导数与函数的单调性教学设计
函数的单调性与导数教案

函数的单调性与导数教案一、教学目标1. 让学生理解函数的单调性的概念,能够判断函数的单调性。
2. 让学生掌握导数的定义,能够计算常见函数的导数。
3. 让学生理解导数与函数单调性的关系,能够利用导数判断函数的单调性。
二、教学内容1. 函数的单调性定义:如果函数f(x)在区间I上,对于任意的x1, x2∈I,当x1 < x2时,都有f(x1) ≤f(x2),则称f(x)在区间I上为增函数;如果对于任意的x1, x2∈I,当x1 < x2时,都有f(x1) ≥f(x2),则称f(x)在区间I上为减函数。
2. 导数的定义定义:函数f(x)在点x处的导数定义为函数在点x处的切线斜率,记作f'(x),即f'(x) =lim┬(h→0)〖(f(x+h)-f(x))/h〗。
3. 常见函数的导数(1)常数函数f(x) = c,其导数为f'(x) = 0。
(2)幂函数f(x) = x^n,其导数为f'(x) = nx^(n-1)。
(3)指数函数f(x) = a^x,其导数为f'(x) = a^x ln(a)。
(4)对数函数f(x) = ln(x),其导数为f'(x) = 1/x。
4. 导数与函数单调性的关系(1)如果f'(x) > 0,则f(x)在区间(-∞, +∞)上为增函数。
(2)如果f'(x) < 0,则f(x)在区间(-∞, +∞)上为减函数。
(3)如果f'(x) = 0,则f(x)可能在某点处改变单调性。
三、教学方法1. 采用讲解法,讲解函数的单调性和导数的定义及计算方法。
2. 采用案例分析法,分析导数与函数单调性的关系。
3. 采用练习法,让学生通过练习巩固所学知识。
四、教学步骤1. 导入:回顾函数的概念,引导学生思考函数的单调性。
2. 讲解:讲解函数的单调性的定义,并通过实例演示如何判断函数的单调性。
3. 讲解:引入导数的定义,讲解常见函数的导数计算方法。
数学《函数单调性与导数》教案

数学《函数单调性与导数》教案教学目标:1. 知道函数单调性的定义,掌握判断单调性的方法。
2. 知道导数的定义,掌握求导的方法。
3. 熟练掌握函数单调性与导数的关系,能够应用相关知识解决实际问题。
教学重点:1. 函数单调性与导数的概念及其关系。
2. 求导数的方法和技巧。
3. 应用函数单调性和导数解决实际问题。
教学难点:1. 求高阶导数,各种复杂函数的单调性判断。
2. 应用函数单调性与导数解决实际问题。
教学方法:1. 讲授法:讲解相关知识点,示范演示,点拨解释。
2. 实验法:以具体例子演示如何判断函数的单调性。
3. 问题解决法:提供丰富的例题及作业,引导学生自主思考,解决问题。
教学过程设计:Part 1:函数单调性的引入1. 通过一个具体的例子引入函数单调性的概念,让学生理解函数单调性的含义。
2. 介绍单调递增和单调递减的概念,以及如何判断一个函数的单调性。
3. 引导学生思考,研究不同类型函数单调性的特点和判断方法。
Part 2:导数的定义和求导方法1. 导数的概念:定义导数,解释导数的几何意义和物理意义。
2. 求导方法:讲解求导过程,引导学生掌握基本的求导技巧。
3. 常用函数的导数:讲解常用函数的导数公式,让学生记忆。
Part 3:函数单调性与导数1. 函数单调性与导数的关系:引导学生研究函数单调性与导数之间的关系。
2. 求解函数单调性:利用导数判断函数单调性,让学生掌握方法。
3. 应用导数求解实际问题:让学生通过实际问题应用导数,求解函数单调性问题。
Part 4:案例分析1. 给出一些实际问题,让学生通过函数单调性和导数的方法求解。
2. 分组讨论,展示各自的解题思路和方法,互相学习。
Part 5:练习与总结1. 提供一些例题给学生练习,巩固所学知识。
2. 学生自己整理笔记,总结函数单调性与导数的概念及其应用教具准备:1. 教师演示用的白板或黑板、彩色粉笔或白板笔。
2. 学生实验用的计算器。
3. 相关练习题和例题。
导数与函数单调性上课用学案教案.doc

