()211x -=故答案为:D .【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.3.下列方程中是一元二次方程的是( )A .210x +=B .220x -=C .21x y +=D .211x x+=B 解析:B【分析】直接利用一元二次方程的定义分析得出答案.【详解】解:A.210x +=,是一元一次方程,故本选项不符合题意.B.220x -=,是一元二次方程,故本选项符合题意.C.21x y +=,是二元二次方程,故本选项不符合题意.D.211x x+=,该方程分式方程,故本选项不符合题意. 故选B .【点睛】 此题主要考查了一元二次方程的定义,正确把握定义是解题关键.4.由于疫情得到缓和,餐饮行业逐渐回暖,某地一家餐厅重新开张,开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元,若设每天的增长率为x ,则x 满足的方程是( )A .5000(1+x )=6050B .5000(1+2x )=6050C .5000(1﹣x )2=6050D .5000(1+x )2=6050D 解析:D【分析】根据开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元列方程即可得到结论.【详解】解:设每天的增长率为x ,依题意,得:5000(1+x )2=6050.故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.5.下列一元二次方程中,有两个不相等实数根的是( )A .2104x x -+= B .2390x x ++= C .2250x x -+= D .25130x x -=D解析:D【分析】先把各方程化为一般式,再分别计算方程根的判别式,然后根据判别式的意义对各选项进行判断.【详解】A 、()221414104b ac =-=--⨯⨯=,方程有两个相等的两个实数根; B 、2243419270b ac =-=-⨯⨯=-<,方程没有实数根;C 、()2242415160b ac =-=--⨯⨯=-<,方程没有实数根;D 、()224134501690b ac =-=--⨯⨯=>,方程有两个不相等的两个实数根; 故选:D .【点睛】本题考查了根的判别式:一元二次方程20ax bx c ++=(0a ≠)的根与24b ac =-有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.6.某商品经过连续两次降价,售价由原来的每件100元降到每件64元,则平均每次降价的百分率为( )A .15%B .40%C .25%D .20%D 解析:D【分析】设平均每次降价的百分率为x ,根据该商品的原价及经过两次降价后的价格,即可得出关于x 的一元二次方程,解之即可得出结论.【详解】解:设平均每次降价的百分率为x ,依题意,得:100(1-x )2=64,解得:x 1=0.2=20%,x 2=1.8(不合题意,舍去).故选:D .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 7.一元二次方程20x x -=的根是( )A .10x =,21x =B .11x =,21x =-C .10x =,21x =-D .121x x ==A 解析:A【分析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【详解】解:∵x 2-x=0,∴x (x-1)=0,则x=0或x-1=0,解得:x1=0,x2=1,故选:A.【点睛】此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.8.下列方程中,有两个不相等的实数根的是()A.x2=0 B.x﹣3=0 C.x2﹣5=0 D.x2+2=0C解析:C【分析】利用直接开平方法分别求解可得.【详解】解:A.由x2=0得x1=x2=0,不符合题意;B.由x﹣3=0得x=3,不符合题意;C.由x2﹣5=0得x1=x2=,符合题意;D.x2+2=0无实数根,不符合题意;故选:C.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.9.已知一元二次方程x2﹣6x+c=0有一个根为2,则另一根及c的值分别为()A.2,8 B.3,4 C.4,3 D.4,8D解析:D【分析】设方程的另一个根为t,根据根与系数的关系得到t+2=6,2t=c,然后先求出t,再计算c 的值.【详解】解:设方程的另一个根为t,根据题意得t+2=6,2t=c,解得t=4,c=8.故选:D.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-ba,x1x2=ca.10.已知方程2202030x x+-=的根分别为a和b,则代数式2a a2020ab++的值为()A.0 B.2020 C.1 D.-2020A解析:A【分析】将a 代入方程,可得2202030a a +-=,即220302a a =-,代入要求的式子,即可得到3+ab ,而a 、b 是方程的两个根,根据韦达定理,可求出ab 的值,即可求出答案.【详解】解:∵方程2202030x x +-=的根分别为a 和b∴2202030a a +-=,即220302a a =-∴2a a 2020a b ++=32020a -+ab+2020a=3+ab∵ab=-3∴2a a 2020a b ++=32020a -+ab+2020a=3+ab=3-3=0故选:A .【点睛】本题主要考查一元二次方程的解以及韦达定理,熟练解代入方程以及观察式子特点,抵消部分式子是解决本题的关键.二、填空题11.填空:(1)214x x ++________2(7)x =+;(2)29x x -+_______=(x-____)249【分析】运用配方法的运算方法填写即可【详解】解:(1)x2+14x+49=(x+7)2故答案为:49;(2)x2-9x+=(x-)2故答案为:【点睛】此题主要考查了配方法的应用熟练掌握完全平方公解析:49814 92 【分析】运用配方法的运算方法填写即可.【详解】解:(1)x 2+14x+49=(x+7)2故答案为:49;(2)x 2-9x+814=(x-92)2, 故答案为:814,92. 【点睛】此题主要考查了配方法的应用,熟练掌握完全平方公式是关键.12.一元二次方程 x ( x +3)=0的根是__________________.【分析】用因式分解法解方程即可【详解】解:x(x+3)=0x =0或x+3=0;故答案为:【点睛】本题考查了一元二次方程的解法掌握两个数的积为0这两个数至少有一个为0是解题关键解析:12x 0x -3==,【分析】用因式分解法解方程即可.【详解】解:x ( x +3)=0,x =0或 x +3=0,12x 0x -3==,;故答案为:12x 0x -3==,.【点睛】本题考查了一元二次方程的解法,掌握两个数的积为0,这两个数至少有一个为0是解题关键.13.已知方程2230x x +-=的解是11x =,23x =-,则方程2(3)2(3)30x x +++-=的解是_____.【分析】把(x+3)看成一个整体另一个方程和已知方程的结构形式完全相同所以x+3与已知方程的解也相同根据此题意解题即可【详解】解:∵是已知方程的解由于另一个方程与已知方程的形式完全相同∴x+3=1或 解析:122,6x x =-=-【分析】把(x+3)看成一个整体,另一个方程和已知方程的结构形式完全相同,所以x+3与已知方程的解也相同,根据此题意解题即可.【详解】解:∵ 1213x x ==-,是已知方程2230x x +-=的解,由于另一个方程()()232330x x +++-=与已知方程的形式完全相同,∴x+3=1或x+3=﹣3,解得:1226x x =-=-,.故答案为:1226x x =-=-,.【点睛】本题考查了解一元二次方程,能根据方程的解得出x+3=1和x+3=-3是解此题的关键,此题属于换元法解方程.14.已知()0n n ≠是一元二次方程240x mx n ++=的一个根,则m n +的值为______.【分析】根据一元二次方程的解的定义把代入得到继而可得的值【详解】∵是关于x 的一元二次方程的一个根∴即∵∴即故答案为:【点睛】本题考查了一元二次方程的解的定义因式分解的应用注意:能使一元二次方程左右两解析:4-【分析】根据一元二次方程的解的定义把x n =代入240x mx n ++=得到240n mn n ++=,继而可得m n +的值.【详解】∵n 是关于x 的一元二次方程240x mx n ++=的一个根,∴240n mn n ++=,即()40n n m ++=,∵0n ≠,∴4n m ++,即4m n +=-,故答案为:4-.【点睛】本题考查了一元二次方程的解的定义、因式分解的应用.注意:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.15.将一元二次方程x 2﹣8x ﹣5=0化成(x +a )2=b (a ,b 为常数)的形式,则b =_____.21【分析】先把常数项移到等号的右边再等号两边同时加上16即可【详解】解:∵x2﹣8x =5∴x2﹣8x+16=5+16即(x ﹣4)2=21故答案为:21【点睛】本题主要考查一元二次方程的配方掌握完全解析:21【分析】先把常数项移到等号的右边,再等号两边同时加上16,即可.【详解】解:∵x 2﹣8x =5,∴x 2﹣8x +16=5+16,即(x ﹣4)2=21,故答案为:21.【点睛】本题主要考查一元二次方程的配方,掌握完全平方公式,是解题的关键.16.已知(x 2+y 2)(x 2+y 2﹣5)=6,则x 2+y 2=_____.6【分析】设x2+y2=m 把原方程转化为含m 的一元二次方程先用因式分解法求解再确定x2+y2的值【详解】设x2+y2=m 原方程可变形为:m(m ﹣5)=6即m2﹣5m ﹣6=0∴(m ﹣6)(m+1)=0 解析:6【分析】设x 2+y 2=m ,把原方程转化为含m 的一元二次方程,先用因式分解法求解,再确定x 2+y 2的值.【详解】设x 2+y 2=m ,原方程可变形为:m (m ﹣5)=6,即m 2﹣5m ﹣6=0.∴(m ﹣6)(m +1)=0,解得m 1=6,m 2=﹣1.∵m =x 2+y 2≥0,∴x 2+y 2=6.故答案为:6.【点睛】本题考查了一元二次方程的解法,掌握换元法和因式分解法解一元二次方程是解决本题的关键.17.三角形两边长分别为3和5,第三边满足方程x2-6x+8=0,则这个三角形的形状是__________.直角三角形【分析】先利用因式分解法解方程得到x1=4x2=2再利用三角形三边的关系得到x=4然后根据勾股定理的逆定理进行判断【详解】解:x2-6x+8=0(x-4)(x-2)=0x-4=0或x-2=解析:直角三角形【分析】先利用因式分解法解方程得到x1=4,x2=2,再利用三角形三边的关系得到x=4,然后根据勾股定理的逆定理进行判断.【详解】解:x2-6x+8=0,(x-4)(x-2)=0,x-4=0或x-2=0,所以x1=4,x2=2,∵两边长分别为3和5,而2+3=5,∴x=4,∵32+42=52,∴这个三角形的形状是直角三角形.故答案为:直角三角形.【点睛】本题考查了解一元二次方程-因式分解法、勾股定理的逆定理和三角形三边的关系,熟练掌握相关的知识是解题的关键.18.