人教版 高中数学 选修2-2《1.2.2 导数的运算法则及复合函数的导数》教案
高中数学教案选修2-2《1.2.3 简单复合函数的导数》

教学目标:
1.掌握求复合函数()f ax b +的导数的法则;
2.熟练求简单复合函数的导数.
教学重点:
复合函数的求导法则.
教学过程:
一、问题情境
1.问题情境:什么是简单复合函数?
引例 函数2(31)y x =-是由哪两个函数复合而成的?函数sin 2y x =呢?
2.探究活动:怎么样求简单复合函数的导数?
以函数2(31)y x =-和sin 2y x =为例.
二、建构数学
1.与一次函数复合的函数的导函数公式.
2.推广:
注 1.复合函数的求导法则:复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数;
2.复合函数求导的基本步骤是:分解——求导——相乘——回代.
三、数学运用
例3 求
y -
点评 本题练习商的导数和复合函数的导数,求导数后要予以化简整理. 例4 求44sin cos y x x =+的导数.
点评 可先化简变形,简化求导数运算,要注意变形准确;也可利用复合函数求导数,应注意不漏步.
练习:课本第24页第2,3,4题.
四、回顾小结
(1)复合函数的求导,要注意分析复合函数的结构,引入中间变量,将复合函数分解成为较简单的函数,然后再用复合函数的求导法则求导;
(2)复合函数求导的基本步骤是:分解—求导—相乘—回代.
五、课外作业
1.见课本P26习题1.2第8~10题.
2.补充:已知函数22()3cos sin 222x x f x =+-,求5π()6f .。
高中数学1.2.2导数的运算法则教案新人教版选修2_2

课题:§1.2.2 基本初等函数的导数公式及导数的运算法 则教学目标: 教学重点:1.熟练掌握基本初等函数的导数公式; 2.掌握导数的四则运算法则; 3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求 简单函数的导数 基本初等函数的导数公式、导数的四则运算法则教学难点:基本初等函数的导数公式和导数的四则运算法则的应用教学过程与设计:详细过程一.创设情景四种常见函数 y c 、 y x 、 y x2 、 y 1 的导数公式及应用 x二.新课讲授函数导数(一)基本初等函数的ycy' 0导数公式表函数 y x y c y x2 y f (x) xn (nyQ1*)x yy sfin(xx) xn (n Q*) y cos xy' 1 导数y' 2x y' 0y'1 x2y'nxn1y' nx yn1' cos xy' sin xy f (x) axy' ax ln a (a 0)y f (x) exy' ex(二)导数的运 算法则f (x) loga xf(x)logaxf' ( x)1 x lna(a0且a 1)f (x) ln xf '(x) 1 x导数运算法则1. f (x) g(x)' f '(x) g'(x)2. f (x) g(x)' f '(x)g(x) f (x)g'(x)'3. f (x) g(x) f'(x)g(x) f ( g ( x)2x)g'(x)(g(x)0)(2)推论:cf (x)' cf '(x)(常数与函数的积的导数,等于常数乘函数的导数) 三.典例分析例 1.假设某国家在 20 年期间的年均通货膨胀率为 5% ,物价 p(单位:元)与时间 t(单位:年)有如下函数关系 p(t) p0 (1 5%)t ,其中 p0 为 t 0 时的物价.假定某种商品 的 p0 1 ,那么在第 10 个年头,这种商品的价格上涨的速度大约是多少(精确到 0.01)?解:根据基本初等函数导数公式表,有 p' (t) 1.05t ln1.05所以 p' (10) 1.0510 ln1.05 0.08(元年)因此,在第 10 个年头,这种商品的价格约为 0.08 元年的速度上涨. 例 2.根据基本初等函数的导数公式和导数运算法则,求下列函数的导数.(1) y x3 2x 3(2)y = 1 1 ; 1 x 1 x(3)y =x · sin x · ln x; (4)y = x ;4x (5)y = 1 ln x .1 ln x (6)y =(2 x2-5 x +1)ex(7) y = sin x x cosx cosx x sin x【点评】 ① 求导数是在定义域内实行的.② 求较复杂的函数积、商的导数,必须细心、耐心. 例 3 日常生活中的饮水通常是经过净化的.随着水纯净度的提高,所需净化费用不断增加.已知将 1 吨水净化到纯净度为 x% 时所需费用(单位:元)为 c(x) 5284 (80 x 100) 100 x求净化到下列纯净度时,所需净化费用的瞬时变化率:(1) 90% (2) 98%解:净化费用的瞬时变化率就是净化费用函数的导数.c' ( x)( 5284 )' 100 x5284' (100 x) 5284 (100 (100 x)2x)'0 (100 x) 5284 (1) (100 x)25284 (100 x)2(1)因为c' (90)5284 (100 90)252.84,所以,纯净度为90% 时,费用的瞬时变化率是 52.84 元吨.(2)因为c' (98)5284 (100 90)21321,所以,纯净度为98%时,费用的瞬时变化率是 1321 元吨.函数 f (x) 在某点处导数的大小表示函数在此点附近变化的快慢.由上述计算可知,c' (98) 25c' (90) .它表示纯净度为 98%左右时净化费用的瞬时变化率,大约是纯净度 为 90%左右时净化费用的瞬时变化率的 25 倍.这说明,水的纯净度越高,需要的净化费用就越多,而且净化费用增加的速度也越快. 四.课堂练习 1.课本 P92 练习 2.已知曲线 C:y =3 x 4-2 x3-9 x2+4,求曲线 C 上横坐标为 1 的点的切线方程;(y =-12 x +8) 五.回顾总结(1)基本初等函数的导数公式表 (2)导数的运算法则 六.布置作业。
高中数学 1.2.2(2)复合函数的求导法则高中教案教案 新人教A版选修2-2

1.2.2复合函数的求导法则教学目标 理解并掌握复合函数的求导法则.教学重点 复合函数的求导方法:复合函数对自变量的导数,等于已知函数对中间变量的导数乘以中间变量对自变量的导数之积.教学难点 正确分解复合函数的复合过程,做到不漏,不重,熟练,正确.一.创设情景(一)基本初等函数的导数公式表(2)推论:[]''()()cf x cf x =(常数与函数的积的导数,等于常数乘函数的导数)二.新课讲授复合函数的概念 一般地,对于两个函数()y f u =和()u g x =,如果通过变量u ,y 可以表示成x 的函数,那么称这个函数为函数()y f u =和()u g x =的复合函数,记作。
