高考数学总复习第一讲:函数与方程
高考数学一轮总复习二次函数与一元二次方程篇

高考数学一轮总复习二次函数与一元二次方程篇高考数学一轮总复习:二次函数与一元二次方程在高考数学中,二次函数与一元二次方程是常见的重要知识点。
掌握这些知识点对于考生来说至关重要。
本篇文章将为大家系统地介绍二次函数与一元二次方程的相关概念、性质和解题方法。
一、二次函数1. 概念及基本形式二次函数是指一元二次方程的解对应于坐标平面上的点集。
一般形式的二次函数可以表示为:y = ax^2 + bx + c,其中a、b、c为常数且a≠0。
2. 基本性质(1)顶点坐标:二次函数的顶点坐标为(-b/2a,f(-b/2a)),其中f(x) = ax^2 + bx + c。
(2)开口方向:当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。
(3)对称轴:二次函数的对称轴为直线x = -b/2a。
3. 图像与性质二次函数的图像可以分为三种情况:开口向上的抛物线、开口向下的抛物线和特殊情况。
根据函数的系数a的正负可以确定图像的开口方向。
(1)开口向上的抛物线:当a>0时,二次函数的图像开口向上,且顶点为最小值点。
(2)开口向下的抛物线:当a<0时,二次函数的图像开口向下,且顶点为最大值点。
(3)特殊情况:当a=0时,二次函数化为一次函数。
二、一元二次方程1. 概念及基本形式一元二次方程是指变量的二次幂和一次幂的系数不为零的方程。
一般形式的一元二次方程可以表示为:ax^2 + bx + c = 0,其中a、b、c 为常数且a≠0。
2. 求解方法(1)因式分解法:当一元二次方程可以因式分解时,可通过将方程分解为两个一次因式的乘积,然后令每个一次因式等于零来求解。
(2)配方法:当一元二次方程不能直接因式分解时,可以通过配方的方式来求解。
配方法首先将一元二次方程转化为完全平方形式,然后利用完全平方公式求解。
(3)求根公式法:一元二次方程的求根公式为x = (-b±√(b^2-4ac))/(2a),其中a、b、c为方程的系数。
函数与方程-高考真题复习-高考复习

设m(x)=-x3+3xx2+a1x-a,x∈(0,1),1a>0x,
则m(0)=-a<0,m(1)=2>0⇒m(0)·m(1)<0,
又m(x)的图象在(0,1)上连续不断,
∴m(x)在(0,1)上有零点,
则h(x)在(0,1)上有零点.
因此,对任意a>0,存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”.
2.(2014山东,8,5分)已知函数f(x)=|x-2|+1,g(x)=kx.若方程f(x)=g(x)有两个不相等的实根,则实数k 的取值范围是 ( )
A.
0,
1 2
B.
1 2
,1
C.(1,2)
D.(2,+∞)
答案 B f(x)=
x 3
1, x,
x如图2,,作出y=f(x)的图象,其中A(2,1),则kOA= x 2.
同时要满足
y
(x
2)在2 , x>2时有两个不同的解,即x2-5x+8-b=0有两个大于2的不同实根,令
y b2 x2
h(x)=x2-5x+8-b,需
h(2) 0,
即
h
5 2
0,
2 b 解 0得, <b<2.
8
25 4
b
0,
7 4
综上所述,满足条件的b的取值范围是 <b<2,故7选D.
4
y 2 x,
则
Δ1
Δ2Байду номын сангаас
a2 a2
4a 8a
∴04,<a<8. 0,
情况二:
则
高考数学一轮复习函数与方程

对于在区间[a,b]如图象连续不断且f(a)f(b)<0的函数y=f(x),通过不
断地把它的零点所在区间 一分为二 ,使所得区间的两个端点逐步逼近零
点,进而得到零点近似值的方法叫做二分法.
目录
4.用二分法求函数y=f(x)零点x0的近似值的一般步骤
(1)确定零点x0的初始区间[a,b],验证f(a)f(b)<0;
目录
(多选)有如下说法,其中正确的有
(
)
A.函数f(x)的零点为x0,则函数f(x)的图象经过点(x0,0)时,函数值一定
变号
B.连续不断的函数,相邻两个零点之间的所有函数值保持同号
C.函数f(x)在区间[a,b]上连续,若满足f(a)·f(b)<0,则方程f(x)=0
在区间[a,b]上一定有实根
c)(x-a)的两个零点分别位于区间 (
)
A.(a,b)和(b,c)内
B.(-∞,a)和(a,b)内
C.(b,c)和(c,+∞)内
D.(-∞,a)和(c,+∞)内
解析:A 函数y=f(x)是开口向上的二次函数,最多有两个零点,由于a<b
<c,则a-b<0,a-c<0,b-c<0,因此f(a)=(a-b)(a-c)>0,f
知,当直线y=2mx的斜率在kOA,kOB之间时,有三个交点,即kOA<2m<
1
1
1
1
kOB,因为kOA=- ,kOB=1,所以- <2m<1,解得- <m< .