若a是方程210++=的根,则代数式2x x2020a a--的值是________.2021【分析】把x=a代入已知方程并求得a2+a=-1然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a代入x2+x+1=0得a2+a+1=0解得a2+a=-1所以2020-a2-a=2解析:2021【分析】把x=a代入已知方程,并求得a2+a=-1,然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a代入x2+x+1=0,得a2+a+1=0,解得a2+a=-1,所以2020-a2-a=2020+1=2021.故答案是:2021.【点睛】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.19.已知a 2+1=3a ,b 2+1=3b ,且a ≠b ,则11a b+=_____.【分析】根据一元二次方程根的定义得到ab 是一元二次方程的两根得到a 和b 的和与积再把两根和与两根积求出代入所求的式子中即可求出结果【详解】解:∵a2+1=3ab2+1=3b 且a≠b ∴ab 是一元二次方程解析:3【分析】根据一元二次方程根的定义得到a 、b 是一元二次方程的两根,得到a 和b 的和与积,再把两根和与两根积求出,代入所求的式子中即可求出结果.【详解】解:∵a 2+1=3a ,b 2+1=3b ,且a ≠b∴a ,b 是一元二次方程x 2﹣3x +1=0的两个根,∴由韦达定理得:a +b =3,ab =1, ∴113a b a b ab++==. 故答案为:3.【点睛】 本题考查一元二次方程根与系数关系、一元二次方程根的定义、分式的通分,对一元二次方程根的定义的理解是解题的关键.20.为解决民生问题,国家对某药品价格分两次降价,该药品的原价是48元,降价后的价格是30元,若平均每次降价的百分率均为x ,可列方程.为____________.48(1-x)2=30【分析】本题的等量关系为:第一次降价后的价格×第二次降价占第一次降价的百分比=30由此即可求解【详解】解:设平均每次降价的百分率为x 则第一次降价后的价格为48(1-x)第二次降解析:48(1-x)2=30【分析】本题的等量关系为:第一次降价后的价格×第二次降价占第一次降价的百分比=30,由此即可求解.【详解】解:设平均每次降价的百分率为x ,则第一次降价后的价格为48(1-x),第二次降价后的价格为48(1-x)(1-x),由题意,可列方程为:48(1-x)2=30.故答案为:48(1-x)2=30.【点睛】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到相应的等量关系,注意第二次降价后的价格是在第一次降价后的价格的基础上得到的.三、解答题21.已知关于x 的方程()2222x kx x k +=--,当k 取何值时,此方程(1)有两个不相等的实数根;(2)没有实数根.解析:(1)54k >; (2)54k <. 【分析】先化方程为一般形式,它是关于x 一元二次方程,据一元二次方程判别式和根的情况列出关于k 的不等式求解.【详解】方程化为:22(21)(2)0x k x k +-+-=, ∴∆22(21)4(2)1215k k k =--⨯-=-.(1)当12150k ->,54k >时,方程有两个不相等的实数根; (2)当12150k -<,54k <时,方程没有实数根. 【点睛】此题考查一元二次方程的判别式,其关键是撑握判别式与一元二次方程根情况的关系,并据此和题意列出不等式.22.某精准扶贫办对某地甲、乙两个猕猴桃品种进行种植对比实验研究.去年甲、乙两个品种各种植了100亩.收获后甲、乙两个品种的售价均为6元/kg ,且乙的平均亩产量比甲的平均亩产量高500kg ,甲、乙两个品种全部售出后总收入为1500000元. (1)请求出甲、乙两个品种去年平均亩产量分别是多少?(2)今年,精准扶贫办加大了对猕猴桃培育的力度,在甲、乙种植亩数不变的情况下,预计甲、乙两个品种平均亩产量将在去年的基础上分别增加%a 和2%a .由于乙品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨%a ,而甲品种的售价不变,甲、乙两个品种全部售出后总收入将在去年的基础上增加58%25a .求a 的值. 解析:(1)甲、乙两个品种去年平均亩产量分别是1000千克和1500千克;(2)a 的值为10.【分析】(1)设 甲、乙两个品种去年平均亩产量分别是 x 千克和 y 千克,根据乙的平均亩产量比甲的平均亩产量高 500kg ,甲、乙两个品种全部售出后总收入为1500000元,列二元一次方程组,即可解得;(2)分别用含a%的式子表示甲,乙的收入,根据销售总收入=甲的收入+乙的收入,可以列一元一次方程,从而解出a 的值.【详解】解:(1)设甲、乙两个品种去年平均亩产量分别是x 千克和y 千克;根据题意得,()50010061500000y x x y -=⎧⎨⨯+=⎩解得:10001500x y =⎧⎨=⎩答:甲、乙两个品种去年平均亩产量分别是1000千克和1500千克;(2)甲的收入:6×1000×100(1+a%)乙的收入:6×1500×100(1+2a%)(1+a%)()()()58610001001%6150010012%1%15000001%25a a a a ⎛⎫⨯⨯++⨯⨯++=+ ⎪⎝⎭, 解得:10a =(不合题意,舍去),210a =,答:a 的值为10.【点睛】本题考查了一元一次方程和二元一次方程组,一元二次方程的实际应用,解题的关键是正确假设未知数,找准等量关系,列方程求解.23.(1)解方程290x (直接开平方法)(2)若关于x 的一元二次方程()221534m x x m m +++-=的常数项为0,求m 的值.解析:(1)13x =,23x =-;(2)4【分析】(1)利用直接开平方法求解可得答案;(2)根据常数项为0得出关于m 的方程,解之求出m 的值,结合一元二次方程的定义可得答案.【详解】(1)解:290x (直接开平方法)29x =,∴3x =±,∴13x =,23x =-.(2)解:∵关于x 的一元二次方程()221534m x x m m +++-=的常数项为0, ∴210340m m m +≠⎧⎨--=⎩, 解得4m =,1m =-(舍去),∴m 的值为4.【点睛】本题主要考查解一元二次方程的能力,也考查了一元二次方程的定义,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.24.如图,为了美化街道,刘大爷准备利用自家墙外的空地种两种不同的花卉,墙外宽度无限,墙的最大可用长度是11.5m ,现有长为21m 的篱笆,计划靠着院墙围成一个中间有一道隔栏的长方形花圃.(1)若要围成总面积为36平方米的花圃,边AB 的长应是多少?(2)花的面积能否达到39平方米?若能,求出边AB 的长;若不能,请说明理由.解析:(1)AB 的长应是4米;(2)花的面积不能达到39平方米.【分析】(1)设AB=x 米,根据题意列一元二次方程,解方程,把不合题意的解舍去即可求解; (2)设AB=x 米,根据题意列一元二次方程,方程无实数根,即可求解.【详解】解:(1)设AB=x 米,由题意得 x (21-3x )=36,整理得 27120x x -+=,解得123,4x x ==,当x=3时,21-3x=12>11.5,不合题意,舍去;当x=4时,21-4x=9<11.5,符合题意.答:若要围成总面积为36平方米的花圃,边AB 的长应是4米.(2)设AB=x 米,由题意得 x (21-3x )=39,整理得 27130x x -+=,()2247411330b ac ∆=-=--⨯⨯=-<∴方程无实数根,∴无法围成总面积为39平方米的花圃.答:无法围成总面积为39平方米的花圃.【点睛】本题考查了一元二次方程的应用,根据题意列出方程是解题关键,解题时注意根据题意检验根的合理性.25.已知12,x x 是关于x 的一元二次方程()222110xm x m --+-=两个实数根. (1)求m 取值范围;(2)若()12210x x x -+=,求实数m 的值.解析:(1)54m ≤;(2)0m = 【分析】 (1)利用根的判别式,因为方程有两个实数根,所以0∆≥,列式求出m 取值范围;(2)利用韦达定理公式得1221x x m +=-,2121x x m ⋅=-,代入原式得到与m 有关的一元二次方程,解出m 的值.【详解】(1)∵()222110x m x m --+-=有两个实数根,∴24b ac ∆=- ()()222141m m =----⎡⎤⎣⎦2244144m m m =-+-+45m =-+,∴450m -+≥45m -≥-54m ≤; (2)∵()222110x m m --+-=, ∴1221b x x m a +=-=-,2121x x m ⋅=-, ()12210x x x -+=11220x x x x -⋅+=()12120x x x x +-⋅=,()22110m m ---=22110m m --+=220m m -+=()20m m --=,∴0m =或2m =,∵由①知,54m ≤, ∴0m =.【点睛】本题考查一元二次方程根的判别式和根于系数的关系式,解题的关键是熟练运用这两个知识点去解决问题.26.已知关于x 的一元二次方程x 2-2x+k=0.(1)若方程有实数根,求k 的取值范围;(2)在(1)的条件下,如果k 是满足条件的最大的整数,且方程x 2-2x+k=0一根的相反数是一元二次方程(m-1)x 2-3mx-7=0的一个根,求m 的值.解析:(1)k≤1;(2)2【分析】(1)结合题意,根据判别式的性质计算,即可得到答案;(2)结合(1)的结论,可得k 的值,从而计算得方程x 2-2x+k=0的根,并代入到()21370m x mx ---=,通过求解一元一次方程方程,即可得到答案.【详解】(1)由题意知:44k ∆=-且0∆≥即:4-4k≥0∴k≤1(2)k≤1时,k 取最大整数1当k=1时,221x x -+的解为:121x x ==根据题意,1x =是方程()21370m x mx ---=的一个根 ∴()()()2113170m m -⨯--⨯--= ∴m=2.【点睛】本题考查了一元二次方程、一元一次方程的知识;解题的关键是熟练掌握一元二次方程判别式、一元一次方程的性质,从而完成求解.27.某地为刺激旅客来旅游及消费,讨论5月至9月推出全城推广活动.杭州某旅行社为吸引市民组团去旅游,推出了如下收费标准:某单位组织员工去旅游,共支付给该旅行社旅游费用54000元,请问该单位这次共有多少员工去旅游?解析:30名【分析】首先根据共支付给旅行社旅游费用54000元,确定旅游的人数的范围,然后根据每人的旅游费用×人数=总费用,设该单位这次共有x 名员工去旅游.即可由对话框,超过25人的人数为(x-25)人,每人降低20元,共降低了20(x-25)元.实际每人收了[1000-20(x-25)]元,列出方程求解.【详解】解:设该单位这次共有x 名员工去旅游.因为2000×25=50000<54000,所以员工人数一定超过25人.根据题意列方程得:[2000-40(x-25)]x=54000.解得x 1=45,x 2=30.当x 1=45时,2000-40(x-25)=1200<1700,故舍去;当x 2=30时,2000-40(x-25)=1800>1700,符合题意.答:该单位这次共有30名员工去旅游.【点睛】本题考查了列一元二次方程解实际问题的应用,一元二次方程的解法的运用,有利于培养学生应用数学解决生活中实际问题的能力.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.本题应注意的地方有两点:1、确定人数的范围;2、用人均旅游费用不低于1700元来判断,得到满足题意的x 的值. 28.把一个足球垂直水平地面向上踢,时间为t (秒)时该足球距离地面的高度h (米)适用公式2205h t t =-.(1)经过多少秒后足球回到地面,(2)经过多少秒时足球距离地面的高度为10米?(3)小明同学说:“足球高度不可能达到21米!”你认为他说得对吗?请说明理由.解析:(1)4;(2)(2+秒或(2-秒;(3)小明说得对,理由见解析【分析】(1)求出0h =时t 的值即可得多少秒后足球回到地面;(2)根据高度为10米列方程可得;(3)列方程由根的判别式可作出判断.【详解】解:(1)当0h =时,22050t t -=,解得:0t =或4t =,答:经4秒后足球回到地面;(2)令220510h t t =-=,解得:2t =+2t =即经过(2+秒或(2-秒时足球距离地面的高度为10米.(3)小明说得对,理由如下:假设足球高度能够达到21米,即21h =,将21h =代入公式得:221205t t =-由判别式计算可知:2(20)4521200=--⨯⨯=-<△,方程无解,假设不成立,所以足球确实无法到达21米的高度.【点睛】本题主要考查一元二次方程的应用,解题的关键是熟练掌握一元二次方程的解法.。