导数与函数单调性【课标要求】1.掌握函数的单调性与导数的关系. 2.能利用导数研究函数的单调性.3.会求函数的单调区间(其中多项式函数一般不超过三次). 【核心扫描】1.利用导数确定函数的单调性及求函数的单调区间.(重点) 2.利用导数证明一些简单不等式.(难点) 3.常与不等式、方程等结合命题教学过程: 一、复习引入、回顾思考 1.导数的几何意义: 2.常见函数的导数公式:3.求导法则:4.思考:(1)到目前为止,我们学过判断函数的单调性有哪些方法?(2)函数单调性的定义是什么?怎样利用函数单调性的定义来讨论其在定义域的单调性?比如,要判断23,y x =-2y x =的单调性,如何进行?(3)由定义证明函数的单调性的一般步骤是什么?(4)还有没有其它方法?那如果遇到函数: 我们用这两种方法能否很容易地判断出它的单调性吗? 有没有捷径? 5.探究活动、观察与表达通过表格,我们能否发现函数的这些性质之间有何关系? 填表(表格1)填表(表格2)32()233616f x x x x =--+二、建构数学探究1. 函数的导数与函数的单调性的关系:我们已经知道,曲线y =f (x )的切线的斜率就是函数y =f (x )的导数. 从函数342+-=x x y 的图象可以看到:探究2. 观察下面一些函数的图象, 探讨函数的单调性与其导函数正负的关系结论:一般地,设函数y =f(x)在某个区间内可导,则函数在该区间注:三、数学运用命题角度1 求不含参数的函数的单调区间 例1:求函数f(x)=2x 3-6x 2+7的单调区间.思考与感悟:用导数法求函数单调区间的一般步骤:(1) (2) (3) (4)例2 求下列函数的单调区间:(1)f(x)=x 2-ln x ;(2)f(x)=1-x e x;题组训练:求下列函数单调区间(1) y =e x -x +1. (2)f (x )=3x 2-2ln x);,0(,sin )( )3(π∈-=x x x x f 32(4) ()2324 1.f x x x x =+-+;ln )5(x x y =命题角度2 应用导数信息确定函数大致图象例3已知导函数f′(x)的下列信息:当1<x<4时,f′(x)>0;当x>4,或x<1时,f′(x)<0;当x=4,或x=1时,f′(x)=0.试画出函数f(x)图象的大致形状. (选讲)命题角度3利用导数判断函数的单调性例4 证明:函数f(x)=ln xx在区间(0,e)上是增函数.四、巩固训练五、课堂小结:通常对于哪些函数我们用“导数法”来判断它们的单调性比较简便?六、课后作业:教案精品文档。
利用导数判断函数的单调性教案

利用导数判断函数的单调性教案一、教学目标:1. 让学生理解导数的定义和几何意义。
2. 学会利用导数判断函数的单调性。
3. 能够运用导数解决实际问题。
二、教学内容:1. 导数的定义和几何意义。
2. 利用导数判断函数的单调性。
3. 导数在实际问题中的应用。
三、教学重点与难点:1. 重点:导数的定义,导数与函数单调性的关系。
2. 难点:利用导数判断函数的单调性,解决实际问题。
四、教学方法与手段:1. 教学方法:讲解法,案例分析法,讨论法。
2. 教学手段:黑板,PPT。
五、教学过程:1. 导入:回顾导数的定义和几何意义,引导学生思考导数与函数单调性的关系。
2. 新课讲解:讲解如何利用导数判断函数的单调性,通过示例让学生理解并掌握方法。
3. 案例分析:分析实际问题,让学生运用导数判断函数的单调性,解决实际问题。
4. 课堂练习:布置练习题,让学生巩固所学知识。
6. 作业布置:布置课后作业,巩固所学知识。
六、教学评估:1. 课堂练习环节,观察学生对利用导数判断函数单调性的掌握程度。
2. 课后作业的完成情况,评估学生对知识的巩固程度。
3. 学生参与讨论的积极性和对实际问题分析的能力。
七、教学反思:2. 根据学生的反馈调整教学方法,提高教学效果。
3. 针对学生的掌握情况,适当调整教学内容和难度。
八、教学拓展:1. 引导学生思考导数在其他数学领域的应用,如微分方程、优化问题等。
2. 介绍导数在物理学、经济学等学科中的应用,拓宽学生的视野。
九、教学资源:1. PPT课件:包含导数定义、几何意义、判断函数单调性的方法及实际案例。
2. 练习题:涵盖不同难度的题目,用于巩固所学知识。
3. 实际问题案例:涉及多个领域的实际问题,用于引导学生运用导数解决实际问题。