复合函数的导数 复合函数()()y f g x =的导数和函数()y f u =和()u g x =的导数间的关系为x u x y y u '''=⋅,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.若()()y f g x =,则()()()()()y f g x f g x g x ''''==⋅⎡⎤⎣⎦三.典例分析例1(课本例4)求下列函数的导数:(1)2(23)y x =+;(2)0.051x y e -+=;(3)sin()y x πϕ=+(其中,πϕ均为常数).解:(1)函数2(23)y x =+可以看作函数2y u =和23u x =+的复合函数。
根据复合函数求导法则有x u x y y u '''=⋅=2''()(23)4812u x u x +==+。
(2)函数0.051x y e -+=可以看作函数u y e =和0.051u x =-+的复合函数。
根据复合函数求导法则有x u x y y u '''=⋅=''0.051()(0.051)0.0050.005u u x e x e e -+-+=-=-。
人教版高中数学选修(2-2)-1.2《导数的计算》教学设计

1.2 导数的计算一、教学目标 1.核心素养通过学习导数的计算,提升推理论证、计算求解与应用能力. 2.学习目标(1)1.2.1能根据导数定义,求函数21,,,,y c y x y x y y x===== (2)1.2.2能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.(3)1.2.3能利用复合函数求导法则求简单的复合函数(仅限于形如()f ax b +)的导数. 3.学习重点(1)利用导数的定义求五个函数21,,,,y c y x y x y y x ===== (2)利用基本初等函数的导数公式和导数运算法则求简单函数的导数. 4.学习难点两个函数的积与商的求导法则的应用,复合函数求导法则的理解与应用. 二、教学设计 (一)课前设计 1.预习任务 任务1阅读教材P 12-P 14,思考:常用函数的导数是什么? 是如何计算得到的? 任务2阅读教材P 14-P 17,思考:导数运算法则是什么?符合函数的求导法则是什么?2.预习自测 1.函数1y x x=+的导数是____________. 解:211y x =-2.函数cos sin y x x x =-的导数为( )A.sin x xB.sin x x -C.cos x xD.cos x x - 解:B3.设()f x =,则'(1)f = .(二)课堂设计 1.知识回顾(1)函数的定义是什么?给定自变量的取值,有唯一确定的函数值与之对应. (2)函数()f x 在0x x =处的导数是0000()()limlim x x y f x x f x x x ∆→∆→∆+∆-=∆∆.(3)函数()f x 在0x x =处的导数是关于0x 的函数吗?对于函数()f x 来说,给定0x 的取值,则0()f x '是一个确定的值,所以是一个函数. 2.问题探究问题探究一 、几个常用函数(21,,,,y c y x y x y y x===== ●活动一 动手计算,收获几个结论请大家用导数的定义分别推导出函数21,,,,y c y x y x y y x =====. 1.若y c =(c 为常数),则y '=_________; 2.若y x =,则y '=_______________; 3.若2y x =,则y '=___________________; 4.若1y x=,则y '=_______________;5.若y =y '=__________________.●活动二 阅读查表,记忆导数公式1.若()f x c =(c 为常数),则()f x '=_______; 2.若*()()f x x Q αα=∈,则()f x '=_______. 3.若()sin f x x =,则()f x '=________________; 4.若()cos f x x =,则()f x '=_____________.5.若()x f x a =,则()f x '=_________; 特别地:若()x f x e =,则()f x '=_________. 6.若()log a f x x =,则()f x '=_______; 特别地:若()ln f x x =,则()f x '=________.为避免记忆混淆,可将上述公式可分为四类记忆:(1)(2)属于幂函数的导数公式;(3)(4)属于三角函数的导数公式;(5)是指数函数的导数公式;(6)是对数函数的导数公式. 例1求下列函数的导数.(1)y =a 2(a 为常数); (2)y =5x 3; (3)y =x -4; (4)y =lg x . 【知识点:导数的运算】解:(1)∵a 为常数,∴a 2为常数,∴y ′=(a 2)′=0.(2)'32'553'5y x x -⎛⎫=== ⎪⎝⎭(3)y ′=(x -4)′=-4x -5=-4x 5 (4)y ′=(lg x )′=1x ln10. 例2 求函数f (x )=1x在x =1处的导数. 【知识点:导数的运算】解:''113122211'()22f x x x x ----⎛⎫===-=-= ⎪⎝⎭∴f ′(1)=-12,∴函数f (x )在x =1处的导数为-12.点拨:熟记导数公式,能够应用导数公式求相应函数的导数. ●活动三 认识规律,熟练掌握法则 导数的四则运算法则是什么?(1)[()()]f x g x '±=___________; (2)[()()]__________________f x g x '⋅=; (3)()[]___________________()f xg x '=. 由积的导数运算法则可推出:[()]()cf x cf x ''=.在积、商的导数运算法则中,要注意:一般情况下,[()()]()()f x g x f x g x '''⋅≠⋅,()()[]()()f x f xg x g x ''≠',不要与[()()]()()f x g x f x g x '''±=±混淆. ●活动四 应用法则,扩充导数公式请利用初等函数的导数和导数的四则运算法则计算下列函数的导数: 1.若()ln f x x x =,则()f x '=_______; 2.若2()x f x x e =,则()f x '=_______.3.若()tan f x x =,则()f x '=_____________;4.若()ln f x x =,则()f x '=_____________. 例3 求下列函数的导数.