九年级数学上学期期中练习附答案

第一学期九年级数学期中练习卷(一)一、选择题(每小题2分,共24分)1.式子x -1 在实数范围内有意义,x 的取值范围是( ). A . x > 1 B . x≥1 C . x > -1 D . x ≤ 12.一元二次方程x 2-1=0的根为( ).A . x =1B . x =-1C . x 1=1,x 2=-1D . x 1=0,x 2=1 3.具备下列条件的四边形中,不一定是平行四边形的是( ). A .两组对边分别相等 B .两组对边分别平行 C .两条对角线相等 D .两条对角线互相平分 4.顺次连接等腰梯形各边中点所得的四边形必定是( ). A.矩形 B.等腰梯形 C.正方形 D.菱形 5. 下列计算正确的是( ).A .3-2=9 B . 2 + 3 = 5C .(1+ 2 )(1- 2 )=1D .12 =2 3 6.2007年4月17日国家测绘局首次公布了我国十座名山的海拔 高度(如图所示),这组数据的极差是( ). A .3079.3米 B .1300.2米 C .4379.5米D .1779.1米7. 数据2,4,3,6,a 的平均数是5,则这个样本的方差是( ). A .8 B .5 C .2 2D .38.012=++-b a ,那么2007)(b a +的值为( ).A . 1B . -1C .20073D .20073-9.如图,在△ABC 中,∠C =90°,∠A =∠B ,CD 是中线,点E 、F 分别在边AC 和BC 上,且AE =CF ,则图中全等三角形有( ). A .4对 B .3对 C .2对 D .1对10.如图,点P 是△ABC 内的一点,若PB =PC ,则( ). A .点P 在∠ABC 的平分线上 B .点P 在∠ACB 的平分线上 C .点P 在边AB 的垂直平分线上 D .点P 在边BC 的垂直平分线上11. 如图1,梯形ABCD 中, ∠C =∠D =90︒, AD =6,BC =18.若将AD 叠合在BC 上,出现折痕MN ,如图2所示,则MN 的长度为( ). A .9 B .12 C .15 D .2112.将n 个边长都为l cm 的正方形按如图所示的方法摆放,点A 1,A 2,……,A n 分别为正方形的中心,则n 个这样的正方形重叠部分(阴影部分)的面积之和为( ).A .41cm 2 B .41n cm 2C.41-n cm 2 D .n)41( cm 2二、填空题(每小题2分,共12分)13. 方程x (x -3)=3-x 的解为_ __________ .14.把方程x 2+6x -5=0配方,得(x +a )2=b 的形式,则所得的方程为 . 15.梯形的上底长为5cm ,中位线长为8 cm ,下底长为 cm .16. 如图,池塘边有两棵小树A 、B ,现测得线段AC 和BC 的中点分别为点D 、E ,且DE =18.4 m ,则这两棵小树之间的距离为 m .17.已知菱形的边长为10 cm ,一条对角线的长为12 cm ,则菱形的面积为 cm 2.18.如图,在△ABC 中,∠B =45°,∠ACB =105°,CD ⊥AB 于点D ,若AC =8,则BC = .第16题第18题三、计算与求解(每小题5分,共20分)19.计算:8+(-1)3-2×2 220.计算:( +1)0-27 +∣-3∣.21.解方程:(x+2)2=x+2.22.解方程:x2—1=2x .四、(本题4分)23.如图,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是矩形.请你只用无刻度的直尺在图中画出∠AOB的平分线(请保留画图痕迹).五、(每小题7分,共14分)24.两组邻边分别相等的四边形我们称它为筝形.如图,在筝形ABCD 中,AB =AD ,BC =DC ,AC 与BD 相交于点O . (1)下列判断正确的有 (填序号). ①AC 、BD 互相垂直 ②AC 、BD 互相平分 ③AC 平分∠BAD 、∠BCD ④BD 平分∠ABD 、∠ADC(2)求证:①△ABC ≌△ADC .25.某农场去年种植了10亩地的南瓜,亩产量为2000kg ,根据市场需要,今年该农场扩大了种植面积,并且全部种植了高产的新品种南瓜,已知南瓜种植面积的增长率是亩产量的增长率的2倍,今年南瓜的总产量为60 000kg ,求南瓜亩产量的增长率.六、(本题7分)26. 如图,将R t △ABC 绕点C 按顺时针方向旋转90°到△A ’B ’C ’的位置,已知斜边AB =10cm ,BC =6cm ,设A ’B ’的中点为M ,B ’C ’的中点为N ,连接AM ,MN .(1)△AMN 是何种三角形?说明你的理由; (2)求AM 的长.七、(本题9分)27. 如图,ABCD 是矩形纸片,翻折∠B 、∠D ,使BC 、AD 恰好落在AC 上.设F 、H 分别是B 、D 落在AC 上的两点,E 、G 分别是折痕CE 、AG 与AB 、CD 的交点. (1) 求证:四边形AECG 是平行四边形; (2) 若AB =4cm ,BC =3cm ,求线段EF 的长;八、(本题10分)28.在△ABC 中,∠ACB =90°,AC = BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E ; (1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE =AD +BE ; (2)当直线MN 绕点C 旋转到图2的位置时,写出DE 、AD 、BE 具有的等量关系(不要证明); (3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.图1 图2 图3第一学期九年级数学期中练习卷参考答案及评分标准一、选择题(每小题2分,共24分)1. B2. C3. C4.D5. D6. D7. A8. A9. B 10. D 11. B 12. C 二、填空题(每小题2分,共12分)13. x 1=-1,x 2=3 14.(x +3)2=14 15.11 16.36.8 17. 96 18. 4 2 三、(每小题5分,共20分)19.解:原式=2 2 -1- 2 ………………………………………………3分= 2 -1. ……………………………………………………5分20. 解:原式=1-3 3 + 3 ………………………………………………3分=1-2 3 .………………………………………………………5分21. 解:x 1=-1,x 2=-2 …………………………………(解错一个扣2分) 22. 解:x 1= 2 +1,x 2=- 2 +1 …………………(解错一个扣2分) 四、(本题4分)23.解:射线OM 即为所求. …………………(不写结论扣1分) 五、(每小题7分,共14分)24.(1) ①③………………………………………3分 (2)证明:在ABC △和ADC △中,AB AD =,BC DC =,AC AC =, ········································································ 6分ABC ADC ∴△≌△. ·································································································· 7分25. 解:设南瓜亩产量的增长率为x ,则种植面积的增长率为2x . ·································· 1分根据题意,得10(1+2x )·2000(1+x )=60 000. ·········································································· 4分 解这个方程,得10.5x =,22x =-(不合题意,舍去). ·········································· 6分 答:南瓜亩产量的增长率为50%.………………………………………………………7分 六、(本题7分)26. 解:△AMN 是直角三角形.………………………1分(1)在△A ′B ′C ′中,M、N 分别是A ′B ′、B ′C ′的中点, ∴MN ∥A ′C ′, ……………………………………2分 ∵A ′C ′⊥B ′C ′, ∴MN ⊥B ′C ′ .∴△AMN 是直角三角形.………………………3分 (2)∵A ′C ′=AC =AB 2-BC 2=102-62 =8(cm ),∴MN=12A ′C ′=4(cm ).………………………4分 而B ′ N =C ′N =12B ′C ′=12BC=3(cm ), ∴AN =AC -C ′N =8-3=5(cm ).……………………………………………………5分∴AM ==cm ).………………………………7分七、(本题10分)27.(1)证明:根据题意和图形的对称性,∠ACE =12∠ACB ,∠CAG =12∠CAD ,∵四边形ABCD 是矩形,∴∠ACB =∠CAD .∴∠ACE =∠CAG . ……………………………………………………………2分 ∴CE ∥AG . ……………………………………………………………3分 ∵CG ∥AE ,……………………………………………………………4分 ∴四边形AECG 是平行四边形. ……………………………………5分 (2)解:设EF 为x ,则根据题意BE =x ,AE =4-x .∵AB =4cm ,BC =3cm ,∴AC =5cm ,BC =CF =3cm ,AF =2cm . 在Rt △AEF 中,AE 2=AF 2+EF 2.即(4-x )2=22+x 2. ………………7分解得x =1.5.∴EF 为1.5 cm . ………………………………………………………9分 八、(本题10分)28.(1)证得△ADC ≌△CEB ;………………………………………2分 证得DE =AD +BE ;…………………………………………5分(2)DE =AD -BE ;………………………………………………………7分 (3)DE =BE -AD . ………………………………………………………8分证明. ………………………………………………………………10分。