十、教学进度安排:1. 本节课共计45分钟,具体安排如下:导入:5分钟新课讲解:15分钟案例分析:15分钟课堂练习:10分钟作业布置:5分钟2. 课后作业:布置课后练习,要求学生在下次课堂上提交。
《导数与函数的单调性》教学设计

《导数与函数的单调性》教学设计教学目标:1、了解函数的单调性与导数之间的关系2、能利用导数判断函数的单调性,会求函数的单调区间教学重点:能利用导数判断函数的单调性,求函数的单调区间教学难点:导函数与函数单调性之间的关系教学过程:一、情境诱导我们知道,对于函数)(x f y =来说,导数)('x f 刻画的是y 在x 点的瞬时变化率,函数的单调性描述的是y 随x 增加而增加或增加而减少,两者都是刻画函数的变化,那么,导数与函数的单调性之间有什么关系呢?为了解决这个问题,请同学们按照探究题纲进行探究吧。
要求:可以独立完成,也可以讨论,不能独立完成的同学可以请教同学也可以看书;先完成得请你帮帮不会的同学二、探究指导学生根据探究提纲探究,老师先进行板书准备,再巡视指导,了解掌握学情为展示归纳提问做准备探究题纲:1、填空:(1)x x f y ==)(在定义域上的单调性是 ;f′(x)= 。
(2)43)(+-==x x f y 在定义域上的单调性是 ;f′(x)= 。
(3)xx f y 2)(==在定义域上的单调性是 ;f′(x)= 。
(4)14)(2+==x x f y 在定义域上的单调性是 ;f′(x)= 。
2、比较上面四个函数的单调性与导数值,你发现了什么规律?请用一句话叙述出来。
你总结出的规律和教材叙述的内容相同吗?3、自己举两个例子验证你的规律。
4、用导数求函数的单调区间有哪几步?三、展示归纳 1.逐题抽有一定问题的同学汇报,生说师写;2.发动其他同学评价、补充和完善,3.老师给予必要的强调,画龙点睛。
四、变式训练1.逐题让学生练习,教师做必要的板书准备,然后巡回指导,了解情况;2.抽有问题的同学汇报,生说师写;发动其他同学评价、补充和完善;3.老师给予必要的强调,画龙点睛。
教师对易错点加以强调:(1)求函数单调性之前要先确定函数的定义域,单调区间必须是定义域的子集;(2)函数的单调区间有多个时,它们之间用“逗号”或“和”字隔开。
3.3.1、函数的单调性与导数教案

3.3.1、函数的单调性与导数【教学目标】1、了解函数的单调性与导数的关系;2、能利用导数研究函数的单调性,会求函数的单调区间。
【教学重点】利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间。
【教学难点】利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间。
【教学过程】 一、创设情景函数是客观描述世界变化规律的重要数学模型,研究函数时,了解函数的赠与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.下面,我们运用导数研究函数的性质,从中体会导数在研究函数中的作用. 二、新课讲授1、提出问题:图3.3-1(1),它表示跳水运动中高度h 随时间t 变化的函数2() 4.9 6.510h t t t =-++的图像,图3.3-1(2)表示高台跳水运动员的速度v 随时间t 变化的函数'()()9.8 6.5v t h t t ==-+的图像.运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别?2、知识探究:通过观察图像,我们可以发现:(1)运动员从起点到最高点,离水面的高度h 随时间t 的增加而增加,即()h t 是增函数.相应地,'()()0v t h t =>.(2)从最高点到入水,运动员离水面的高度h 随时间t 的增加而减少,即()h t 是减函数.相应地,'()()0v t h t =<.3、函数的单调性与导数的关系观察下面函数的图像,探讨函数的单调性与其导数正负的关系.如图3.3-3,导数'0()f x 表示函数()f x 在点00(,)x y 处的切线的斜率.在0x x =处,'0()0f x >,切线是“左下右上”式的,这时,函数()f x 在0x 附近单调递增; 在1x x =处,'0()0f x <,切线是“左上右下”式的,这时,函数()f x 在1x 附近单调递减. 