(1)y =x (x 2+1x +1x 3);(2)y =(x +1)(1x -1);(3)y =x 2sin x ;(4)y =2tan x +3tan x ;(5)y =x ·e x +ln x . 【知识点:导数的运算】解: (1)y =x 3+1+1x 2,∴y ′=3x 2-2x 3.(2)先化简,得y =-x 12 +x -12 ∴y ′=-12x -12 -12x -32 =-x +12x x .(3)y ′=(x 2)′sin x -x 2(sin x )′sin 2x =2x sin x -x 2cos x sin 2x.(4)解法1:y ′=⎝ ⎛⎭⎪⎫2sin x cos x +3cos x sin x ′=2⎝ ⎛⎭⎪⎫sin x cos x ′+3⎝ ⎛⎭⎪⎫cos x sin x ′=2cos 2x +2sin 2x cos 2x +-3sin 2x -3cos 2xsin 2x =2cos 2x -3sin 2x .解法2:y ′=2ta n′x -3tan′x tan 2x =tan′x (2-3tan 2x )=1cos 2x (2-3cos 2x sin 2x )=2cos 2x -3sin 2x . (5)y ′=(x ·e x )′+(ln x )′=e x +x ·e x +1x =(1+x )·e x +1x . 点拨:熟记导数公式是求导函数的关键.●活动一 什么是复合函数及复合函数求导法则?(1)一般地,对于两个函数()y f u =和()u g x =,如果通过变量u ,y 可以表示成x 的函数,那么称这个函数为函数()y f u =和()u g x =的复合函数,记作(())y f g x =. (2)复合函数(())y f g x =的导数和函数()y f u =,()u g x =的导数的关系为:y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.例4求下列函数的导数.(1)y =1(1-3x )4; (2)y =3ax 2+bx +c ; (3)ax b y e -+=. 【知识点:导数的运算】 解:(1)y =u -4,u =1-3x .∴y ′=y ′u ·u ′=(u -4)′·(1-3x )′=-4·u -5·(-3)=12u -5=12(1-3x )-5=12(1-3x )5.(2)y =u 13 ,u =ax 2+bx +c .y ′=y ′u ·u ′x =13u -23 ·(2ax +b )=13(ax 2+bx +c ) -23 ·(2ax +b )=(2ax +b )3ax 2+bx +c 3(ax 2+bx +c ).(3)y =e u ,u =-ax +b .,y ′=y ′u ·u ′x =e u ·(-ax +b )′=e u ·(-a )=ax b ae -+-. 点拨:分清函数由哪些函数复合而成,是求复合函数导数的关键. ●活动二 应用新知,解决典型例题例5 求过曲线y =cos x 上点P ⎝ ⎛⎭⎪⎫π3,12且与在这点的切线垂直的直线方程.【知识点:导数的运算;导数的几何意义;数学思想:数形结合】 解:∵y =cos x ,∴y ′=-sin x ,曲线在点P ⎝ ⎛⎭⎪⎫π3,12处的切线斜率是y ′|x =π3=-sin π3=-32.∴过点P 且与切线垂直的直线的斜率为23, ∴所求的直线方程为y -12=23⎝⎛⎭⎪⎫x -π3,即2x -3y -2π3+32=0.例6已知曲线y =x 24-3ln x 的一条切线的斜率为-12,则切点的横坐标为( ) A .3 B .2 C .1 D .12【知识点:导数的运算;导数的几何意义;数学思想:数形结合】 解:设切点为(x 0,y 0),00013131222x x y x x x x ⎛⎫' ⎪⎝⎭==-=-=-.∵x 0>0,∴x 0=2.点拨:求切线方程的步骤: (1)利用导数公式求导数. (2)求斜率.(3)写出切线方程.注意导数为0和导数不存在的情形.●活动三 函数()f x 在点0x 处的导数0()f x '、导函数()f x '、导数之间的区别与联系. (1)函数在一点处的导数0()f x ',就是在该点的函数的改变量与自变量的改变量之比的极限,它是一个常数,不是变数.(2)函数的导数,是指某一区间内任意点x 而言的, 就是函数f (x )的导函数 (3)函数()f x 在点0x 处的导数'0()f x 就是导函数()f x '在0x x =处的函数值,这也是求函数在点0x 处的导数的方法之一. 3.课堂总结 【知识梳理】(1)基本初等函数的导数公式(2①[()()]'f x g x ±= ;②()()'f x g x =⎡⎤⎣⎦ ; ③()[]'()f xg x = [()0].g x ≠ (3)复合函数的导数:若(),y f u u ax b ==+,则x u x y y u '''=⋅,即x y '= .【重难点突破】(1)运用导数的四则运算法则,可推出以下三个常用结论: ①1212[()()()]()()()n n f x f x f x f x f x f x ''''±±±=±±±;②[()()]()()af x bg x af x bg x '''±=±;③2()1()[()]g x g x g x ''⎡⎤=-⎢⎥⎣⎦. (2)求复合函数导,一般按以下三个步骤进行:①分解:分解复合函数为基本初等函数,注意适当选择中间变量;②层层求导:求每一层基本初等函数的导数(弄清每一步求导是哪个变量对哪个变量求导);③作积还原:将各层基本函数的导数相乘,并将中间变量还原为原来的变量. 利用复合函数求导时,要注意选择合适的中间变量.例如,对于函数41(34)y x =+,可令31u x =+,4y u -=;也可令4(31)u x =+,1y u -=,显然前一种形式更有利于求导.(3)应用导数公式与运算法则求导时,应注意以下三点: ①对幂函数求导时,要将根式、分式化为指数式,以便应用公式; ②对较复杂函数求导时,可考虑“先化简,再求导”,以减少运算量. ③根据函数的结构,合理选择求导公式与运算法则. 4.随堂检测1.已知f (x )=x 2,则(3)f '=( ) A .0B .2xC .6D .9【知识点:导数的运算】 解:C2.函数y =x -(2x -1)2的导数是( ) A .3-4xB .3+4xC .5+8xD .5-8x【知识点:导数的运算】 解:D 3.函数y =cos x1-x的导数是( ) A.-sin x +x sin x(1-x )2B.x sin x -sin x -cos x(1-x )2C.cos x -sin x +x sin x(1-x )2D.cos x -sin x +x sin x1-x【知识点:导数的运算】 解:C4.