人教版九年级数学上册综合题练习卷:第21章 一元二次方程(包含答案)

第21章一元二次方程1.在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?2.某商店经销甲、乙两种商品,已知一件甲种商品和一件乙种商品的进价之和为30元,每件甲种商品的利润是4元,每件乙种商品的售价比其进价的2倍少11元,小明在该商店购买8件甲种商品和6件乙种商品一共用了262元.(1)求甲、乙两种商品的进价分别是多少元?(2)在(1)的前提下,经销商统计发现,平均每天可售出甲种商品400件和乙种商品300件,如果将甲种商品的售价每提高0.1元,则每天将少售出7件甲种商品;如果将乙种商品的售价每提高0.1元,则每天将少售出8件乙种商品.经销商决定把两种商品的价格都提高a元,在不考虑其他因素的条件下,当a为多少时,才能使该经销商每天销售甲、乙两种商品获取的利润共2500元?3.关于x的一元二次方程(6﹣k)(9﹣k)x2﹣(117﹣15k)x+54=0(1)求方程的解;(2)若方程的解为整数,求k值.4.某市为推进养老服务工作的深入开展,在扩大社区养老覆盖率、规范机构养老、科学规划养老服务布局等方面作了大量工作.该市的养老机构拥有的养老床位数从2016年底的2万个增长到2018年底的2.88万个.(1)求该市这两年养老床位数的年平均增长率:(2)该市2018年底正在筹建一社区养老中心,按照规划拟建造三类养老专用房间(一个养老床位的单人间、两个养老床位的双人间、三个养老床位的三人间)共100间,若按规划需要建造的单人间的房间数为m(12≤m≤15),双人间的房间数是单人间的2倍,求该养老中心建成后最多可提供养老床位多少个?最少提供养老床位多少个?5.为进一步弘扬“爱国、进步、民主、科学”的五四精神,倡导“我运动、我健康、我快乐”的生活方式,某县团委准备组织一次共青团员青年足球赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排9天,每天安排5场比赛,则该县团委应邀请多少个足球队参赛?6.已知关于x的一元二次方程x2﹣5x+2m=0有实数根.(1)求m的取值范围;(2)当m=时,方程的两根分别是矩形的长和宽,求该矩形外接圆的直径.7.(1)解方程:2x2﹣x﹣1=0;(2)解不等式组:8.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.9.关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.10.已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.11.已知关于x的一元二次方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)若x1+x2=3,求k的值及方程的根.12.已知关于x的方程x2﹣2x+2k﹣1=0有实数根.(1)求k的取值范围;(2)设方程的两根分别是x1、x2,且+=x1•x2,试求k的值.13.HW公司2018年使用自主研发生产的“QL”系列甲、乙、丙三类芯片共2800万块,生产了2800万部手机,其中乙类芯片的产量是甲类芯片的2倍,丙类芯片的产量比甲、乙两类芯片产量的和还多400万块.这些“QL”芯片解决了该公司2018年生产的全部手机所需芯片的10%.(1)求2018年甲类芯片的产量;(2)HW公司计划2020年生产的手机全部使用自主研发的“QL”系列芯片.从2019年起逐年扩大“QL”芯片的产量,2019年、2020年这两年,甲类芯片每年的产量都比前一年增长一个相同的百分数m%,乙类芯片的产量平均每年增长的百分数比m%小1,丙类芯片的产量每年按相同的数量递增.2018年到2020年,丙类芯片三年的总产量达到1.44亿块.这样,2020年的HW公司的手机产量比2018年全年的手机产量多10%,求丙类芯片2020年的产量及m的值.14.(1)关于x,y的方程组满足x+y=5,求m的值.(2)关于x的一元二次方程x2﹣(m﹣1)x﹣m=0的两个根x1,x2满足x12+x22=5,求的值.15.已知关于x的方程x2﹣2x+m=0有两个不相等的实数根,求实数m的取值范围.16.已知关于x的一元二次方程x2﹣(m+3)x+m+2=0,(1)求证:无论实数m取得何值,方程总有两个实数根;(2)若方程有一个根的平方等于1,求m的值.17.(1)解方程:x2﹣2x﹣1=0.(2)解不等式组:18.已知关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0.(1)求证:不论m为何值,方程必有实数根.(2)当m为整数时,方程是否有有理根?若有,求出m的值:若没有,请说明理由.19.建造一个面积为130m2的长方形养鸡场,鸡场的一边靠墙,墙长为a米,另三边用竹篱笆围成,如果篱笆总长为33米.(1)求养鸡场的长与宽各为多少米?(2)若10≤a<18,题中的解的情况如何?20.2019长春国际马拉松于5月26日上午在长春体育中心鸣枪开跑.某公司为赛事赞助了5000瓶矿泉水,计划以后每年逐年增加,到2021年达到7200瓶,若该公司每年赞助矿泉水数量增加的百分率相同.(1)求平均每年增加的百分率;(2)假设2022年该公司赞助矿泉水增加的百分率与前两年相同,请你预测2022年该公司赞助的矿泉水的数量.参考答案1.【分析】(1)根据表格内的数据,利用待定系数法可求出y与x之间的函数关系式,再代入x=23.5即可求出结论;(2)根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:(1)设y与x之间的函数关系式为y=kx+b,将(22.6,34.8)、(24,32)代入y=kx+b,,解得:,∴y与x之间的函数关系式为y=﹣2x+80.当x=23.5时,y=﹣2x+80=33.答:当天该水果的销售量为33千克.(2)根据题意得:(x﹣20)(﹣2x+80)=150,解得:x1=35,x2=25.∵20≤x≤32,∴x=25.答:如果某天销售这种水果获利150元,那么该天水果的售价为25元.【点评】本题考查了一元二次方程的应用以及一次函数的应用,解题的关键是:(1)根据表格内的数据,利用待定系数法求出一次函数关系式;(2)找准等量关系,正确列出一元二次方程.2.【分析】(1)可设甲种商品的进价是x元,乙种商品的进价是y元,根据等量关系:①一件甲种商品和一件乙种商品的进价之和为30元;②购买8件甲种商品和6件乙种商品一共用了262元;列出方程组求解即可;(2)根据该经销商每天销售甲、乙两种商品获取的利润共2500元,列出方程求解即可.【解答】解:(1)设甲种商品的进价是x元,乙种商品的进价是y元,依题意有,解得.故甲种商品的进价是16元,乙种商品的进价是14元;(2)依题意有:(400﹣10a×7)(4+a)+(300﹣10a×8)(14×2﹣11﹣14+a)=2500,整理,得150a2﹣180a=0,解得a1=,a2=0(舍去).故当a为时,才能使该经销商每天销售甲、乙两种商品获取的利润共2500元.【点评】考查了二元一次方程组的应用,一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.3.【分析】(1)根据一元二次方程的定义,利用因式分解法可解;(2)根据(1),利用整数根可解.【解答】解:(1)∵该方程是关于x的一元二次方程,∴k≠6,k≠9∵(6﹣k)(9﹣k)x2﹣(117﹣15k)x+54=0∴[(6﹣k)x﹣9][(9﹣k)x﹣6]=0解得x=或∴方程的解为x=或.(2)∵方程的解为x=或.若方程的解为整数,①当6﹣k=±1,±3,±9时,x是整数,此时k=7、5、3、9、15、﹣3;②当9﹣k=±1,±2,±3,±6时,x是整数,此时k=10、8、11、7、12、6、15、3.综上可知,k=3、7、15时原方程的解为整数.【点评】本题考查了一元二次方程的定义及整数根的求解问题,难度中等.4.【分析】(1)设该市这两年(从2016年度到2018年底)拥有的养老床位数的平均年增长率为x,根据“2018年的床位数=2016年的床位数×(1+增长率)的平方”可列出关于x的一元二次方程,解方程即可得出结论;(2)设规划建造单人间的房间数为m(12≤m≤15),则建造双人间的房间数为2m,根据“可提供的床位数=单人间数+2倍的双人间数+3倍的三人间数”即可得出y关于m的函数关系式,根据一次函数的性质结合t的取值范围,即可得出结论.【解答】解:(1)设该市这两年拥有的养老床位数的平均年增长率为,由题意可列出方程:2(1+x)2=2.88,解得x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市这两年拥有的养老床位数的平均年增长率为20%.(2)设规划建造单人间的房间数为m(12≤m≤15),则建造双人间的房间数为2m,三人间的房间数为100﹣3m,设该养老中心建成后能提供养老床位y个,由题意得:y=m+4m+3(100﹣3m)=﹣4m+300∵y随m的增大而减小∴当m=12时,y的最大值为252.当m=15时,y的最小值为240.答:该养老中心建成后最多提供养老床位252个,最少提供养老床位240个.【点评】本题考查了一次函数的应用、一元二次方程的应用,解题的关键是:(1)根据数量关系列出关于x的一元二次方程;(2)根据数量关系找出y关于t的函数关系式.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(方程组或函数关系式)是关键.5.【分析】关系式为:球队总数×每支球队需赛的场数=9×5,把相关数值代入即可.【解答】解:该县团委应邀请x个足球队参赛.每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=9×5.整理,得x2﹣x﹣90=0.解得x1=﹣9(不合题意,舍去),x2=10.答:该县团委应邀请10个足球队参赛.【点评】本题考查了一元二次方程的应用,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.6.【分析】(1)由根的判别式列出不等式,解不等式可得m的取值范围;(2)由根与系数的关系可得x1+x2=5、x1x2=5,该矩形外接圆的直径是矩形的对角线AC,根据勾股定理可得结论.【解答】(本题6分)解:(1)∵方程有实数根,∴△=(﹣5)2﹣4×1×2m≥0,(1分)m≤,(2分)∴当m≤时,原方程有实数根;(3分)(2)当m=时,原方程可化为:x2﹣5x+5=0,设方程的两个根分别为x1、x2,则x1+x2=5,x1•x2=5,(4分)∵该矩形外接圆的直径是矩形的对角线AC,如图所示,∴AC====,(5分)∴该矩形外接圆的直径是.(6分)【点评】本题主要考查一元二次方程根的判别式、根与系数的关系,熟练掌握根与系数的关系和进行变形是解题的关键.7.【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:(1)2x2﹣x﹣1=0,(2x+1)(x﹣1)=0,2x+1=0,x﹣1=0,x1=﹣,x2=1;(2)∵解不等式①得:x>﹣4,解不等式②得:x≤3,∴不等式组的解集为﹣4<x≤3.【点评】本题考查了解一元二次方程和解一元一次不等式组,能把一元二次方程转化成一元一次方程是解(1)的关键,能根据不等式的解集求出不等式组的解集是解(2)的关键.8.