4、知识归纳:函数的单调性与导数的关系在某个区间(,)a b 内,如果'()0f x >,那么函数()y f x =在这个区间内单调递增;如果'()0f x <,那么函数()y f x =在这个区间内单调递减.说明:(1)特别的,如果'()0f x =,那么函数()y f x =在这个区间内是常函数.5、求解函数()y f x =单调区间的步骤: (1)确定函数()y f x =的定义域; (2)求导数''()y f x =;(3)解不等式'()0f x >,解集在定义域内的部分为增区间; (4)解不等式'()0f x <,解集在定义域内的部分为减区间. 三、典例分析例1、已知导函数'()f x 的下列信息:当14x <<时,'()0f x >; 当4x >,或1x <时,'()0f x <; 当4x =,或1x =时,'()0f x = 试画出函数()y f x =图像的大致形状.解:当14x <<时,'()0f x >,可知()y f x =在此区间内单调递增;当4x >,或1x <时,'()0f x <;可知()y f x =在此区间内单调递减;当4x =,或1x =时,'()0f x =,这两点比较特殊,我们把它称为“临界点”. 综上,函数()y f x =图像的大致形状如图3.3-4所示. 例2、判断下列函数的单调性,并求出单调区间.(1)3()3f x x x =+; (2)2()23f x x x =--(3)()sin (0,)f x x x x π=-∈; (4)32()23241f x x x x =+-+解:(1)因为3()3f x x x =+,所以, '22()333(1)0f x x x =+=+>因此,3()3f x x x =+在R 上单调递增,如图3.3-5(1)所示.(2)因为2()23f x x x =--,所以, ()'()2221f x x x =-=- 当'()0f x >,即1x >时,函数2()23f x x x =--单调递增; 当'()0f x <,即1x <时,函数2()23f x x x =--单调递减; 函数2()23f x x x =--的图像如图3.3-5(2)所示.(3)因为()sin (0,)f x x x x π=-∈,所以,'()cos 10f x x =-< 因此,函数()sin f x x x =-在(0,)π单调递减,如图3.3-5(3)所示. (4)因为32()23241f x x x x =+-+,所以 .当'()0f x >,即 时,函数2()23f x x x =-- ; 当'()0f x <,即 时,函数2()23f x x x =-- ; 函数32()23241f x x x x =+-+的图像如图3.3-5(4)所示. 注:(3)、(4)生练例3、如图3.3-6,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度h 与时间t 的函数关系图像.分析:以容器(2)为例,由于容器上细下粗,所以水以常速注入时,开始阶段高度增加得慢,以后高度增加得越来越快.反映在图像上,(A )符合上述变化情况.同理可知其它三种容器的情况.解:()()()()()()()()1,2,3,4B A D C →→→→思考:例3表明,通过函数图像,不仅可以看出函数的增减,还可以看出其变化的快慢.结合图像,你能从导数的角度解释变化快慢的情况吗?一般的,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化的快,这时,函数的图像就比较“陡峭”;反之,函数的图像就“平缓”一些. 如图3.3-7所示,函数()y f x =在()0,b 或(),0a 内的图像“陡峭”, 在(),b +∞或(),a -∞内的图像“平缓”.例4、求证:函数3223121y x x x =+-+在区间()2,1-内是减函数.证明:因为()()()'22661262612y x x x x x x =+-=+-=-+当()2,1x ∈-即21x -<<时,'0y <,所以函数3223121y x x x =+-+在区间()2,1-内是减函数.