已知函数f (x )=ax 2-1且f ′(1)=2,则实数a 的值为( ) A .1B .2C. 2D .a >0【知识点:导数的运算】 解:B5.设2()(5)6ln f x a x x =-+,其中a R ∈,曲线()y f x =在点(1,(1))f 处的切线与y 轴相交于点(0,6),则a =_________.【知识点:导数的运算;导数的几何意义;数学思想:数形结合】 解:12(三)课后作业基础型自主突破1.给出下列命题:①若y=π,则y′=0;②若y=3x,则y′=3;③若y=1x,则y′=-12x;④若3y'=,则y=3x.其中正确的有()A.1个B.2个C.3个D.4个【知识点:导数的运算】解:B2.已知函数f(x)=x3的切线的斜率等于1,则这样的切线有()A.1条B.2条C.3条D.不确定【知识点:导数的运算;导数的几何意义】解:B3.若2()24lnf x x x x=--,则()0f x'>的解集为()A.(0,)+∞B.(1,0)(2,)-+∞C.(2,)+∞D.(1,0)-【知识点:导数的运算】解:C4.直线y=12x+b是曲线y=ln x(x>0)的一条切线,则实数b的值为()A.2 B.ln 2+1 C.ln 2-1 D.ln 2 【知识点:导数的几何意义】解:C提示:∵y=ln x的导数为y′=1x,∴1x=12,解得x=2,∴切点为(2,ln 2).将其代入直线y=12x+b得b=ln 2-1.5.曲线y=x n在x=2处的导数为12,则n等于()A.1 B.2 C.3 D.4 【知识点:导数的运算】解:C6.求下列函数的导数(1)3log y x = (2)31x y x e =+- (3)sin(12)y x =+(4)1ln y x x x=+(5) y =2sin x 2(1-2sin 2x4).【知识点:导数的运算】 解:(1)1ln 3y x '=(2)232ln 2x y x '=+⋅(3)()22cos(1)(12)2cos 1y x x x ''=+⋅+=+ (4)211ln y x x'=+-(5)∵y =2sin x 2(1-2sin 2x 4)=2sin x 2cos x2=sin x . ∴y ′=(sin x )′=cos x .能力型 师生共研7.已知函数()f x 的导函数为()f x ',且满足()2(1)ln f x xf x '=+,则(1)f '=( )A .e -B .1-C .1D .e【知识点:导数的运算】 解: B8.f (x )与g (x )是定义在R 上的两个可导函数,若f (x )、g (x )满足()()f x g x ''=,则f (x )与g (x )满足( )A .f (x )=g (x )B .f (x )-g (x )为常数函数C .f (x )=g (x )=0D .f (x )+g (x )为常数函数【知识点:导数的运算】 解: B9.已知函数f (x )=x +1,g (x )=a ln x ,若在x =14处函数f (x )与g (x )的图象的切线平行,则实数a 的值为________.【知识点:导数的几何意义;数学思想:数形结合】解:14 提示:由题意可知f ′⎝ ⎛⎭⎪⎫14=12x -12|x =14=g ′⎝ ⎛⎭⎪⎫14=a14,可得a =14,经检验,a=14满足题意.10.若函数f (x )=x m+ax 的导数f ′(x )=2x +1,则数列{1f (n )}(n ∈N *)的前n 项和S n 是( )A.n n +1B.n +2n +1C.n n -1D.n +1n【知识点:导数的运算】 解: A探究型 多维突破11.已知1()sin cos ()f x x x x R =+∈,记*21321()(),()(),,()()(,2)n n f x f x f x f x f x f x n N n -'''===∈≥,则122014()()()222f f f πππ+++=____________.【知识点:导数的运算】解:0 提示:2()cos sin f x x x =-,3()sin cos f x x x =--,4()cos sin f x x x =-+,5()sin cos f x x x =+,以此类推,可得出4()()n n f x f x +=,又1234()()()()0f x f x f x f x +++=,所以122014123412()()()503[()()()()]()()0222222222f f f f f f f f f πππππππππ+++=+++++=12.已知曲线C :y =x 3-6x 2-x +6. (1)求C 上斜率最小的切线方程;(2)证明:曲线C 关于斜率最小时切线的切点对称.【知识点:导数的运算】 解:(1)y ′=3x 2-12x -1=3(x -2)2-13.当x =2时,y ′最小,最小值为-13,切点为(2,-12),切线方程为y +12=-13(x -2),即13x +y -14=0. (2)证明:设(x 0,y 0)∈C ,(x ,y )是(x 0,y 0)关于(2,-12)的对称点,则⎩⎨⎧x 0=4-x ,y 0=-24-y .∵(x 0,y 0)∈C ,∴-24-y =(4-x )3-6(4-x )2-(4-x )+6, 整理得y =x 3-6x 2-x +6.∴(x ,y )∈C ,于是曲线C 关于切点(2,-12)对称.自助餐1.下列四组函数中导数相等的是( )A .f (x )=2与g (x )=2xB .f (x )=-sin x 与g (x )=cos xC .f (x )=2-cos x 与g (x )=-sin xD .f (x )=1-2x 2与g (x )=-2x 2+4【知识点:导数的运算】 解: D2.设函数22()(0)x a f x a x+=>,若0()0f x '=,则x 0=( )A .aB .±aC .-aD .a 2【知识点:导数的运算】 解: B3.已知f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值为( ) A.193 B.103C.133D.163【知识点:导数的运算】 解: B4.函数y =x 2+12x -1的导数是( )A.2+xx 2+1·(2x -1)2B .-2+x1+x 2·(2x -1)2C.4x 2-x +2(2x -1)2D.4x 2-x +2(2x -1)2x 2+1【知识点:导数的运算】 解: B5.已知点P 在曲线41x y e =+上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( )A .[0,4π)B .[,)42ππC .3(,]24ππD .3[,)4ππ 【知识点:导数的运算】解: D6.