3
3
6
2
答案 (2)A
目录
|解题技法|
利用函数零点求参数(范围)的方法
目录
考向2 探究函数多个零点(方程根)问题
− 2 −2, ≤ 0,
函数和方程、数形结合

高中数学思想—函数和方程、数形结合知识点:函数与方程,数形结合的数学思想考点:几种常见题型:构造函数,不等式,最值问题,位置关系能力:变量间关系的理解和分析;数学语言与直观的图像结合方法:启发式教学重难点:变量间关系的理解和分析第一讲函数与方程思想1.函数的思想函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决。
函数思想是对函数概念的本质认识,用于指导解题就是善于利用函数知识或函数观点观察、分析和解决问题。
经常利用的性质是单调性、奇偶性、周期性、最大值和最小值、图象变换等。
2.方程的思想方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。
方程的教学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题,方程思想是动中求静,研究运动中的等量关系。
3.函数思想与方程思想的联系函数思想与方程思想是密切相关的,如函数问题可以转化为方程问题来龙去脉解决;方程问题也可以转化为函数问题加以解决,如解方程f(x)=0,就是求函数y=f(x)的零点,解不等式f(x)>0(或f(x)<0),就是求函数y=f(x)的正负区间,再如方程f(x)=g(x)的交点问题,也可以转化为函数y=f(x)-g(x)与x轴交点问题,方程f(x)=a有解,当且公当a属于函数f(x)的值域,函数与方程的这种相互转化关系十分重要。
4.函数与方程思想解决的相关问题(1)函数思想在解题中的应用主要表现在两个方面:①借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;②在问题研究中通过建立函数关系式或构造中间函数;把研究的问题化为讨论函数的有关性质,达到化难为易,化繁为简的目的。
(2)方程思想在解题中的应用主要表现在四个方面: ①解方程或解不等式;②带参变数的方程或不等式的讨论,常涉及一元二次方程的判别式、根与系数的关系、区间根、区间上恒成立等知识应用;③需要转化为方程的讨论,如曲线的位置关系; ④构造方程或不等式求解问题。
高考数学总复习第一讲:函数与方程

高考数学总复习第一讲:函数与方程函数描述了自然界中量的依存关系,反映了一个事物随着另一个事物变化而变化的关系和规律.函数思想的实质是剔除问题的非数学特征,用联系和变化的观点提出数学对象,抽象其数学特征,建立函数关系.在解决某些数字问题时,先设定一些未知数,然后把它们当作数,根据题设本身各量间的制约,列出等式,所设未知数沟通了变量之间的关系,这就是方程的思想.函数与方程是两个不同的概念,但它们之间有着密切的联系,一个函数假设有解析表达式,那么这个表达式就可看成是一个方程.一个二元方程,两个变量存在着对应关系,如果这个对应关系是函数,那么这个方程可以看成是一个函数,一个一元方程,它的两端可以分别看成函数,方程的解即为两个函数图象交点的横坐标,因此,许多有关方程的问题可以用函数的方法解决;反之,许多有关函数的问题那么可以用方程的方法解决.总之,在复习中要注意领悟蕴含在知识和解题过程中函数和方程的思想,用它来指导解题.在解题中,同时要注意从不同的角度去观察探索,寻求多种方法,从而得到最正确解题方案.一、例题分析例1.F(x)=xα-xβ在x∈(0,1)时函数值为正数,试比拟α,β的大小.分析:一般情况下,F〔x〕可以看成两个幂函数的差.函数值为正数,即f1(x)=xα的图象在x∈(0,1)上位于f2(x)=xβ的图象的上方,这时为了判断幂指数α,β的大小,就需要讨论α,β的值在〔1,+∞〕上,或是在〔0,1〕上,或是在〔0,1〕内的常数,于是F〔x〕成为两个同底数指数函数之差,由于指数函数y=a t(0<α<1)是减函数,又由于xα-xβ>0,所以得α<β.例2.0<a<1,试比拟的大小.分析:为比拟aα与(aα) α的大小,将它们看成指数相同的两个幂,由于幂函数在区间[0,+∞]上是增函数,因此只须比拟底数a与aα的大小,由于指数函数y=a x(0<a<1)为减函数,且1>a,所以a<aα,从而aα<(aα) α.比拟aα与(aα) α的大小,也可以将它们看成底数相同〔都是aα〕的两个幂,于是可以利用指数函数是减函数,由于1>a,得到aα<(aα) α.由于a<aα,函数y=a x(0<a<1)是减函数,因此aα>(aα) α.