【分析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【解答】解:(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%.(2)361×(1﹣5%)=342.95(万元).答:预测4月份该公司的生产成本为342.95万元.【点评】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.9.【分析】(1)计算判别式的值得到△=a2+4,则可判断△>0,然后根据判别式的意义判断方程根的情况;(2)利用方程有两个相等的实数根得到△=b2﹣4a=0,设b=2,a=1,方程变形为x2+2x+1=0,然后解方程即可.【解答】解:(1)a≠0,△=b2﹣4a=(a+2)2﹣4a=a2+4a+4﹣4a=a2+4,∵a2>0,∴△>0,∴方程有两个不相等的实数根;(2)∵方程有两个相等的实数根,∴△=b2﹣4a=0,若b=2,a=1,则方程变形为x2+2x+1=0,解得x1=x2=﹣1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.10.【分析】(1)利用判别式的意义得到△=(2m+1)2﹣4(m2﹣2)≥0,然后解不等式得到m的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到x1+x2=﹣(2m+1),x1x2=m2﹣2,再利用(x1﹣x2)2+m2=21得到(2m+1)2﹣4(m2﹣2)+m2=21,接着解关于m的方程,然后利用(1)中m的范围确定m的值.【解答】解:(1)根据题意得△=(2m+1)2﹣4(m2﹣2)≥0,解得m≥﹣,所以m的最小整数值为﹣2;(2)根据题意得x1+x2=﹣(2m+1),x1x2=m2﹣2,∵(x1﹣x2)2+m2=21,∴(x1+x2)2﹣4x1x2+m2=21,∴(2m+1)2﹣4(m2﹣2)+m2=21,整理得m2+4m﹣12=0,解得m1=2,m2=﹣6,∵m≥﹣,∴m的值为2.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式.11.【分析】(1)由于关于x的一元二次方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根,可知△>0,据此进行计算即可;(2)利用根与系数的关系得出x1+x2=2k+1,进而得出关于k的方程求出即可.【解答】解:(1)∵关于x的一元二次方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根,∴△>0,∴(2k+1)2﹣4(k2+1)>0,整理得,4k﹣3>0,解得:k>,故实数k的取值范围为k>;(2)∵方程的两个根分别为x1,x2,∴x1+x2=2k+1=3,解得:k=1,∴原方程为x2﹣3x+2=0,∴x1=1,x2=2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.以及根与系数的关系.12.【分析】(1)根据一元二次方程x2﹣2x+2k﹣1=0有两个不相等的实数根得到△=(﹣2)2﹣4(2k﹣1)≥0,求出k的取值范围即可;(2)根据根与系数的关系得出方程解答即可.【解答】(1)解:∵原方程有实数根,∴b2﹣4ac≥0∴(﹣2)2﹣4(2k﹣1)≥0∴k≤1(2)∵x1,x2是方程的两根,根据一元二次方程根与系数的关系,得:x1+x2 =2,x1 •x2 =2k﹣1又∵+=x1•x2,∴∴(x1+x2)2﹣2x1 x2 =(x1 •x2)2∴22﹣2(2k﹣1)=(2k﹣1)2解之,得:.经检验,都符合原分式方程的根∵k≤1∴.【点评】本题主要考查了根的判别式以及根与系数关系的知识,解答本题的关键是根据根的判别式的意义求出k 的取值范围,此题难度不大.13.【分析】(1)设2018年甲类芯片的产量为x万块,由题意列出方程,解方程即可;(2)2018年万块丙类芯片的产量为3x+400=1600万块,设丙类芯片的产量每年增加的熟练为y万块,则1600+1600+y+1600+2y=14400,解得:y=3200,得出丙类芯片2020年的产量为1600+2×3200=8000万块,2018年HW公司手机产量为2800÷10%=28000万部,由题意得出400(1+m%)2+2×400(1+m%﹣1)2+8000=28000×(1+10%),设m%=t,整理得:3t2+2t﹣56=0,解得:t=4,或t=﹣(舍去),即可得出答案.【解答】解:(1)设2018年甲类芯片的产量为x万块,由题意得:x+2x+(x+2x)+400=2800,解得:x=400;答:2018年甲类芯片的产量为400万块;(2)2018年万块丙类芯片的产量为3x+400=1600万块,设丙类芯片的产量每年增加的数量为y万块,则1600+1600+y+1600+2y=14400,解得:y=3200,∴丙类芯片2020年的产量为1600+2×3200=8000万块,2018年HW公司手机产量为2800÷10%=28000万部,则:400(1+m%)2+2×400(1+m%﹣1)2+8000=28000×(1+10%),设m%=t,400(1+t)2+2×400(1+t﹣1)2+8000=28000×(1+10%),整理得:3t2+2t﹣56=0,解得:t=4,或t=﹣(舍去),∴t=4,∴m%=4,∴m=400;答:丙类芯片2020年的产量为8000万块,m=400.【点评】本题考查了一元二次方程的应用、一元一次方程的应用以及一元二次方程和一元一次方程的解法;弄清数量关系列出方程是解题的关键.14.【分析】(1)观察到方程组两方程相加,左边出现3(x+y),把x+y作为一个整体来计算.(2)根据韦达定理求出用m表示x1+x2和x1x2的值,利用完全平方公式的变形得到x12+x22的式子,进而得到关于m的方程.【解答】解:(1)根据题意把方程组两式相加得:2x+y+x+2y=m+3m+13(x+y)=4m+1∴x+y=又∵x+y=5∴解得:m=(2)∵a=1,b=﹣(m﹣1),c=﹣m∴△=[﹣(m﹣1)]2﹣4•(﹣m)=m2﹣2m+1+4m=m2+2m+1=(m+1)2≥0∴无论m为何值时,方程一定有实数根.∵x1+x2==m﹣1,x1x2==﹣m∴x12+x22=(x1+x2)2﹣2x1x2=(m﹣1)2+2m∵x12+x22=5∴(m﹣1)2+2m=5解得:m=±2当m=2时,==当m=﹣2时,==∴的值为或【点评】本题考查了解二元一次方程,一元二次方程根与系数的关系,完全平方公式,分式的加减.15.【分析】根据方程的系数结合根的判别式△>0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.【解答】解:∵方程x2﹣2x+m=0有两个不相等的实数根,∴△=(﹣2)2﹣4×1×m=4﹣4m>0,解得:m<1.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的两个实数根”是解题的关键.16.【分析】(1)求出△=[﹣(m+3)]2﹣4(m+2)=(m+1)2,再判断即可;(2)求出方程的根是±1,再代入方程,即可求出答案.)【解答】(1)证明:x2﹣(m+3)x+m+2=0,△=[﹣(m+3)]2﹣4(m+2)=(m+1)2≥0,所以无论实数m取得何值,方程总有两个实数根;(2)解:∵方程有一个根的平方等于1,∴此根是±1,当根是1时,代入得:1﹣(m+3)+m+2=0,即0=0,此时m为任何数;当根是﹣1时,1+(m+3)+m+2=0,解得:m=﹣3.【点评】本题考查了解一元二次方程和根的判别式,能熟记根的判别式的内容是解此题的关键.17.【分析】(1)利用配方法解方程;(2)分别解两个一次不等式得到x>﹣2和x≤2,然后根据确定不等式组的解集.【解答】解:(1)x2﹣2x=1,x2﹣2x+1=2,(x﹣1)2=2,x﹣1=,所以x1=1+,x2=1﹣;(2)解①得x>﹣2,解②得x≤2,所以不等式组的解集为﹣2<x≤2.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了解一元一次不等式组.18.【分析】(1)根据方程的系数结合根的判别式,即可得出△=1>0,由此即可证出方程总有两个不相等的实数根;(2)先计算出△并且设△=(2m+1)2﹣4(2m﹣1)=4m2﹣4m+5=(2m﹣1)2+4=n2(n为整数),整系数方程有有理根的条件是△为完全平方数.解不定方程,讨论m的存在性.变形为(2m﹣1)2﹣n2=4,(2m﹣1﹣n)(2m﹣1+n)=﹣4,利用m,n都为整数进行讨论即可.【解答】(1)证明:①当2m﹣1=0即m=时,此时方程是一元一次方程,其根为x=,符合题意;②当2m﹣1≠0即m≠时,△=[﹣(2m+1)]2﹣4(2m﹣1)=(2m﹣1)2+4>0,∴当m≠时,方程总有两个不相等的实数根;综上所述,不论m为何值,方程必有实数根.(2)当m为整数时,关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0没有有理根.理由如下:①当m为整数时,假设关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0有有理根,则要△=b2﹣4ac为完全平方数,而△=(2m+1)2﹣4(2m﹣1)=4m2﹣4m+5=(2m﹣1)2+4,设△=n2(n为整数),即(2m﹣1)2+4=n2(n为整数),所以有(2m﹣1﹣n)(2m﹣1+n)=﹣4,∵2m﹣1与n的奇偶性相同,并且m、n都是整数,所以或,解得m=,②2m﹣1=0时,m=(不合题意舍去).所以当m为整数时,关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0没有有理根.【点评】考查了一元二次方程ax2+bx+c=0(a≠0)根的判别式为△=b2﹣4ac.△=b2﹣4ac为完全平方数是方程的根为有理数的充要条件.同时考查了不定方程特殊解的求法.19.【分析】(1)设养鸡场的宽为x米,则长为(33﹣2x)米,利用厂房的面积公式结合养鸡场的面积为130m2,即可得出关于x的一元二次方程,解之即可得出结论;(2)由(1)的结论结合10≤a<18,可得出长方形的长为13米宽为10米.【解答】解:(1)设养鸡场的宽为x米,则长为(33﹣2x)米,依题意,得:(33﹣2x)x=130,解得:x1=6.5,x2=10,∴33﹣2x=20或13.答:养鸡场的长为20米宽为6.5米或长为13米宽为10米.(2)∵10≤a<18,∴33﹣2x=13,∴养鸡场的长为13米宽为10米.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.20.【分析】(1)设平均每年增加的百分率为x,根据该公式2019年及2021年赞助矿泉水的数量,即可得出关于x 的一元二次方程,解之取其正值即可得出结论;(2)根据2022年该公司赞助的矿泉水数量=2021年该公司赞助的矿泉水数量×(1+增长率),即可求出结论.【解答】解:(1)设平均每年增加的百分率为x,依题意,得:5000(1+x)2=7200,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:平均每年增加的百分率为20%.(2)7200×(1+20%)=8640(瓶).答:预测2022年该公司赞助矿泉水8640瓶.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.。