(1)已知f (x )=xe x +sin x cos x ,则f ′(0)=________.(2)已知g (x )=(x -1)(x -2)(x -3)(x -4)(x -5),则g ′(1)=________.【知识点:导数的运算】解:(1)2 ;(2) 24提示:(1)f ′(x )=e x +x ·e x +cos2x ,∴f ′(0)=1+1=2.(2)()(1)[(2)(3)(4)(5)](2)(3)(4)(5)g x x x x x x x x x x ''=-----+---- 所以g ′(1)=(1-2)(1-3)(1-4)(1-5)=24.7.设函数()f x 在(0,)+∞内可导,且()x x f e x e =+,则(1)f '=______________.【知识点:导数的运算】 解:28.已知函数()f x 及其导数()f x ',若存在0x ,使得00()()f x f x '=,则称0x 是()f x 的一个“巧值点”,下列函数中,存在“巧值点”的是_____________ ①2()f x x =,②()x f x e -=,③()ln f x x =,④()tan f x x =.【知识点:导数的运算】 解:①③提示: ①中,令00()()f x f x '=,可得:00x =或02x =,故存在“巧值点”.②中,令00()()f x f x '=,可得:0x x e e --=-,显然无解,故不存在“巧值点” ③中,令00()()f x f x '=,可得:001ln x x =,由于ln y x =与1y x=的图像有交点,因此方程有解. 故存在“巧值点”.④中,令00()()f x f x '=,可得:0201tan cos x x =,即:00sin cos 1x x =,显然无解. 故不存在“巧值点”9.定义:曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l 的距离,已知曲线C 1:y =x 2+a 到直线l :y =x 的距离等于曲线C 2:x 2+(y +4)2=2到直线l :y =x 的距离,则实数a =_______.【知识点:导数的运算;数学思想:数形结合】解:49提示:曲线C 2:x 2+(y +4)2=2到直线l :y =x的距离为d =-==曲线C 1:y =x 2+a 对应函数的导数为2y x '=,令12=x 得21=x ,所以C 1:y =x 2+a 上的点为)41,21(a +,点)41,21(a +到到直线l :y =x 的距离应为2,所以211|4121|22=+--a ,解得49=a 或47-=a (舍去). 10.已知函数()f x 满足121()(1)(0)2x f x f e f x x -'=-+,则()f x =____________. 【知识点:导数的运算】解:212x e x x -+ 提示:1211()(1)(0)()(1)(0)2x x f x f e f x x f x f e f x --'''=-+⇒=-+ 令1x =得:(0)1f =,即1211()(1)(0)(1)1(1)2x f x f e x x f f e f e --'''=-+⇒==⇔=,得:21()2x f x e x x =-+11.已知11(,())A x f x ,22(,())B x f x 为函数2()2f x x x a =++(0x <,a R ∈)的图像上的两点,且12x x <.若函数()f x 的图象在点,A B 处的切线互相垂直,则21x x -的最小值为___________.【知识点:导数的运算;数学思想:数形结合】解:1 提示:由题知:()22f x x '=+,且12()()1f x f x ''=-,于是可得:12(22)(22)1x x ++=-,化简得:12114(1)x x =--+,从而21221114(1)x x x x -=++≥+.12.已知二次函数()f x 只有一个零点,且()22f x x '=+. (1)求()f x 的表达式; (2)若()()x f x g x e=,求曲线()y g x =在点(0,(0))P g 处的切线l 与两坐标轴围成的三角形面积S .【知识点:导数的运算;数学思想:数形结合】解:(1)设2()(0)f x ax bx c a =++≠,则()2f x ax b '=+,又()22f x x '=+,所以1,2a b ==. 即2()2f x x x c =++,又()f x 只有一个零点,故1c =,所以2()21f x x x =++.(2)由(1)知2()21()x xf x x xg x e e++==,所以2222(21)(21)1()()x xx xx x e e x x xg xe e'++-++-'==.故(0)1g'=,又(0)1g=,从而切斜l的方程为1y x-=,即10x y-+=,于是切线l与两坐标轴围成的三角形面积111122 S=⨯⨯=.数学视野微积分学是由牛顿和莱布尼茨在总结了诸多数学家的工作之后,分别独立地创立的.牛顿(Newton,1642—1727),英国数学家,物理学家,天文学家和自然哲学家.牛顿在数学上最卓越的贡献是创建微积分. 17世纪早期,数学家们已经建立起一系列求解无限小问题(诸如曲线的切线、曲率、极值,运动的瞬时速度,面积、体积、曲线长度、物体重心的计算)的特殊方法.牛顿超越前人的功绩在于将这些特殊的技巧归结为一般的算法,特别是确立了微分与积分的逆运算(微积分基本定理).牛顿的微积分中有一个重要的基本概念“流数”,流数被定义为可借运动描述的连续量——流量(用,,,x y z表示)的变化率(速度),并用在字母上加点来表示,如,,,x y z.牛顿表述流数术的基本问题为:已知流量间的关系,求它们的流数间的关系,以及逆运算. 牛顿创立微积分有深刻的力学背景,他更多的是从运动变化的观点考虑问题,把力学问题归结为数学问题.莱布尼茨(Leibniz,1646—1716),德国数学家、哲学家,和牛顿同为微积分学的创始人.莱布尼茨终生奋斗的主要目标是寻求一种可以获得知识和创造发明的普遍方法.这种努力导致许多数学上的发现,最突出的是微积分学.莱布尼茨创立微积分主要是从几何学的角度考虑,他创建的微积分的符号(如:d,x⎰等)以及微分的基本法则,对以后微积分的发展有极大的影响.。
2019-2020年高中数学《1.2.2 导数的运算法则及复合函数的导数》教案2 新人教A版选修2-2

2019-2020年高中数学《1.2.2 导数的运算法则及复合函数的导数》教案2 新人教A版选修2-2教学目标理解并掌握复合函数的求导法则.教学重点复合函数的求导方法:复合函数对自变量的导数,等于已知函数对中间变量的导数乘以中间变量对自变量的导数之积.教学难点正确分解复合函数的复合过程,做到不漏,不重,熟练,正确.一.创设情景(一)基本初等函数的导数公式表(2)推论:(常数与函数的积的导数,等于常数乘函数的导数)二.新课讲授复合函数的概念 一般地,对于两个函数和,如果通过变量,可以表示成的函数,那么称这个函数为函数和的复合函数,记作。