综上, .解以上两个例题的关键都在于适当地选取某一个函数,函数选得恰当,解决问题简单.例3.关于x的方程有实根,且根大于3,求实数a的范围.分析:先将原方程化简为a x=3,但要注意0<x<3且x≠1.现将a x看成以a为底的指数函数,考虑底数a为何值时,函数值为3.如图〔1〕,过〔3,3〕点的指数函数的底,现要求0<x<3时,a x=3,所以,又由于x≠1,在图〔1〕中,过〔1,3〕点的指数函数的底a=3,所以.假设将a x=3变形为,令,现研究指数函数a=3t,由0<x<1且x≠1,得,如图〔2〕,很容易得到:.通过本例,说明有些问题可借助函数来解决,函数选择得当,解决就便利.例4.函数f(x)是定义在实数集上的周期函数,且是偶函数,当x∈[2,3]时,f(x)=x,那么当x∈[-2,0]时,f(x)的解析式是〔〕.〔A〕f(x)=x+4 〔B〕f(x)=2-x〔C〕f(x)=3-|x+1| 〔D〕f(x)=3+|x+1|解法一、∵f(-2)=f(2)=2 f(-1)=f(3)=3,∴只有〔A〕、〔C〕可能正确.又∵f(0)=f(2)=2,∴〔A〕错,〔C〕对,选〔C〕.解法二、依题意,在区间[2,3]上,函数的图象是线段AB, ∵函数周期是2, ∴线段AB左移两个单位得[0,1]上的图象线段CD;再左移两个单位得[–2,1]上的图象线段EF .∵函数是偶函数, ∴把线段CD沿y轴翻折到左边,得[–1,0]上的图象线段FC.于是由直线的点斜式方程,得函数在[–2,0]上的解析式:即由于x∈[-2,-1]时,x+1≤0,x∈(-1,0)时,x+1>0, 所以y=3-|x+1|, x∈[-2,0].解法三、当x∈[-2,-1]时,x+4∈[2,3],∵函数周期是2,∴f(x+4)=f(x).而f(x+4)=x+4, ∴x∈[-2,-1]时,f(x)=x+4=3+(x+1).当x∈[-1,0]时,-x∈[0,1], 且-x+2∈[2,3].∵函数是偶函数,周期又是2,∴ ,于是在[–2,0]上, .由于x∈[-2,-1]时,x+1≤0,x∈(-1,0)时,x+1>0, 根据绝对值定义有x∈[-2,0]时,f(x)=3-|x+1|.此题应抓住“偶函数〞“周期性〞这两个概念的实质去解决问题.例5.y=log a(2-ax)在[0,1]上是x的减函数,那么a的取值范围是〔〕.〔A〕〔0,1〕〔B〕〔1,2〕〔C〕〔0,2〕〔D〕[2,+∞]分析:设t=2-ax,那么y=log a t, 因此,函数是上面这两个函数的复合函数,其增减性要考查这两个函数的单调性,另外,还要考虑零和负数无对数以及参数a对底数和真数的制约作用.解法一、由于a≠1,所以〔C〕是错误的.又a=2时,真数为2–2x,于是x≠1,这和矛盾,所以〔D〕是错的.当0<a<1时,t=2-ax是减函数,而y=log a t也是减函数, 故y=log a(2-ax)是x的增函数,所以〔A〕是错的.于是应选〔B〕.解法二、设t=2-ax,y=log a t 由于a>0,所以t=2-ax是x的减函数, 因此,只有当a>1,y=log a t是增函数时,y=log a(2-ax)在[0,1]上才是减函数;又x=1时,y=log a(2-a), 依题意,此时,函数有定义,故2–a>0 综上可知:1<a<2, 故应选〔B〕.例6. ,函数y=g(x)的图象与函数y=f-1(x+1)的图象关于y’=x对称,那么g(5)=_____________-解法一、由去分母,得 ,解出x,得 , 故 ,于是 , 设 ,去分母得, ,解出x,得 ,∴的反函数.∴.解法二、由 ,那么 , ∴ ,∴.即的反函数为 ,根据:∴.解法三、如图,f(x)和f-1(x)互为反函数,当f-1(x)的图象沿x轴负方向平移一个单位时,做为“镜面〞的另一侧的“象〞f(x)的图象一定向下平移1个单位,因此f-1(x+1)的图象与f(x)-1的图象关于y=x对称.故f-1(x+1)的反函数是g(x)=f(x)-1,∴.本解法从图象的运动变化中,探求出f-1(x+1)的反函数,表达了数形结合的优势出二、稳固练习(1)函数在区间上的最大值为1,求实数a的值.〔1〕解:f(x)在区间上最大值可能在端点外取得,也可能在顶点外取得, , ,而顶点横坐标 ,最大值在顶点外取得,故此解舍去.当最大值为f(2)时,f(2)=1, ,顶点在应在区间右端点取得最大值,此解合理.当最大值在顶点处取得时,由 ,解得 ,当,此时,顶点不在区间内,应舍去.综上,.