小结:证明可导函数()f x 在(),a b 内的单调性步骤:(1)求导函数()'f x ;(2)判断()'fx 在(),a b 内的符号;(3)做出结论:()'0fx >为增函数,()'0f x <为减函数.例5、已知函数 232()4()3f x x ax x x R =+-∈在区间[]1,1-上是增函数,求实数a 的取值范围.解:'2()422f x ax x =+-,因为()f x 在区间[]1,1-上是增函数,所以'()0f x ≥对[]1,1x ∈-恒成立,即220x ax --≤对[]1,1x ∈-恒成立,解之得:11a -≤≤所以实数a 的取值范围为[]1,1-.说明:已知函数的单调性求参数的取值范围是一种常见的题型,常利用导数与函数单调性关系:即“若函数单调递增,则'()0f x ≥;若函数单调递减,则'()0f x ≤”来求解,注意此时公式中的等号不能省略,否则漏解.例6、已知函数y =x +x1,试讨论出此函数的单调区间.解:y ′=(x +x1)′ =1-1·x -2=222)1)(1(1xx x x x -+=- 令2)1)(1(xx x -+>0. 解得x >1或x <-1. ∴y =x +x1的单调增区间是(-∞,-1)和(1,+∞).令2)1)(1(xx x -+<0,解得-1<x <0或0<x <1. ∴y =x +x1的单调减区间是(-1,0)和(0,1)四、随堂训练1、求下列函数的单调区间: (1) f (x )=2x 3-6x 2+7 (2) f (x )=x1+2x (3) f (x )=sin x , x ]2,0[π∈ (4) y=xlnx 2、函数()2sin f x x x =-在(,)-∞+∞上( )A 、是增函数B 、是减函数C 、有最大值D 、有最小值 3、函数y=x+2x(x>0)的单调减区间为( )A. (2,+∞)B. (0,2)C. ( 2 ,+∞)D. (0, 2 ) 4、若在区间(,)a b 内有'()0f x >,且()0f a ≥,则在(,)a b 有( )A 、()0f x >B 、()0f x <C 、()0f x =D 、不能确定5、函数24y x x a =-+的增区间是 ;减区间是 ;6、函数3()f x x x =-的增区间是 和 ;减区间是 ;7、32()41f x x x x =-+-在区间 递增。
导数与函数的单调性教案

导数与函数的单调性教案教案标题:导数与函数的单调性教案目标:1. 理解导数的概念和计算方法;2. 掌握函数单调性的判定方法;3. 能够运用导数判定函数的单调性。
教学准备:1. 教师准备:黑板、白板笔、教学课件;2. 学生准备:教材、笔记本。
教学步骤:Step 1:导入与导入(5分钟)引导学生回顾函数的单调性概念,并提问:如何判断一个函数的单调性?引出导数与函数单调性的关系。
Step 2:导数的定义(10分钟)1. 讲解导数的定义:导数表示函数在某一点的变化率,是函数的斜率。
2. 通过几个简单的例子,帮助学生理解导数的计算方法。
Step 3:导数与函数的单调性(15分钟)1. 解释导数与函数单调性的关系:若函数在某一区间上导数恒大于零,则函数在该区间上单调递增;若导数恒小于零,则函数在该区间上单调递减。
2. 通过具体的例子,演示如何通过导数判断函数的单调性。
Step 4:练习与巩固(15分钟)1. 给学生分发练习题,让他们运用导数的知识判断函数的单调性。
2. 针对练习题,进行讲解和答疑。
Step 5:拓展与应用(10分钟)1. 引导学生思考如何利用导数求函数的极值点。
2. 通过实际问题,让学生应用导数和函数单调性的知识解决实际问题。
Step 6:总结与反思(5分钟)1. 总结导数与函数单调性的关系;2. 学生对本节课的掌握情况进行反馈。
教学延伸:1. 学生可以通过更多的练习题来巩固导数与函数单调性的知识;2. 学生可以尝试使用导数求函数的极值点。
教学评估:1. 课堂练习题的完成情况;2. 学生对导数和函数单调性的理解程度;3. 学生在应用导数和函数单调性解决实际问题时的表现。
教学反思:1. 教师可以根据学生的实际情况,调整教学内容和难度;2. 教师可以通过更多的案例和实际问题,帮助学生深入理解导数和函数单调性的概念。
函数的单调性与导数教案

函数的单调性与导数教案教案标题:函数的单调性与导数教案教案目标:1. 理解函数的单调性的概念及其在数学中的应用。