复合函数的导数 复合函数的导数和函数和的导数间的关系为,即对的导数等于对的导数与对的导数的乘积.若,则()()()()()y f g x f g x g x ''''==⋅⎡⎤⎣⎦三.典例分析例1求y =sin (tan x 2)的导数. 【点评】求复合函数的导数,关键在于搞清楚复合函数的结构,明确复合次数,由外层向内层逐层求导,直到关于自变量求导,同时应注意不能遗漏求导环节并及时化简计算结果. 例2求y =的导数.【点评】本题练习商的导数和复合函数的导数.求导数后要予以化简整理.例3求y =sin 4x +cos 4x 的导数.【解法一】y =sin 4x +cos 4x =(sin 2x +cos 2x )2-2sin 2cos 2x =1-sin 22 x =1-(1-cos 4 x )=+cos 4 x .y ′=-sin 4 x .【解法二】y ′=(sin 4 x )′+(cos 4 x )′=4 sin 3 x (sin x )′+4 cos 3x (cos x )′=4 sin 3 x cos x +4 cos 3 x (-sin x )=4 sin x cos x (sin 2 x -cos 2x )=-2 sin 2 x cos 2 x =-sin 4 x 【点评】解法一是先化简变形,简化求导数运算,要注意变形准确.解法二是利用复合函数求导数,应注意不漏步. 例4曲线y =x (x +1)(2-x )有两条平行于直线y =x 的切线,求此二切线之间的距离.【解】y =-x 3 +x 2 +2 x y ′=-3 x 2+2 x +2令y ′=1即3 x 2-2 x -1=0,解得 x =-或x =1. 于是切点为P (1,2),Q (-,-),过点P 的切线方程为,y -2=x -1即 x -y +1=0.显然两切线间的距离等于点Q 到此切线的距离,故所求距离为2|1271431|++-=.四.课堂练习1.求下列函数的导数 (1) y =sin x 3+sin 33x ;(2);(3) 2.求的导数五.回顾总结六.布置作业2019-2020年高中数学《1.2.2 条件语句》教案新人教A版必修3教学分析通过上一节的学习,学生学会了输入语句、输出语句和赋值语句的基本用法,本节介绍条件语句的用法. 程序中的条件语句与程序框图中的条件结构存在一一对应关系,这种对应关系对于学生理解条件语句的结构,进一步理解算法中的条件结构都是很有帮助的.我们可以给出条件语句的一般格式,让学生自己画出相应的程序框图,也可以给出程序框图,让学生写出算法语句.三维目标1.理解学习基本算法语句的意义.2.学会条件语句的基本用法.3.理解算法步骤、程序框图和算法语句的关系,学会算法语句的写法.重点难点教学重点:条件语句的基本用法.教学难点:算法语句的写法.课时安排1课时教学过程导入新课思路1(情境导入)一位老农平整了一块良田,种瓜好呢,还是种豆好呢,他面临着一个选择.如果他选择种瓜,他会得瓜,如果他选择种豆,他会得豆.人的一生面临许多选择,我们要做出正确的选择.前面我们学习了条件结构,今天我们学习条件语句.思路2(直接导入)前面我们学习了程序框图的画法,为了让计算机能够理解算法步骤、程序框图,上一节我们学习了输入语句、输出语句、赋值语句,今天我们开始学习条件语句.推进新课新知探究提出问题(1)回忆程序框图中的两种条件结构.(2)指出条件语句的格式及功能.(3)指出两种条件语句的相同点与不同点.(4)揭示程序中的条件语句与程序框图中的条件结构存在一一对应关系.讨论结果:(1)一个算法中,经常会遇到一些条件的判断,算法的流程根据条件是否成立有不同的流向.条件结构就是处理这种过程的结构.用程序框图表示条件结构如下图:(2)条件语句1°“IF—THEN—ELSE”语句格式:IF 条件 THEN语句体1ELSE语句体2END IF功能:在“IF—THEN—ELSE”语句中,“条件”表示判断的条件,“语句体1”表示满足条件时执行的操作内容;“语句体2”表示不满足条件时执行的操作内容;END IF表示条件语句的结束.计算机在执行“IF—THEN—ELSE”语句时,首先对IF后的条件进行判断,如果符合条件,则执行THEN后面的“语句1”;若不符合条件,则执行ELSE后面的“语句2”. 2°“IF—THEN”语句格式:IF 条件 THEN语句体END IF功能:“条件”表示判断的条件;“语句”表示满足条件时执行的操作内容,条件不满足时,直接结束判断过程;END IF表示条件语句的结束.计算机在执行“IF—THEN”语句时,首先对IF后的条件进行判断,如果符合条件就执行THEN后边的语句,若不符合条件则直接结束该条件语句,转而执行其他后面的语句.(3)相同点:首先对IF后的条件进行判断,如果符合条件就执行THEN后边的语句.不同点:对于“IF—THEN—ELSE”语句,若不符合条件,则执行ELSE后面的“语句体2”.对于“IF—THEN”语句,若不符合条件则直接结束该条件语句,转而执行其他后面的语句. (4)程序中的条件语句与程序框图中的条件结构存在一一对应关系如下图:应用示例思路1例1 编写一个程序,求实数x的绝对值.算法分析:首先,我们来设计求实数x的绝对值的算法,因为实数x的绝对值为|x|=所以算法步骤可以写成:第一步,输入一个实数x.第二步,判断x的符号.若x≥0,则输出x;否则,输出-x.显然,“第二步”可以用条件结构来实现.程序框图如下图:程序:INPUT xIF x>=0 THENPRINT xELSEPRINT -xEND IFEND点评:通过本题我们看到算法步骤可以转化为程序框图,程序框图可以转化为算法语句.本题揭示了它们之间的内在联系,只要理解了程序框图与算法语句的对应关系,把程序框图转化为算法语句就很容易了.变式训练阅读下面的程序,你能得出什么结论?INPUT xIF x<0 THENx=-xEND IFPRINT xEND解:由程序得出,该程序是输出x的绝对值.例2 把前面求解一元二次方程ax2+bx+c=0的程序框图转化为程序.解:由程序框图可以发现,其中包含着两个条件结构,而且内层的条件结构是外层的条件结构的一个分支,所以,可以用“IF—THEN—ELSE—END IF”来完成转化.程序:INPUT “a,b,c=”;a,b,cd=b^2-4*a*cIF d>=0 THENp=-b/(2*a)q=SQR(d)/(2*a)IF d=0 THENPRINT “x1=x2=”;pELSEPRINT “x1,x2=”;p+q,p-qEND IFELSEPRINT“No real root”END IFEND例3 编写程序,使任意输入的3个整数按从大到小的顺序输出.