〔2〕函数的定义域是[a,b],值域也是[a,b],求a.b的值.2〕解:y=f(x)的图象如图,分三种情况讨论.当a<b≤0时,f(x)为递增函数,有 ,解得, ,由于b>0,应舍去.当0≤a<b时,f(x)为递减函数,有 ,解得:a=1,b=2.当a<0<b时,f(x)最大值在顶点处取得,故 , ,所以最小值应在a处取得.〔2〕解:y=f(x)的图象如图,分三种情况讨论.当a<b≤0时,f(x)为递增函数,有 ,解得, ,由于b>0,应舍去.当0≤a<b时,f(x)为递减函数,有 ,解得:a=1,b=2.当a<0<b时,f(x)最大值在顶点处取得,故 , ,所以最小值应在a处取得.,解得: ,综上,或〔3〕求函数的最小值.解〔3〕分析:由于对数的底已明确是2,所以只须求的最小值.〔3〕解法一:∵ ,∴x>2.设 ,那么 ,由于该方程有实根,且实根大于2,∴解之,μ≥8.当μ=8时,x=4,故等号能成立.于是log2≥0且x=4时,等号成立,因此的最小值是3.解法二:∵ ,∴x>2设 ,那么 =∴μ≥8且 ,即x=4时,等号成立,∴log2μ≥3且x=4时,等号成立.故的最小值是3.〔4〕a>0,a≠1,试求方程有解时k的取值范围. 4〕解法一:原方程由②可得:③,当k=0时,③无解,原方程无解;当k≠0时,③解为 ,代入①式,.解法二:原方程 ,原方程有解,应方程组,即两曲线有交点,那么ak<-a或0<ak<a(a>0)∴k<-1或0<k<1.〔5〕设函数〔Ⅰ〕解不等式f(x)≤1〔Ⅱ〕求a的取值范围,使f(x)在[0,+∞]上是单调函数.5〕解〔Ⅰ〕,不等式f(x≤1),即由此得:1≤1+ax即ax≥0,其中常数a>0, ∴原不等式即∴当0<a<1时,所给不等式解集为 ,当a≥1时,所给不等式解集为{x|x≥0}.〔Ⅱ〕在区间[0,+∞)上任取x1,x2,使得x1<x2,〔ⅰ〕当a≥1时,∵∴又∴所以,当a≥1时,函数f(x)在区间[0,+∞)上是单调递减函数.〔ⅱ〕当0<a<1时,在[0,+∞)上存在两点满足f(x1)=1,f(x2)=1 ,即f(x1)=f(x2),∴函数f(x)在区间[0,+∞)上不是单调函数.。
函数与方程-高考数学复习课件

内无零点,在(1,e)内有零点.
2. (2024·山东滨州模拟)[ x ]表示不超过 x 的最大整数,例如[3.5]=3,[-
0.5]=-1.已知 x 0是方程ln x +3 x -15=0的根,则[ x 0]=(
A. 2
B. 3
C. 4
D. 5
C )
设 f ( x )=ln x +3 x -15,显然 f ( x )在定义域(0,+∞)上单调递增,
上存在零点,则实数 a 的取值范围是(
B. (-e,+∞)
D. (-∞,e)
D
)
由题意知,函数 y =e- x 与 g ( x )=ln( x + a )的图象在(0,+∞)上有交点.
当 a >0时, g ( x )=ln( x + a )的图象是由函数 y =ln x 的图象向左平移 a
个单位长度得到的,
解得 x =0或 x =1或 x =2,
所以函数 f ( x )=( x 2- x )ln|2 x -3|在区间[-2,2]上的零点个数为3.
(2)设函数 f ( x )是定义在R上的奇函数,当 x >0时, f ( x )=e x + x -3,
则 f ( x )的零点个数为( C )
A. 1
B. 2
- x +1的零点所在的区间是(-2,-1).
4. 函数 f ( x )=e x +3 x 零点的个数为(
A. 0
B. 1
C. 2
D. 4
B )
关键能力的区间
(1)(2024·陕西咸阳模拟)函数 f =log4 x -
C )
−
1
2
的零点所在的区间
过不断地把它的零点所在区间一分为二,使所得区间的两个端点逐步逼
高考数学:专题七 第一讲 函数与方程思想配套限时规范训练

A.{a|1<a≤2}B.{a|a≥2}
C.{a|2≤a≤3}D.{2,3}
3.(2012·浙江)设a>0,b>0,则下列命题正确的是()
A.若2a+2a=2b+3b,则a>b
所以x1x2+y1y2=0,而y1y2=x1x2-(x1+x2)+1,
所以2x1x2-(x1+x2)+1=0.
由即(a2+b2)x2-2a2x+a2(1-b2)=0.
又直线与椭圆相交于两点,所以Δ=(-2a2)2-4(a2+b2)·a2(1-b2)>0,整理得a2b2(a2+b2-1)>0,即a2+b2>1.
12.若数列{an}的通项公式为an=×n-3×n+n(其中n∈N*),且该数列中最大的项为am,则m=______.