2. 掌握使用导数判断函数的单调性的方法。
3. 能够应用函数的单调性和导数的概念解决实际问题。
教案步骤:引入:1. 引导学生回顾函数的概念,并提醒他们函数图像上的一些特征,如上升、下降、水平等。
2. 引出函数的单调性的概念,解释函数在特定区间上的单调性表示函数值的增减趋势。
探究:1. 提供一个简单的函数图像,让学生观察并讨论函数在不同区间上的单调性。
2. 引导学生思考如何使用导数来判断函数的单调性。
3. 解释导数的概念,以及导数与函数单调性之间的关系。
4. 通过几个例子,演示如何使用导数来判断函数的单调性。
实践:1. 提供一些函数的导数表达式,让学生根据导数的正负判断函数的单调性。
2. 给学生一些函数图像,让他们通过观察图像判断函数的单调性,并用导数来验证他们的结论。
3. 给学生一些实际问题,让他们应用函数的单调性和导数的概念解决问题。
总结:1. 总结函数的单调性的概念及其判断方法。
2. 强调导数与函数单调性之间的关系。
3. 鼓励学生在实际问题中运用所学知识。
拓展:1. 提供更复杂的函数图像和问题,让学生进一步应用函数的单调性和导数解决问题。
2. 引导学生思考如何使用函数的单调性和导数来优化问题的解决方案。
评估:1. 设计一些练习题,考察学生对函数的单调性和导数的理解和应用能力。
2. 给学生一些实际问题,让他们运用所学知识解决问题,并评估他们的解决方案的合理性和准确性。
教案扩展:1. 引导学生探究函数的凹凸性与导数的关系。
2. 拓展教案内容,介绍更高级的函数性质和导数应用。
注意事项:1. 根据学生的学习水平和理解能力,适当调整教案的难度和深度。
2. 鼓励学生积极参与讨论和实践,培养他们的数学思维和问题解决能力。
3. 提供足够的练习和实践机会,巩固学生对函数单调性和导数的掌握程度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课堂学生为高二年级的的学生,学生基础普遍比较好,但是学习单调性的概念是在高一第一学期学过,现在早已忘记;因此对于单调性概念的理解不够准确,同时导数是高中学生新接触的概念,如何将导数与函数的单调性联系起来是一个难点。
在本节课之前学生已经学习了导数的概念、导数的几何意义和导数的四则运算,初步接触了导数在几何中的简单应用,但对导数的应用还仅停留在表面上。本节课应着重让学生通过探究来研究利用导数判定函数的单调性。
板书:
a求函数 的导数。
b讨论单调区间,解不等式 ,解集为增区间;解不等式 ,解集为减区间。
c得出结论。
练习:
1、求下列函数的的单调区间:
①
②
③
2、讨论函数 在 上的单调性。
小结:
本节课从几个函数的图象与区间上的导数值之间的关系,引入了函数单调性的导数定义,根据定义让学生明确了利用导数求函数单调性的方法,并掌握了求函数单调性的一般步骤。
①应正确理解“某个区间”的含义,它必是定义域内的某个子区间。
②如果在某个区间内恒有f/(x)=0 ,则f(x)为常数函数.
反思:
若函数 在某区间上是单调递增函数,那么导数值 恒成立吗?若函数 在某区间上是单调递减函数,那么其导数值 恒成立吗?
例1:求函数
的单调递增区间与递减区间。
分析:
根据上面结论,我们知道函数的单调性与函数导数的符号有关。因此,可以通过分析导数的符号求出函数的单调区间。
函数的单调性是高中数学中极为重要的一个知识点。以前学习了利用函数单调性的定义、函数的图象来研究函数的单调性,学习了导数以后,利用导数来研究函数的单调性,是导数在研究处理函数性质问题中的一个重要应用。同时,在本章第二节要学习利用导数研究函数的极值,学习了导数研究函数的单调性,对于研究利用导数求函数的极值有重要的帮助。因此,学习本节内容具有承上启下的作用。
2函数 ,其斜率K=2,其导数值
3函数 ,其斜率K=-3,其导数值
显示多媒体(出示4个函数的解析式):引导学生完成以下问题:
1在不同坐标系下分别做出这4个函数的图象?
2分别求出这4个函数的导数?
引导学生思考并提出以下问题:
1每一个函数在某一点的切线斜率值是否等于该函数在该点处的导数值?
2同一个函数在每一点处的切线的斜率值有何特点?它与该函数的单调性有何联系呢?