九年级数学《二次根式的乘除》练习题

数学系列练习卷(一)(二次根式的乘除)一.选择题:(每题4分,共24分)1.下列各式中一定是二次根式的是( )A .6-;B .a 33;C .12+x ;D .a 。
2.若二次根式x -2有意义,则x 的取值范围是( )A .2<x ;B .x ≤2;C .2>x ;D .x ≥2。
3.下列计算正确的是( ) A .b a b a +=+; B .aa a a 11⋅=⋅; C .b a b a +=+2)(; D .a a 52452=。
4.下列二次根式中,最简二次根式的是( ) A .31; B .9; C .6; D .18。
5.等式22-=-x x x x成立的条件是( )A .2>x ;B .2≠x ;C .x ≥0;D .x ≥2。
6.若实数b a <时,则化简2)(b a -所得的结果为( )A .b a +;B .b a -;C .b a --;D .b a +-。
二.填空题:(每小题3分,共36分)7.当x ___________时,5-x 是二次根式。
8.化简:=32________。
9.计算:=⋅ab a 28____________。
10.计算:=÷531513__________。
11.比较大小:32_________23。
12.若x x -+-44有意义,则=x ________。
13.等式4222-=-⋅+x x x 成立的条件是_______________。
14.边长为3的正方形的面积为_________。
15.如果a a =2)(成立,那么a 的取值范围是_____________。
16.若式子xx --73有意义,则x 的取值范围是____________。
17.实数a 在数轴上的位置如图所示,化简=2a ______________。
18.已知063=-+-y x ,以x 、y 为两边长的等腰三角形的周长是____________。
2024-2025学年人教版数学九年级上 第二十三章 旋转 单元练习卷(含答案)

2024-2025学年人教版数学九年级上第二十三章旋转一、单选题1.下列中国品牌新能源车的车标中,是中心对称图形的是()A.B.C.D.2.如图,五角星绕着它的旋转中心旋转,使得△ABC与△DEF重合,那么旋转角的度数至少为( )A.60°B.120°C.72°D.144°3.已知一直角坐标系内有点,将线段OA绕原点O顺时针旋转90°后,A的对应点A 坐标为()A.B.C.D.4.如图,点A,C的坐标分别为(1,1)、(2,4),将△ABC绕点A按逆时针方向旋转90°,得到△A'B'C',则C'点的坐标为( )A.(﹣2,4)B.(4,0)C.(﹣1,3)D.(﹣2,2)5.如图,将绕点O逆时针旋转后得到,若,则的度数是A.B.C.D.6.如图,在平面直角坐标系中,,,,请确定一点D,使得以点A,B,C,D为顶点的四边形是轴对称图形但不是中心对称图形,则点D的坐标可能是()A.B.C.D.7.如图,在平面直角坐标系中,已知点,点B在第一象限内,,,绕点O逆时针旋转,每次旋转,则第2023次旋转后,点B的坐标为( )A.B.C.D.8.如图,在等腰直角中,,D、E为斜边上的点,,若,则的长是( )A.3B.C.D.9.如图,在平面直角坐标系中,将正方形绕O点顺时针旋转后,得到正方形,以此方式,绕O点连续旋转2023次得到正方形,如果点C坐标为,那么点的坐标为()A.B.C.D.10.如图,在正方形中,E,F是对角线上两点,,且.将以点A为中心顺时针旋转得到,点D,F的对应点分别为点B,G,连接,则下列结论一定正确的是()A.B.C.D.二、填空题11.若点和点关于原点对称,则点的坐标为.12.如图,在中,,将绕点C按逆时针方向旋转得到,点A的对应点为,点恰好在边上,则点与点B之间的距离为.13.如图,在平面直角坐标系xOy中,△OCD可以看成是△AOB经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△AOB得到△OCD的过程.14.如图,△ABC中,∠C=90°,BC=3,AC=4.将△ABC绕点B逆时针旋转90°,点A 旋转后的对应点为A',则线段AA'的长为.15.如图,等腰△ABC中,∠BAC=120°,点D在边BC上,等腰△ADE绕点A顺时针旋转30°后,点D落在边AB上,点E落在边AC上,若AE=2cm,则四边形ABDE的面积是.16.如图,将绕着点A顺时针旋转得到.若点在同一条直线上..则的度数为.17.如图,中,,,,点是边上的一点,将绕点旋转得到,点的对应点为点,点的对应点为点,连接.如果,那么的长等于.18.如图,正方形的边长为2,,点是直线上一个动点,连接,线段绕点顺时针旋转得到,连接,则线段长度的最小值为.三、解答题19.如图,将绕直角顶点顺时针旋转,得到,连接,(1)求的长(2)若,求的度数.20.如图,图形中每一小格正方形的边长为1,已知.(1)的长等于,的面积等于;(2)将向右平移2个单位得到,则A点的对应点的坐标是;(3)将绕点C按逆时针方向旋转后得到,写出B点对应点的坐标.21.如图1,在△ABC 中,∠ACB=90°,∠B=20°,点O在AB边上.连结OC,已知OA=OB=OC.(1)直接写出∠A的度数;(2)如图2,将OA 绕着点O 逆时针旋转β角至OP,连结BP、CP.①当β=40°时,请你通过计算说明∠BCP=∠BPC;②当∠PBC=∠PCB时,求旋转角β的度数(0°<β<180°).22.正方形和等腰共顶点D,,将绕点D逆时针旋转一周.(1)如图1,当点F与点C重合时,若,求的长;(2)如图2,M为中点,连接,探究的关系,并说明理由;(3)如图3,在(2)条件下,连接并延长交于点Q,若,在旋转过程中,的最小值为.23.如图①,∠QPN的顶点P在正方形ABCD两条对角线的交点处,∠QPN=α,将∠QPN绕点P旋转,旋转过程中∠QPN的两边分别与正方形ABCD的边AD和CD交于点E和点F (点F与点C,D不重合).(1)如图①,当α=90°时,DE,DF,AD之间满足的数量关系是;(2)如图②,将图①中的正方形ABCD改为∠ADC=120°的菱形,其他条件不变,当α=60°时,(1)中的结论变为DE+DF=AD,请给出证明;(3)在(2)的条件下,若旋转过程中∠QPN的边PQ与射线AD交于点E,其他条件不变,探究在整个运动变化过程中,DE,DF,AD之间满足的数量关系,直接写出结论,不用加以证明.参考答案:1.B2.D3.B4.D5.B6.C7.D8.D9.C10.A11.12.13.将△AOB顺时针旋转90°,再向左平移2个单位长度14.15.2cm216.50°17.或18.19.(1)解:由题意,根据旋转的性质可知:,,;(2)由旋转的性质可知:,,,,,,.20(1)如图,根据题意,得:,,,∴;∴,(2)∵,∴向右平移2个单位得到,此时即,故答案为:.(3)根据旋转方向,旋转的性质,得,21.解:(1)∵∠A+∠B+∠ACB=180°,∠ACB=90°,∠B=20°,∴∠A=180°-90°-20°=70°;(2)①∵OB=OC,∠ABC=20°,∴∠BCO=∠ABC=20°,∴∠AOC=∠BCO+∠ABC=40°,∵∠AOP=β=40°,∴∠AOC=∠AOP,∴∠BOC=∠BOP,在△BOC和△BOP中,∵OC=OP,∠BOC=∠BOP,BO=BO,∴△BOC≌△BOP(SAS),∴BC=BP,∴∠BCP=∠BPC;②如图3,∵∠PBC=∠PCB,∠BCO=∠ABC=20°,∴∠1=∠2,∵OP=OC=OB,∴∠2=∠4,∠1=∠3,设∠1=x°,则∠PBC=∠PCB=(x+20)°,∠BPC=2x°,由三角形的内角和定理可得:2(x+20)+2x=180,解得:x=35,即∠1=∠3=35°,∴∠AOP=β=∠1+∠3=70°;即当∠PBC=∠PCB时,旋转角β=70°.22.1)解:如图:连接,∵四边形为正方形,∴,∵,∴,∴,∴.(2)解:;理由如下:如图2,延长至Q,使,连接,∵,∴,∴,∴,延长交于点N∴,∴,∴,∴,∴,∴,∴.(3)解:如图:连接,取的中点O,连接.∵四边形是正方形,,∴,∵,∴,∴点M的运动轨迹是O为圆心,为半径的圆,当与相切时,的值最小,∵,∴,∵,∴,∵,∴,在上取一点T,使得,连接,∵,∴,∴,∴,∴,∴最小.23.解:(1)正方形ABCD的对角线AC,BD交于点P,∴PA=PD,∠PAE=∠PDF=45°,∵∠APE+∠EPD=∠DPF+∠EPD=90°,∴∠APE=∠DPF,在△APE和△DPF中∴△APE≌△DPF(ASA),∴AE=DF,∴DE+DF=AD;(2)如图②,取AD的中点M,连接PM,∵四边形ABCD为∠ADC=120°的菱形,∴BD=AD,∠DAP=30°,∠ADP=∠CDP=60°,∴△MDP是等边三角形,∴PM=PD,∠PME=∠PDF=60°,∵∠PAM=30°,∴∠MPD=60°,∵∠QPN=60°,∴∠MPE=∠FPD,在△MPE和△FPD中,∴△MPE≌△FPD(ASA)∴ME=DF,∴DE+DF=AD;(3)如图,在整个运动变化过程中,①当点E落在AD上时,DE+DF=AD,②当点E落在AD的延长线上时,DF-DE=AD.。
人教版数学九年级上册第二十一章解一元二次方程计算题练习卷[含答案]
![人教版数学九年级上册第二十一章解一元二次方程计算题练习卷[含答案]](https://img.taocdn.com/s3/m/ae27e00dac02de80d4d8d15abe23482fb4da029b.png)
人教版数学九年级上册第二十一章解一元二次方程计算题练习卷一、计算题1.解下列方程:(1)x2−4x=0;(2)(x−6)(x+1)=−12.2.解方程:(1)(x+2)2﹣9=0;(2)x2﹣2x﹣3=0.3.解方程:(1)x2-2x-3=0;(2)x (x-2)-x+2=0.4.解方程:(x+3)2−25=05.解方程:x(x+2)=2x+4.6.解方程:(x+3)(x−√3)=x−√3.7.解方程:(1)x2=4x;(2)x(x﹣2)=3x﹣6.(1)4x(2x+1)=3(2x+1);(2)﹣3x2+4x+4=0.9.解下列方程:(1)x2−2x−8=0(2)(x−1)2=(x−1)10.用适当方法解下列一元二次方程:(1)x2﹣6x=1;(2)x2﹣4=3(x﹣2).11.解方程:x(x﹣3)=x﹣312.解方程:(x+3)2﹣2x(x+3)=0.13.解方程:x(2x﹣5)=2x﹣5.14.解下列关于x的方程.(1)6x(x−1)=x−1;(2)3x2−2x=x2+x+1.(1)x2−2x+1=0(2)2x2−7x+3=016.解方程:(1)(x−2)2=3(x−2);(2)3x2−4x−1=0.17.解方程:(1)(x﹣4)(5x+7)=0;(2)x2﹣4x﹣6=0.18.解方程:(1)x2﹣3x=0;(2)2x(3x﹣2)=2﹣3x.答案解析部分1.【答案】(1)解:x2−4x=0x(x−4)=0解得x1=0,x2=4(2)解:(x−6)(x+1)=−12x2−5x−6=−12x2−5x+6=0即(x−2)(x−3)=0解得x1=3,x2=22.【答案】(1)解:(x+2)2﹣9=0(x+2)2=9x+2=±3所以x1=−5,x2=1.(2)解:x2﹣2x﹣3=0(x+1)(x-3)=0x-3=0或x+1=0所以x1=−1,x2=3.3.【答案】(1)解:x2-2x-3=0x2-2x+1=3+1(x-1)2=4x-1=±2∴x1=3,x2=-1;(2)解:x (x-2)-(x-2)=0(x-2)(x-1)=0x-2=0或x-1=0∴x1=2,x2=1.4.