三、解答题
13.已知直线y=-x+1与椭圆+=1(a>b>0)相交于A,B两点,且OA⊥OB(O为坐标原点),若椭圆的离心率e∈,求a的最大值.
14.(2012·山东)已知函数f(x)=(k为常数,e=2.718 28…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.
A.B.2C.4D.8
6.定义在R上的偶函数f(x)在[0,+∞)上递增,f=0,则满足f(logx)>0的x的取值范围是()
A.(0,+∞)B.(0,)∪(2,+∞)
C.(0,)∪(,2)D.
7.设函数f(x)=x3+sinx,若0≤θ≤时,f(mcosθ)+f(1-m)>0恒成立,则实数m的取值范围是()
A.(0,1)B.(-∞,0)
C.(-∞,1)D.
函数方程思想

函数方程思想思想方法:第一讲函数与方程思想[思想方法解读] 1.函数与方程思想的含义(1)函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,是对函数概念的本质认识,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决的思想方法.(2)方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决的思想方法. 2.函数与方程的思想在解题中的应用(1)函数与不等式的相互转化,对函数y=f(x),当y>0时,就化为不等式f(x)>0,借助于函数的图象和性质可解决有关问题,而研究函数的性质也离不开不等式.(2)数列的通项与前n项和是自变量为正整数的函数,用函数的观点去处理数列问题十分重要.(3)解析几何中的许多问题,需要通过解二元方程组才能解决.这都涉及二次方程与二次函数的有f (x )=⎩⎨⎧x 2+2,x ∈[0,1),2-x 2,x ∈[-1,0),且f (x +2)=f (x ),g (x )=2x +5x +2,则方程f (x )=g (x )在区间[-5,1]上的所有实根之和为( )A.-5B.-6C.-7D.-8题型二 函数与方程思想在不等式中的应用例2 已知函数f (x )=ln x -14x +34x-1,g (x )=-x 2+2bx -4,若对任意x 1∈(0,2),x 2∈[1,2],不等式f (x 1)≥g (x 2)恒成立,则实数b 的取值范围为____________.点评 不等式恒成立问题的处理方法在解决不等式恒成立问题时,一种最重要的思想方法就是构造适当的函数,利用函数的图象和性质解决问题.同时要注意在一个含多个变量的数学问题中,需要确定合适的变量和参数,从而揭示函数关系,使问题更明朗化.一般地,已知存在范围的量为变量,而待求范围的量为参数. 变式训练2 设f (x )=ln x +x -1.证明:(1)当x >1时,f (x )<32(x -1); (2)当1<x <3时,f (x )<9(x -1)x +5.题型三 函数与方程思想在数列中的应用 例3 已知数列{a n }是首项为2,各项均为正数的等差数列,a 2,a 3,a 4+1成等比数列,设b n =1S n +1+1S n +2+…+1S 2n (其中S n 是数列{a n }的前n 项和),若对任意n ∈N *,不等式b n ≤k 恒成立,求实数k 的最小值.点评数列问题函数(方程)化法数列问题函数(方程)化法与形式结构函数(方程)化法类似,但要注意数列问题中n的取值范围为正整数,涉及的函数具有离散性特点,其一般解题步骤:第一步:分析数列式子的结构特征.第二步:根据结构特征构造“特征”函数(方程),转化问题形式.第三步:研究函数性质.结合解决问题的需要研究函数(方程)的相关性质,主要涉及函数单调性与最值、值域问题的研究.第四步:回归问题.结合对函数(方程)相关性质的研究,回归问题.变式训练3已知f(x)=x2-4x+4,f1(x)=f(x),f 2(x )=f (f 1(x )),…,f n (x )=f (f n -1(x )),函数y =f n (x )的零点个数记为a n ,则a n 等于( )A.2nB.2n -1C.2n +1D.2n 或2n -1题型四 函数与方程思想在解析几何中的应用 例4 椭圆C 的中心为坐标原点O ,焦点在y 轴上,短轴长为2,离心率为22,直线l 与y 轴交于点P (0,m ),与椭圆C 交于相异两点A ,B ,且AP→=3PB →. (1)求椭圆C 的方程;(2)求m 的取值范围.点评利用判别式法研究圆锥曲线中的范围问题的步骤第一步:联立方程.第二步:求解判别式Δ.第三步:代换.利用题设条件和圆锥曲线的几何性质,得到所求目标参数和判别式不等式中的参数的一个等量关系,将其代换.第四步:下结论.将上述等量代换式代入Δ>0或Δ≥0中,即可求出目标参数的取值范围.第五步:回顾反思.在研究直线与圆锥曲线的位置关系问题时,无论题目中有没有涉及求参数的取值范围,都不能忽视了判别式对某些量的制约,这是求解这类问题的关键环节.