算法分析:用a,b,c表示输入的3个整数.为了节约变量,把它们重新排列后,仍用a,b,c表示,并使a≥b≥c.具体操作步骤如下:第一步,输入3个整数a,b,c.第二步,将a与b比较,并把小者赋给b,大者赋给a.第三步,将a与c比较,并把小者赋给c,大者赋给a(此时a已是三者中最大的).第四步,将b与c比较,并把小者赋给c,大者赋给b(此时a,b,c已按从大到小的顺序排列好).第五步,按顺序输出a,b,c.如下图所示,上述操作步骤可以用程序框图更直观地表达出来.根据程序框图,写出相应的计算机程序.INPUT “a,b,c=”;a,b,cIF b>a THENt=aa=bb=tEND IFIF c>a THENt=aa=cc=tEND IFIF c>b THENt=bb=cc=tEND IFPRINT a,b,cEND思路2例1 编写程序,输出两个不相等的实数a、b的最大值.分析:要输出两个不相等的实数a、b的最大值,从而想到对a,b的大小关系进行判断,a,b的大小关系有两种情况:(1)a>b;(2)b>a.这也就用到了我们经常提及的分类讨论的方式,找出两个数的最大值.解:算法一:第一步,输入a, b的数值.第二步,判断a,b的大小关系,若a>b,则输出a的值,否则,输出b的值.(程序框图如下图)程序如下:(“IF—THEN—ELSE”语句)INPUT “a,b”;a,bIF a>b THENPRINT aELSEPRINT bEND IFEND算法二:第一步,输入a,b的数值.第二步,判断a,b的大小关系,若b>a,则将b的值赋予a;否则,直接执行第三步.第三步,输出a的值,结束.(程序框图如下图)程序如下:(“IF—THEN”语句) INPUT “a,b”;a ,b IF b >a THEN a=b END IF PRINT a END点评:设计一个“好”的算法需要在大量的算法设计中积累经验.我们也可以先根据自己的思路设计算法,再与 “成形”的、高效的、优秀的算法比较,改进思路,改进算法,以避免重复计算等问题,提高算法设计的水平.(2)我们在平常的训练中尽可能地少引用变量,过多的变量不仅会使得算法和程序变得复杂,而且不利于计算机的执行.为此,我们在练习中要尽可能少引入变量并且要积极思考才能少引入变量.例2 高等数学中经常用到符号函数,符号函数的定义为y=⎪⎩⎪⎨⎧<-=>,0,1,0,0,0,1x x x 试编写程序输入x的值,输出y 的值. 解:程序一:(嵌套结构) 程序框图:(下图)程序如下: INPUT x IF x>0 THEN y=1 ELSEIF x=0 THEN y=0 ELSE y=-1 END IF END IF PRINT y END程序二:(叠加结构) 程序框图(右图):程序如下:INPUT xIF x>0 THENy=1END IFIF x=0 THENy=0END IFIF x<0 THENy=-1END IFPRINT yEND点评:(1)条件结构的差异,造成程序执行的不同.当代入x的数值时,“程序一”先判断外层的条件,依次执行不同的分支,随后再判断内层的条件;而“程序二”中执行了对“条件1”的判断,同时也对“条件2”进行判断,是按程序中条件语句的先后依次判断所有的条件,满足哪个条件就执行哪个语句.(2)条件语句的嵌套可多于两层,可以表达算法步骤中的多重限制条件.知能训练中国网通规定:拨打市内电话时,如果不超过3分钟,则收取话费0.22元;如果通话时间超过3分钟,则超出部分按每分钟0.1元收取通话费,不足一分钟按以一分钟计算.设通话时间为t(分钟),通话费用y(元),如何设计一个程序,计算通话的费用.解:算法程序如下:INPUT “请输入通话时间:”;tIF t<=3 THENy=0.22ELSEIF INT(t)=t THENy=0.22+0.1*(t-3)ELSEy=0.22+0.1*(INT(t -3)+1) END IF END IFPRINT “通话费用为:”;y END拓展提升函数y=⎪⎩⎪⎨⎧≤<-≤<≤≤,128),12(2,84,8,40,2x x x x x 写出求函数的函数值的程序.解:INPUT x=”;xIF x>=0 and x<=4 THEN y=2*xELSE IF x<=8 THEN y=8ELSE y=2*(12-x) END IF。
高中数学选修2-2全套教案(84页)

高中数学教案选修全套【选修2-2教案|全套】目录目录 (I)第一章导数及其应用 (1)§1.1.1变化率问题 (1)导数与导函数的概念 (4)§1.1.2导数的概念 (6)§1.1.3导数的几何意义 (9)§1.2.1几个常用函数的导数 (13)§1.2.2基本初等函数的导数公式及导数的运算法则 (16)§1.2.2复合函数的求导法则 (20)§1.3.1函数的单调性与导数(2课时) (23)§1.3.2函数的极值与导数(2课时) (28)§1.3.3函数的最大(小)值与导数(2课时) (32)§1.4生活中的优化问题举例(2课时) (35)§1.5.3定积分的概念 (39)第二章推理与证明 (43)合情推理 (43)类比推理 (46)演绎推理 (49)推理案例赏识 (51)直接证明--综合法与分析法 (53)间接证明--反证法 (55)数学归纳法 (57)第3章数系的扩充与复数的引入 (68)§3.1数系的扩充和复数的概念 (68)§3.1.1数系的扩充和复数的概念 (68)§3.1.2复数的几何意义 (71)§3.2复数代数形式的四则运算 (74)§3.2.1复数代数形式的加减运算及几何意义 (74)§3.2.2复数代数形式的乘除运算 (78)第一章 导数及其应用§1.1.1变化率问题教学目标:1.理解平均变化率的概念; 2.了解平均变化率的几何意义;3.会求函数在某点处附近的平均变化率教学重点:平均变化率的概念、函数在某点处附近的平均变化率; 教学难点:平均变化率的概念. 教学过程: 一.创设情景为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关:一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线;三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。
高二数学人教A版选修2-2课件:1.2.2 导数的运算法则及复合函数的导数

典题例解
求下列函数的导数:
(1)f(x)=������22+������1;
(2)f(x)=x2+sin���2���cos���2���;
(3)f(x)=(
������+2)
1 ������
-2
.