【答案】解:(x+3)2=25,∴x+3=±5,解得:x1=2,x2=-8.5.【答案】解:x(x+2)=2x+4,x(x+2)-2(x+2)=0,(x+2)(x-2)=0,x+2=0或x-2=0,∴x1=-2,x2=2.6.【答案】解:(x+3)(x−√3)−(x−√3)=0,(x−√3)[(x+3)−1]=0.即(x−√3)(x+2)=0.∴x−√3=0或x+2=0,∴x1=√3或x2=−2.7.【答案】(1)解:∵x2=4x,∴x2-4x=0,则x(x-4)=0,∴x=0或x-4=0,解得x1=0,x2=4;(2)解:∵x(x-2)=3x-6,∴x(x-2)-3(x-2)=0,则(x-2)(x-3)=0,∴x-2=0或x-3=0,解得x1=2,x2=3.8.【答案】(1)解:4x(2x+1)=3(2x+1)(4x−3)(2x+1)=0x1=34,x2=−12(2)解:−3x2+4x+4=0a=−3,b=4,c=4,Δ=42+3×4×4=64∴x=−b±√b2−4ac2a=−4±8−6∴x1=−23,x2=29.【答案】(1)解:x2−2x−8=0(x−4)(x+2)=0解得:x1=−2,x2=4.(2)解:(x−1)2=(x−1)(x−1−1)(x−1)=0(x−2)(x−1)=0解得:x1=1,x2=2.10.【答案】(1)解:两边同加32.得x2−6x+32=1+32,即(x−3)2=10,两边开平方,得x−3=±√10,即x−3=√10,或x−3=−√10,∴x1=√10+3,x2=−√10+3(2)解:(x+2)(x−2)=3(x−2),∴(x+2)(x−2)−3(x−2)=0,∴(x−2)(x−1)=0,∴x−2=0,或x−1=0,解得x1=2,x2=111.【答案】解:x(x-3)=x-3x(x-3)-(x-3)=0,(x-3)(x-1)=0,解得:x1=3,x2=1.12.【答案】解:(x+3)2﹣2x(x+3)=0(x+3)(x+3−2x)=0(x+3)(3−x)=0解得x1=3,x2=−313.【答案】解:(2x-5)(x-1)=01x1=52,x2=14.【答案】(1)解:移项,得6x(x−1)−(x−1)=0由此可得(6x−1)(x−1)=06x−1=0,x−1=0解得x 1=16,x 2=1. (2)解:移项,得2x 2−3x −1=0a =2,b =−3,c =−1Δ=b 2−4ac =(−3)2−4×2×(−1)=17>0 ∴x =−(−3)±√172×2=3±√174 ∴x 1=3+√174,x 2=3−√174 15.【答案】(1)解:x 2−2x +1=0,即(x-1)2=0,∴x 1=x 2=1(2)解:2x 2−7x +3=0,因式分解得:(2x-1)(x-3)=0,∴2x-1=0或x-3=0,∴x 1=12,x 2=3 16.【答案】(1)解:原方程可化为(x −2)(x −5)=0 即x −2=0或x −5=0,∴x 1=2,x 2=5(2)解:∵a =3,b =−4,c =−1,∴Δ=b 2−4ac =28>0,∴x =4±√282×3=2±√73, ∴x 1=2+√73,x 2=2−√7317.【答案】(1)解:(x −4)(5x +7)=0, x −4=0或5x +7=0,x =4或x =−75, 即x 1=4,x 2=−75(2)解:x 2−4x −6=0,x 2−4x =6,x 2−4x +4=6+4,(x−2)2=10,x−2=±√10,x=2±√10,即x1=2+√10,x2=2−√10 18.【答案】(1)解:x2﹣3x=0,x(x﹣3)=0,∴x=0或x﹣3=0,∴x1=0,x2=3;(2)解:2x(3x﹣2)=2﹣3x,2x(3x﹣2)+(3x﹣2)=0,则(3x﹣2)(2x+1)=0,∴3x﹣2=0或2x+1=0,解得x1=23,x2=﹣12.。
人教版九年级数学上册期中试卷(含答案)

人教版九年级数学上册期中试卷九年级数学满分:120分时间:120分钟注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:人教版九年级上21~24章。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本题共10小题,每小题3分,共30分。
1.如图,△ABC的顶点坐标分别为A(4,6)、B(5,2)、C(2,1),如果将△ABC绕点B按顺时针方向旋转90°,得到△A′BC′,将△A′BC′向下平移2个单位,得△A″B′C″,那么点C的对应点C″的坐标是()。
A.(3, 2) B.(3, 3) C.(4, 3) D.(4, 2)2.已知关于x的一元二次方程(k-1)x2+2kx+1=0根的情况是()。
A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根3.下面是小明同学用配方法解方程2x2-12x-1=0的过程:解:2x2-12x-1=0 (1)x2-6x=1 (2)x2-6x+9=1+9 (3)(x-3)2=10,x-3=±10 (4)∴x1=3+10,x2=3-10最开始出现错误的是()。
A.第1步B.第2步C.第3步D.第4步4.如图是一位同学从照片上剪切下来的海上日出时的画面,“图上”太阳与海平线交于A、B两点,他测得“图上”圆的半径为10厘米,AB=16厘米。
若从目前太阳所处位置到太阳完全跳出海平面的时间为16分钟,则“图上”太阳升起的速度为()A.1.0厘米/分B.0.8厘米/分C.1.2厘米/分D.1.4厘米/分5.已知抛物线y=ax2+bx+m(a≠0)是由抛物线y=x2-2x+m向左平移2个单位得到,若点A(-2, y1),B(-1, y2),C(1, y3)都在抛物线y=ax2+bx+m(a≠0)上,则y1, y2, y3之间的大小关系是()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(C ) (D ) (B ) (A ) (图一)九年级数学练习卷(2008年4月)(100分钟完卷,满分150分)考生注意:1.本试卷含三个大题,共25题;第一、二大题分别含I 、II 两组选做题,I 组供使用一期课改教材的考生完成,II 组供使用二期课改教材的考生完成;其余大题为共做题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题含I 、II 两组,每组各6题,每题4分,满分24分) 考生注意:1、请从下列I 、II 两组中选择一组,并在答题纸的相应位置填涂选定的组号,完成相应的 1—6题.若考生没有填涂任何组号或将两个组号全部填涂,默认考生选择了I 组;2、下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题 纸的相应位置上.I 组:供使用一期课改教材的考生完成1.下列计算中,正确的是……………………………………………………………( )(A )2a 3-3a =-a ; (B )(-ab )2=-a 2b 2;(C )a 2·a -3=a -1; (D )-2a 3÷(-2a )=-a 2. 2.下列各方程中,无实数解的是……………………………………………………( )(A )2x 2-9=8x ; (B )23-x -5+x =0; (C )3x 2-5x +1=0; (D )x 2+112+x =0. 3.下列方程中,两实数根之和为4的是………………………………………………( )(A )3x 2-4x +1=0; (B )x 2-4x +5=0;(C )2x 2-8x -1=0; (D )21x 2+2x -3=0. 4.图一四幅图形中,表示两颗小树在同一时刻阳光下的影子是………………………( )5.对于一个正多边形,下列四个命题中,错误的是 ………………………………( )(A )正多边形是轴对称图形,每条边的垂直平分线是它的对称轴; (B )正多边形是中心对称图形,正多边形的中心是它的对称中心; (C )正多边形每一个外角都等于正多边形的中心角;(D )正多边形每一个内角都与正多边形的中心角互补.6.下列说法中,正确的是………………………………………………………………( )(A )圆的切线垂直于经过切点的半径; (B )垂直于切线的直线必经过切点; (C )垂直于切线的直线必经过圆心; (D )垂直于半径的直线是圆的切线.II 组:供使用二期课改教材的考生完成1.下列计算中,正确的是……………………………………………………………( )(A )2a 3-3a =-a ; (B )(-ab )2=-a 2b 2;(C )a 2·a -3=a -1; (D )-2a 3÷(-2a )=-a 2.(C ) (D ) (B ) (A )(图一)2.下列各方程中,无实数解的是……………………………………………………( )(A )2x 2-9=8x ; (B )23-x -5+x =0; (C )3x 2-5x +1=0; (D )x 2+112+x =0. 3.从一付52张的扑克牌(不含大小王)中任意抽取一张,抽到红心的概率是……( )(A )21; (B )131; (C )41; (D )521. 4.图一四幅图形中,表示两颗小树在同一时刻阳光下的影子是………………………( )5.对于一个正多边形,下列四个命题中,错误的是 ………………………………( )(A )正多边形是轴对称图形,每条边的垂直平分线是它的对称轴; (B )正多边形是中心对称图形,正多边形的中心是它的对称中心; (C )正多边形每一个外角都等于正多边形的中心角;(D )正多边形每一个内角都与正多边形的中心角互补. 6.下列等式中,不正确的是………………………………………………………………( )(A )|a +(-a )|=0; (B )-(-a )=a ; (C )(a +b )+c =a +(b +c ); (D )a +(-b )=a -b .二、填空题:(本大题含I 、II 两组,每组各12题,每题4分,满分48分) 考生注意:1、请从下列I 、II 两组中选择一组,并在答题纸的相应位置填涂选定的组号,完成相应的 7—18题.若考生没有填涂任何组号或将两个组号全部填涂,默认考生选择了I 组;2、请将结果直接填入答题纸的相应位置.I 组:供使用一期课改教材的考生完成7.4x 2-4xy +y 2-a 2 = .8.数据7、3、1l 、3、1、8,这组数据的中位数是 .9.一种型号的数码相机,原来每台售价为5000元,经过两次降价后,现在每台售价为3200元.假设两次降价的百分率均为x ,那么可列出方程 . 10.请选择一组a b ,的值,写出一个形如1ab x =-的关于x 的分式方程,使它的解为1x =-,这样的分式方程可以是________.11.已知2y ax bx =+的图像如图二所示,则y ax b =-的图像一定不过第_________象限.12.如果两圆有3条公切线,那么这两圆的位置关系是_______.13.在Rt △ABC 中,∠C =90°,如果BC =4,sinA =32,那么 AB =__________.14.如图三,点E 是平行四边形ABCD 的BC 边上一点,且BE ︰EC =3︰1,AE 与BD 交于点F ,则BF ︰FD =________. 15.如果两个相似三角形的对应角平分线的比是2︰3,其中较大的一个三角形的面积是36cm 2,那么另一个三角形的面积 是_____________cm 2 .(图三)E DAB CF xyO(图二)(图四)16.如图四,E ,F ,G ,H 分别是正方形ABCD 各边的中点,要使中间阴影部分小正方形的面积是5,那么大正方形的边长应该是___________.17.