变式训练4如图所示,设椭圆C1:x25+y24=1的左,右焦点分别是F1,F2,下顶点为A,线段OA的中点为B(O为坐标原点),若抛物线C2:y =mx2-n(m>0,n>0)与y轴的交点为B,且经过F1,F2两点.(1)求抛物线C 2的方程;(2)设M ⎝⎛⎭⎪⎪⎫0,-45,N 为抛物线C 2上的一动点,过点N 作抛物线C 2的切线交椭圆C 1于P ,Q 两点,求△MPQ 的面积的最大值.高考题型精练1.若2x +5y ≤2-y +5-x,则有( )A.x +y ≥0B.x +y ≤0C.x -y ≤0D.x -y ≥0 2.在如图所示的锐角三角形空地中,欲建一个面积不小于300 m 2的内接矩形花园(阴影部分),则其边长x(单位:m)的取值范围是()A.[15,20]B.[12,25]C.[10,30]D.[20,30]3.满足条件AB=2,AC=2BC的三角形ABC 的面积的最大值是________.4.已知f(x)是定义域为R的偶函数,当x≥0时,f(x)=x2-4x,那么,不等式f(x+2)<5的解集是________.5.当x∈[-2,1]时,不等式ax3-x2+4x+3≥0恒成立,求实数a的取值范围.6.(2015·南京模拟)已知函数f(x)=1(1-x)n+a ln(x -1),其中x∈N*,a为常数.(1)当n=2时,求函数f(x)的极值;(2)当a=1时,证明:对任意的正整数n,当x≥2时,有f(x)≤x- 1.答案精析专题10 数学思想方法第44练 函数与方程思想常考题型精析例1 解 (1)方法一 因为x >0,所以g (x )=x +e 2x≥2e 2=2e ,等号成立的条件是x =e. 故g (x )的值域是[2e ,+∞),因而只需m ≥2e ,g (x )=m 就有实根.方法二 作出g (x )=x +e 2x (x >0)的图象,如图所示,观察图象可知g (x )的最小值为2e ,因此要使g (x )=m有实根,则只需m ≥2e.方法三 由g (x )=m ,得x 2-mx +e 2=0,故⎩⎨⎧ m 2>0,Δ=m 2-4e 2≥0,等价于⎩⎨⎧m >0,m ≥2e 或m ≤-2e , 故m ≥2e.(2)若g (x )-f (x )=0有两个相异的实根,则函数g (x )与f (x )的图象有两个不同的交点.因为f (x )=-x 2+2e x +t -1=-(x -e)2+t -1+e 2,所以函数f (x )图象的对称轴为直线x =e ,开口向下,最大值为t -1+e 2.由题意,作出g (x )=x +e 2x (x >0)及f (x )=-x 2+2e x +t -1的大致图象,如图所示.故当t -1+e 2>2e ,即t >-e 2+2e +1时,g (x )与f (x )的图象有两个交点,即g (x )-f (x )=0有两个相异实根.所以t 的取值范围是(-e 2+2e +1,+∞).变式训练1 C [g (x )=2x +5x +2=2(x +2)+1x +2=2+1x +2,由题意知函数f (x )的周期为2,则函数f (x ),g (x )在区间[-5,1]上的图象如图所示:由图象知f (x )、g (x )有三个交点,故方程f (x )=g (x ),在x ∈[-5,1]上有三个根x A 、x B 、x C ,x B=-3,x A +x C 2=-2,x A +x C =-4,∴x A +x B +x C =-7.]例2 ⎝⎛⎦⎥⎤-∞,142 解析 问题等价于f (x )min ≥g (x )max .f (x )=ln x -14x +34x-1, 所以f ′(x )=1x -14-34x 2=4x -x 2-34x2, 令f ′(x )>0得x 2-4x +3<0,解得1<x <3,故函数f (x )的单调递增区间是(1,3),单调递减区间是(0,1)和(3,+∞),故在区间(0,2)上,x =1是函数的极小值点,这个极小值点是唯一的,故也是最小值点,所以f (x )min =f (1)=-12. 由于函数g (x )=-x 2+2bx -4,x ∈[1,2]. 当b <1时,g (x )max =g (1)=2b -5; 当1≤b ≤2时;g (x )max =g (b )=b 2-4; 当b >2时,g (x )max =g (2)=4b -8.故问题等价于⎩⎨⎧ b <1,-12≥2b -5或⎩⎨⎧ 1≤b ≤2,-12≥b 2-4或⎩⎨⎧ b >2,-12≥4b -8.解第一个不等式组得b <1,解第二个不等式组得1≤b ≤142,第三个不等式组无解.综上所述,b 的取值范围是⎝⎛⎦⎥⎤-∞,142. 变式训练2 证明 (1)记g (x )=ln x +x -1-32(x -1),则当x >1时,g ′(x )=1x +12x -32<0. 