【教学重点】
利用求导的方法判定函数的单调性。
【教学难点】
为什么会将导数与函数的单调性联系起来
【教学方法】
启发式教学
【课时安排】 1 课时
【教学准备】
多媒体(画出函数① ② ③ 在同一个坐标系下的图象);并写出以下四个函数:① ,② ,③ ,④
【教学设计说明】
函数单调性是高中阶段刻划函数变化的一个最基本的性质。在高中数学课程中,对于函数单调性的研究分成两个阶段:第一个阶段是用定义研究单调性,知道它的变化趋势;第二阶段用导数的性质研究单调性,知道它的变化快慢。那么高一是处在第一个阶段,而高二我们是处在第二个阶段。
课后思考;
根据函数的导数定义及利用导数求函数单调性的方法步骤,知识,说出两个问题的概念的要点来。举手回答。
学生思考、并举手回答。
学生思考并归纳总结
1每一条直线的斜率值等于该函数的导数值。
2函数的导数值大于零时,其函数为单调递增;函数的导数值小于零时,其函数为单调递减。
3同一个函数的单调性与该函数的导数值有何联系呢?
4函数的导数值、单调性与区间有关系吗?
抽象概括
定理:
一般地,函数y=f(x)在某个区间(a,b)内
1)如果恒有f′(x)>0,
那么y=f(x)在这个区间(a,b)内单调递增;
2)如果恒有f′(x)<0,
那么y=f(x)在这个区间(a,b)内单调递减。
注意:
【教学目标】
1、知识与能力:
理解单调性的导数定义,并会利用导数解决函数的单调性.
2、过程与方法:
通过利用导数研究单调性问题的研究过程,体会从特殊到一般的、数形结合的研究方法。
3、情感态度与价值观:
(1) 通过导数方法研究单调性问题,体会到不同数学知识间的内在联系,认识到数学是一个有机整体。
(2)通过导数研究单调性的基本步骤(即算法)的形成和使用,使得学生认识到导数使得一些复杂的问题就变得有矩可循,因而认识到导数的实用价值。
解:引导学生回答问题并同时板书。
1函数
的定义域是什么?其导数如何求?
函数的定义域是 ,其导数值是:
②若 时, 的区间是什么?若 时, 的区间又是什么?
当 或 时, ,因此,在这两个区间上,函数是增加的;
当 时, ,因此,在这个区间上,函数是减少的。
所以,函数
的递增区间为 和 ;递减区间为 。
③讨论函数单调性的一般步骤是什么?
根据新课程标准的要求,本节课的知识目标定位在以下三个方面:一是能探索并应用函数的单调性与导数的关系求单调区间;二是掌握判断函数单调性的方法;三是能由导数信息绘制函数大致图象。
【教学过程】
教学环节
教师活动
学生活动
设计目的
新课引入
新课教学
探究函数的导数与函数的单调性的关系
归纳总结
内容讲授
例题讲解
课堂练习
学生思考并举手,教师指定一个学生上台作图。再指定一个学生上台求出函数的导数。
a作图(略)
b 4个函数的导数是:
① ②
③
④
学生思考并举手回答:
1是。根据导数的几何意义可得。
2其斜率值都大于零或都小于零。当斜率值都大于零时,其函数为单调递增;当斜率值都小于零时,其函数为单调递减。
3若函数的导数值大于零,则函数为单调递增;若函数的导数值小于零,则函数为单调递减。
课堂小结
提出问题:
a.函数增减性的定义是什么?
b.导数的定义是什么?
显示多媒体(出示3个函数的解析式及图象)引导学生观察并回答以下问题:
1这3个函数图象都是直线,其斜率分别是多少?其值有何特点?单调性如何?
2分别求出这3 个函数的导数?并观察其导数值有何特点?
板书:
1函数 ,其直线斜率K=1,其导数值 0
《导数与函数的单调性》教学设计
【课题】导数与函数的单调性
【课时】1课时
【教材分析】
导数与函数的单调性是北京师范大学出版社《数学》选修2-2第三章第一节的内容。在学习本节课之前学生已经学习了导数、函数及函数单调性等概念,对单调性有了一定的感性和理性的认识,同时在第二章中已经学习了导数的概念,对导数有了一定的知识储备。