如果两圆相交,公共弦长为6cm ,两圆的直径长分别为10cm 、8cm ,那么圆心距的长是 cm .18.已知直线与x 轴交于点A(4,0),与y 轴交于点B(0,3).若在x 轴上有一点P ,使∆ABP为等腰三角形,则符合条件的点P 的坐标为___________________________________.II 组:供使用二期课改教材的考生完成7.4x 2-4xy +y 2-a 2 = .8.数据7、3、1l 、3、1、8,这组数据的中位数是 .9.一种型号的数码相机,原来每台售价为5000元,经过两次降价后,现在每台售价为3200元.假设两次降价的百分率均为x ,那么可列出方程 . 10.请选择一组a b ,的值,写出一个形如1ab x =-的关于x 的分式方程,使它的解为1x =-,这样的分式方程可以是________.11.已知2y ax bx =+的图像如图二所示,则y ax b =-的图像一定不过第_________象限.12.在△ABC 中,=++CA BC AB _____________. 13.在Rt △ABC 中,∠C =90°,如果BC =4,sinA =32,那么 AB = ____ .14.如图三,点E 是平行四边形ABCD 的BC 边上一点,且BE ︰EC =3︰1,AE 与BD 交于点F ,则BF ︰FD = __ . 15.如果两个相似三角形的对应角平分线的比是2︰3,其中较 大的一个三角形的面积是36cm 2,那么另一个三角形的面积 是 ______ cm 2 . 16.如图四,E ,F ,G ,H 分别是正方形ABCD 各边的中点,要使中间阴影部分小正方形的面积是5,那么大正方形的边长应该是___________.17.如果两圆相交,公共弦长为6cm ,两圆的直径长分别为10cm 、8cm ,那么圆心距的长是 cm .18.已知直线与x 轴交于点A(4,0),与y 轴交于点B(0,3).若在x 轴上有一点P ,使∆ABP为等腰三角形,则符合条件的点P 的坐标为___________________________________.三、解答题(本大题共7小题)【请将解题步骤写在答题纸上。
第19、20、21、22题,每小题10分,第23、24题,每小题12分,第25题14分,满分78分,不答或答错得零分】 19.化简:⎪⎭⎫ ⎝⎛+----+4412222x x x x x x ÷x x 4-,并求当x =3时的值.xyO(图二)(图三)E DAB C F(图四)20.某校学生会对本校学生某一个周末收看电视节目的情况作抽样调查.结果如图五.根据上图解答下列问题:(1)此次抽样调查,共调查男生 人,女生 人; (2)在调查的学生中,看了2小时电视节目的频率是 ; (3)在调查的学生中,平均每人看了多少小时电视节目?(4)如果该校有1200名学生,那么在某一个周末内,全校大约有多少学生看过不少于3小时的电视节目?21.2010年上海将举办世博会,为此市政府提出:“加快轨道交通建设,让城市更畅通”。
去年第三季度某工程队承担了铺设一段3千米长的地铁轨道的光荣任务,铺设了600米后,该工程队改进技术,每天比原来多铺设10米,结果共用了80天完成任务.试问:该工程队改进技术后每天铺设轨道多少米?22.已知:如图五,在△ABC 中,点D 为AC 上一点,CD ︰AD =1︰2,∠BCA =45°,∠BDA =60°,AE ⊥BD ,点E 为垂足,连结CE .(1)写出图中相等的线段; (2)写出图中各对相似三角形;(3)求CDE CEASS ∆∆的值.(图六)AB DEC(图五)女男 小时 人数0 1 2 3 4 6 4 2 81023.某风景区内有一古塔AB ,在塔的北面有一建筑 物,冬至日的正午光线与水平面的夹角是30°,此时 塔在建筑物的墙上留下了高3米的影子CD ;而在春 分日正午光线与地面的夹角是45°,此时塔尖A 在 地面上的影子E 与墙角C 有15米的距离(B 、E 、C 在一条直线上),求塔AB 的高度(结果保留根号).24.已知:直线AB :y =21x +3与x 轴交于点A ,与y 轴交于点B ,另外有点C (0,2)和点M (m ,0).⊙M 以MC 为半径,⊙M 与直线AB 相切,求经过点A 、B 、M 的抛物线的解析式.(图七)B A ED C45°30°25.如图八,已知边长为3的等边ABC ∆,点F 在边BC 上,1CF =,点E 是射线BA 上一动点,以线段EF 为边向右侧作等边EFG ∆,直线,EG FG 交直线AC 于点,M N , (1)写出图八中与BEF ∆相似的三角形; (2)证明其中一对三角形相似;(3)设,BE x MN y ==,求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(4)若1AE =,试求GMN ∆的面积.(图八)备用图备用图九年级数学练习卷参考答案及评分意见(2008年4月)一、选择题:(本大题含I 、II 两组,每组各6题,每题4分,满分24分)1.C, 2. D , 3.C , 4.A , 5.B , 6.A,二、填空题:(本大题含I 、II 两组,每组各12题,每题4分,满分48分)7.(2x -y +a )(2x -y -a ), 8.5, 9. 5000(1-x )2=3200, 10.211x =--, 11.一, 12.外切(0), 13.6, 14.3︰4, 15.16, 16.5, 17.4+7或4-7, 18.(-4,0),(-1,0),(87,0),(9,0)三、解答题(本大题共7小题)【第19~22题,每题10分,第23、24题,每题12分,第25题14分,满分78分,】 19.解:原式=4)2()1()2)(2(2-⋅----+x xx x x x x x ………………………………………3分 =2)2(1-x ………………………………………………………………………3分 当3=x 时,原式=3473471)23(12+=-=- ……………1分+1分+2分20.解:(1)25,25;(2)0.34;(3)2.2小时;(4)528名. (2)21.解:设该工程队改进技术后每天铺设轨道x 米 ……………………………………1分则改进技术前每天铺设轨道(x -10)米,根据题意,得10600-x +x6003000-=80. …………………………………………4分 整理,得2x 2-95x +600=0. ………………………………………………………1分 解得:x 1=40,x 2=7.5. ……………………………………………………………2分 经检验:x 1=40,x 2=7.5都是原方程的根,但x 2=7.5不符合实际意义,舍去. ∴x =40. ………………………………………………………………………………1分 答:该工程队改进技术后每天铺设轨道40米. ……………………………………1分22.解:(1)CD =DE ,AE =BE =CE ; ………………………3分 (2)△CEA ∽△CDE ,△ADB ∽△ABC ;…………………2分 (3)在△CEA 和△CDE 中,∵AE ⊥BD ,∠BDA =60°,∴∠DAE =30°,∴12ED AD =,………………………………………………1分 ∵12CD AD =,∴CD =ED , …………………………………………………………1分 ∴∠DCE =∠DEC =30°,∵∠DAE =30°, ∴∠DAE =∠DEC =30°,………………………………………1分∴△CEA ∽△CDE ; …………………………………………………………………1分∴CDE CEA S S ∆∆=2 ()ED AE = 21 1()33= . ………………………………………………1分(图六)A BD EC23.解:过点D 作DF ⊥AB ,垂足为点F .………………………………………………1分∵AB ⊥BC ,CD ⊥BC ,∴四边形BCDF 是矩形,∴BC =DF ,CD =BF .………2分 设AB =x 米,在Rt △ABE 中,∠AEB =∠BAE =45°,∴BE =AB =x .………1分 在Rt △ADF 中,∠ADF =30°.AF =AB -BF =x -3, …………………………1分∴DF =AF ·cot30°=3(x -3).……3分 ∵DF =BC =BE +EC ,∴3(x -3)=x +15, ∴x =12+93 ……………………………3分.答:塔AB 的高度是(12+93)米.…1分24.解:可以求得:点A (-6,0),B (0,3),………………………………………2分设⊙M 与直线AB 相切于点N ,则Rt △AMN ∽Rt △ABO ,………………………2分∴AM ︰AB =MN ︰BO ,且MN =MC ,…………1分∵MC =222+m ,∴(m +6)︰35=222+m ︰3,…………1分∴m 2-3m -4=0,∴m 1=-1,m 2=4, ∴M 1(-1,0)、M 2(4,0). …………………2分 过点A 、B 、M 1的抛物线的解析式:y =21(x +6)(x +1),(y =21x 2+27x +3);……2分 过点A 、B 、M 2的抛物线的解析式:y =-81(x +6)(x -4), (y =81-x 241-x +3) …2分25.答:(1)△BEF ∽△AME ∽△CFN ∽△GMN ;………………………………………3分 证:(2)在△BEF 与△AME 中, ∵∠B =∠A =60°,∴∠AEM+∠AME=120°…………………………………………………………1分 ∵∠GEF =60°, ∴∠AEM+∠BEF =120°∴∠BEF =∠AME ………………………………………………………………1分 ∴△BEF ∽△AME …………………………………………………………………1分解:(3)(i)当点E 在线段AB 上,点M 、N 在线段AC 上时,如图八,∵△BEF ∽△AME ,∴BE ︰AM =BF ︰AE ,即:x ︰AM =2︰(3-x ) ,∴AM =232x x +-,同理可证△BEF ∽△CFN ;∴BE ︰CF =BF ︰CN ,即:x ︰1=2︰CN ,∴CN =x2 ∵AC=AM+MN+CN ,∴3=232xx +-+y +x 2∴xx x x y 246323-+-= (31≤≤x )…………1分+1分(ii) 当点E 在线段AB 上,点G 在△ABC 内时,如备用图一,同上可得:AM =232xx +-,CN =x 2∵AC=AM +C N -MN ,∴3=232x x +-+x 2-y备用图一NCABGE FM(图八)(图八)AE DC 45°(A )F BAM 1 OB xy CM 2 ·· N∴xx x x y 246323-+--= (10≤<x )……1分+1分(iii) 当点E 在线段BA 的延长线上时,如备用图二,AM =232xx -,CN =x 2∵AC= MN +C N -AM ,∴3= y +x 2-232xx - ∴xx x x y 246323-+-= (x>3) ……………1分+1分综上所述:xx x x y 246323-+--=(10≤<x )或∴x x x x y 246323-+-= (x ≥1);(4)(i)当AE =1时,GMN ∆是边长为1等边三角形,∴4323121=⨯⨯=∆gmn S ;………………………………………………………1分 (ii) 当AE =1时,GMN ∆是有一个角为30°的Rt △,∵x=4, ∴y=29,NG=233,∴83272923321=⨯⨯=∆gmn S .…………………………………………………1分备用图二MECBANGF。