又g (1)=0,所以有g (x )<0,即f (x )<32(x -1). (2)记h (x )=(x +5)f (x )-9(x -1),则当1<x <3时,由(1),得h ′(x )=f (x )+(x +5)f ′(x )-9<32(x -1)+(x +5)⎝⎛⎭⎪⎫1x +12x -9=12x [3x (x -1)+(x +5)(2+x )-18x ]<12x [3x (x -1)+(x +5)(2+x 2+12)-18x ] =14x(7x 2-32x +25)<0. 因此h (x )在(1,3)内单调递减.又h (1)=0,所以h (x )<0,即f (x )<9(x -1)x +5.例3 解 因为a 1=2,a 23=a 2·(a 4+1), 又因为{a n }是正项等差数列,故d ≥0, 所以(2+2d )2=(2+d )(3+3d ),得d =2或d =-1(舍去),所以数列{a n }的通项公式a n =2n .因为S n =n (n +1),b n =1S n +1+1S n +2+…+1S 2n =1(n +1)(n +2)+1(n +2)(n +3)+…+12n (2n +1) =1n +1-1n +2+1n +2-1n +3+…+12n -12n +1 =1n +1-12n +1=n 2n 2+3n +1=12n +1n +3. 令f (x )=2x +1x (x ≥1),则f ′(x )=2-1x 2,当x ≥1时,f ′(x )>0恒成立,所以f(x)在[1,+∞)上是增函数,故当x=1时,[f(x)]min=f(1)=3,即当n=1时,(b n)max=1 6,要使对任意的正整数n,不等式b n≤k恒成立,则须使k≥(b n)max=16,所以实数k的最小值为16.变式训练3 B解析f1(x)=x2-4x+4=(x-2)2,有1个零点2,由f2(x)=0可得f1(x)=2,则x=2+2或x=2-2,即y=f2(x)有2个零点,由f3(x)=0可得f2(x)=2-2或2+2,则(x-2)2=2-2或(x-2)2=2+2,即y=f3(x)有4个零点,以此类推可知,y=f n(x)的零点个数a n=2n-1.故选B.例4解(1)设椭圆C的方程为y2a2+x2b2=1(a>b>0),设c>0,c2=a2-b2,由题意,知2b =2,c a =22,所以a =1,b =c =22. 故椭圆C 的方程为y 2+x 212=1,即y 2+2x 2=1. (2)设直线l 的方程为y =kx +m (k ≠0),l 与椭圆C 的交点坐标为A (x 1,y 1),B (x 2,y 2), 由⎩⎨⎧y =kx +m ,2x 2+y 2=1,得(k 2+2)x 2+2kmx +(m 2-1)=0,Δ=(2km )2-4(k 2+2)(m 2-1)=4(k 2-2m 2+2)>0,(*)x 1+x 2=-2km k 2+2,x 1x 2=m 2-1k 2+2. 因为AP→=3PB →,所以-x 1=3x 2, 所以⎩⎨⎧x 1+x 2=-2x 2,x 1x 2=-3x 22.则3(x 1+x 2)2+4x 1x 2=0,即3·⎝ ⎛⎭⎪⎫-2km k 2+22+4·m 2-1k 2+2=0, 整理得4k 2m 2+2m 2-k 2-2=0,即k 2(4m 2-1)+2m 2-2=0,当m 2=14时,上式不成立; 当m 2≠14时,k 2=2-2m 24m 2-1, 由(*)式,得k 2>2m 2-2,又k ≠0,所以k 2=2-2m 24m 2-1>0, 解得-1<m <-12或12<m <1, 即所求m 的取值范围为⎝⎛⎭⎪⎪⎫-1,-12∪⎝ ⎛⎭⎪⎪⎫12,1. 变式训练4 解 (1)由题意可知A (0,-2),则B (0,-1),由抛物线y =mx 2-n 过点B ,可知n =1.又F 1(-1,0),F 2(1,0),抛物线y =mx 2-n 经过F 1,F 2两点,即m -n =0,所以m =1.所以抛物线C2的方程为y=x2-1.(2)设N(t,t2-1),由y′=2x,知直线PQ的方程为y-(t2-1)=2t(x-t),即y=2tx-t2-1.将其代入椭圆方程,整理得4(1+5t2)x2-20t(t2+1)x+5(t2+1)2-20=0.Δ=400t2(t2+1)2-80(5t2+1)[(t2+1)2-4]=80(-t4+182+3),设P(x1,y1),Q(x2,y2),则x1+x2=5t(t2+1)1+5t2,x1x2=5(t2+1)2-204(1+5t2),故|PQ|=(y1-y2)2+(x1-x2)2=1+4t2·|x1-x2|=1+4t2·(x1+x2)2-4x1x2=5·1+4t2·-t4+18t2+31+5t2.设点M到直线PQ的距离为d,则d=|45-t2-1|1+4t2=t2+151+4t2.所以S △MPQ =12|PQ |·d=12·5·1+4t 2·-t 4+18t 2+31+5t 2·t 2+151+4t2 =510·-t 4+18t 2+3 =510·-(t 2-9)2+84 ≤510×84 =1055.