解:(1)f'(x)=
2������ ������2+1
'=(2������)'(������2(+������21+)-12)���2���(������2+1)'
-4
'
= -2
������ +
2 ������
-3
'
1
3
=-������ -2 − ������ -2.
迁移应用
一 二三
二、求复合函数的导数
求复合函数的导数的步骤
知识精要
典题例解
迁移应用
一 二三
知识精要
典题例解
迁移应用
【例 2】 求下列函数的导数:
(1)f(x)=(-2x+1)2;
(2)f(x)=ln(4x-1); (3)f(x)=23x+2;
(1)[f(x)±g(x)]'=f'(x)±g'(x);
(2)[f(x)·g(x)]'=f'(x)g(x)+f(x)g'(x);
(3)
������(������) ������(������)
'=������'(������)������[(������������)(-���������)���(]���2���)������'(������) (g(x)≠0).
高二数学,人教A版选修2-2, 1.2.2 基本初等函数,的导数公式及导数,的运算法则课件

[例 2]
求下列函数的导数:
1 5 4 3 (1)y= x - x +3x+ 2; 5 3 (2)y=(3x5-4x3)(4x5+3x3); (3)y=3 x4+4 x3.
[分析] 这些函数是由基本初等函数经过四则运算得 到的简单函数,求导时,可直接利用函数加减的求导法则 进行求导.
[例 1]
求下列函数的导数:
12
1 x 5 3 x (1)y=x ; (2)y=x4; (3)y= x ; (4)y=2 ; (5)y=2sin2 x cos . 2
[分析]
对于简单函数的求导, 关键是合理转化函数的
1 关系式为可以直接应用公式的基本函数的模式, 如 y=x4可 以写成 y=x ,y= x =x5等,这样就可以直接使用幂函 数的求导公式求导,以免在求导过程中出现指数或系数的 运算失误.
所以a+b+c=1.
y′=2ax+b,曲线过点P(2,-1)的切线的斜率为4a+b =1. 又曲线过点(2,-1),所以4a+2b+c=-1.
a+b+c=1, 由4a+b=1, 4a+2b+c=-1,
a=3, 解得b=-11, c=9.
所以 a、b、c 的值分别为 3、-11、9.
[解析]
(1)①y′=(x2sinx)′=(x2)′sinx+x2(sinx)′
=2xsinx+x2cosx. ②y′=[x2(x2-1)]′=(x2)′(x2-1)+x2(x2-1)′ =2x(x2-1)+x2· 2x=4x3-2x.
1 1 2 3 -2 -3 (2)y′= x+x2+x3′= x+2x +3x ′
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版高中数学精品资料
§1.2.2基本初等函数的导数公式及导数的运算
法则
教学目标:
1.熟练掌握基本初等函数的导数公式; 2.掌握导数的四则运算法则;
3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数. 教学重点:基本初等函数的导数公式、导数的四则运算法则
教学难点: 基本初等函数的导数公式和导数的四则运算法则的应用 教学过程: 一.创设情景
四种常见函数y c =、y x =、2
y x =、1
y x
=
的导数公式及应用
二.新课讲授
(一)基本初等函数的导数公式表
(2)推论:[]'
'
()()cf x cf x =
(常数与函数的积的导数,等于常数乘函数的导数)
三.典例分析
例1.假设某国家在20年期间的年均通货膨胀率为5%,物价p (单位:元)与时间t (单
位:年)有如下函数关系0()(15%)t
p t p =+,其中0p 为0t =时的物价.假定某种商品的
01p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?
解:根据基本初等函数导数公式表,有'() 1.05ln1.05t
p t =
所以'
10
(10) 1.05ln1.050.08p =≈(元/年)
因此,在第10个年头,这种商品的价格约为0.08元/年的速度上涨. 例2.根据基本初等函数的导数公式和导数运算法则,求下列函数的导数. (1)323y x x =-+ (2)y =
x
x --+11
11;
(3)y =x · sin x · ln x ;
(4)y =
x
x
4; (5)y =x
x
ln 1ln 1+-.
(6)y =(2 x 2-5 x +1)e x (7) y =
x
x x x
x x sin cos cos sin +-
【点评】
① 求导数是在定义域内实行的.② 求较复杂的函数积、商的导数,必须细心、耐心. 例3日常生活中的饮水通常是经过净化的.随着水纯净度的提高,所需净化费用不断增加.已知将1吨水净化到纯净度为%x 时所需费用(单位:元)为
5284
()(80100)100c x x x
=
<<-
求净化到下列纯净度时,所需净化费用的瞬时变化率:(1)90% (2)98% 解:净化费用的瞬时变化率就是净化费用函数的导数.
''
'
'2
52845284(100)5284(100)()()100(100)x x c x x x ⨯--⨯-==--
20(100)5284(1)(100)x x ⨯--⨯-=
-2
5284
(100)x =-
(1)
因为'
2
5284
(90)52.84(10090)
c =
=-,所以,纯净度为90%时,费用的瞬时变化率是52.84元/吨.
(2)
因为'
2
5284
(98)1321(10090)c =
=-,所以,纯净度为98%时,费用的瞬时变
化率是1321元/吨.
函数()f x 在某点处导数的大小表示函数在此点附近变化的快慢.由上述计算可知,
''(98)25(90)c c =.它表示纯净度为98%左右时净化费用的瞬时变化率,大约是纯净度为
90%左右时净化费用的瞬时变化率的25倍.这说明,水的纯净度越高,需要的净化费用就越多,而且净化费用增加的速度也越快.
四.课堂练习
1.课本P92练习
2.已知曲线C:y=3 x4-2 x3-9 x2+4,求曲线C上横坐标为1的点的切线方程;
(y=-12 x+8)
五.回顾总结
(1)基本初等函数的导数公式表
(2)导数的运算法则
六.布置作业。