当且仅当t =±3时取“=”,经检验此时Δ>0,满足题意.综上,可知△MPQ 的面积的最大值为1055.高考题型精练1.B [把不等式变形为2x -5-x ≤2-y-5y ,构造函数y =2x-5-x,其为R 上的增函数,所以有x ≤-y ,即x +y ≤0.]2.C [如图,△ADE ∽△ABC ,设矩形的另一边长为y ,则S △ADE S △ABC =⎝⎛⎭⎪⎫40-y 402=⎝⎛⎭⎪⎪⎫x 402,所以y =40-x ,由题意知xy ≥300,即x (40-x )≥300,整理得x 2-40x +300≤0,解不等式得10≤x ≤30.] 3.2 2解析 可设BC =x ,则AC =2x , 根据面积公式得S △ABC =x 1-cos 2B , 由余弦定理计算得cos B =4-x 24x ,代入上式得S △ABC =x 1-(4-x 24x)2=128-(x 2-12)216.由⎩⎨⎧2x +x >2,x +2>2x ,得22-2<x <22+2. 故当x =23时,S △ABC 最大值为2 2. 4.{x |-7<x <3}解析 令x <0,则-x >0,∵x ≥0时,f (x )=x 2-4x ,∴f (-x )=(-x )2-4(-x )=x 2+4x ,又f (x )为偶函数,∴f (-x )=f (x ),∴x <0时,f (x )=x 2+4x ,故有f (x )=⎩⎨⎧x 2-4x ,x ≥0,x 2+4x ,x <0.再求f (x )<5的解集,由⎩⎨⎧x ≥0,x 2-4x <5,得0≤x <5;由⎩⎨⎧x <0,x 2+4x <5,得-5<x <0,即f (x )<5的解集为(-5,5).由于f (x )向左平移两个单位即得f (x +2),故f (x +2)<5的解集为{x |-7<x <3}.5.解 当x =0时,ax 3-x 2+4x +3≥0变为3≥0恒成立,即a ∈R.当x ∈(0,1]时,ax 3≥x 2-4x -3,a ≥x 2-4x -3x3, ∴a ≥⎣⎢⎡⎦⎥⎤x 2-4x -3x 3max . 设φ(x )=x 2-4x -3x3,φ′(x )=(2x -4)x 3-(x 2-4x -3)3x 2x 6=-x 2-8x -9x 4=-(x -9)(x +1)x4>0, ∴φ(x )在(0,1]上递增,φ(x )max =φ(1)=-6,∴a ≥-6.当x ∈[-2,0)时,a ≤x 2-4x -3x3, ∴a ≤⎣⎢⎡⎦⎥⎤x 2-4x -3x 3min . 仍设φ(x )=x 2-4x -3x 3,φ′(x )=-(x -9)(x +1)x 4. 当x ∈[-2,-1)时,φ′(x )<0, 当x ∈(-1,0)时,φ′(x )>0.∴当x =-1时,φ(x )有极小值,即为最小值. 而φ(x )min =φ(-1)=1+4-3-1=-2,∴a ≤-2.综上知-6≤a ≤-2.6.(1)解 由已知得函数f (x )的定义域为{x |x >1},当n=2时,f(x)=1(1-x)2+a ln(x-1),所以f′(x)=2-a(1-x)2 (1-x)3.当a>0时,由f′(x)=0得x1=1+2a>1,x2=1-2a<1,此时f′(x)=-a(x-x1)(x-x2)(1-x)3.当x∈(1,x1)时,f′(x)<0,f(x)单调递减;当x∈(x1,+∞)时,f′(x)>0,f(x)单调递增.所以f(x)在x=1+2a处取得极小值,极小值为f(1+2a)=a2(1+ln2a);当a≤0时,f′(x)<0恒成立,所以f(x)无极值. 综上所述,n=2时,当a>0时,函数f(x)有极值,且为极小值a2(1+ln2a);当a≤0时,f(x)无极值.(2)证明 因为a =1, 所以f (x )=1(1-x )n +ln(x -1). 当n 为偶数时,令g (x )=x -1-1(1-x )n -ln(x -1),则g ′(x )=1+n (x -1)n +1-1x -1 =x -2x -1+n (x -1)n +1>0(x ≥2). 所以当x ∈[2,+∞)时,g (x )单调递增, 又g (2)=0,因此g (x )=x -1-1(1-x )n -ln(x -1)≥g (2)=0恒成立,所以f (x )≤x -1成立. 当n 为奇数时,要证f (x )≤x -1,由于1(1-x )n <0, 所以只需证ln(x -1)≤x -1, 令h (x )=x -1-ln(x -1),则h ′(x )=1-1x -1=x -2x -1≥0(x ≥2),所以当x∈[2,+∞)时,h(x)=x-1-ln(x-1)单调递增,又h(2)=1>0,所以当x≥2时,恒有h(x)>0,即ln(x-1)<x-1命题成立.综上所述,结论成立.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学总复习第一讲:函数与方程
函数描述了自然界中量的依存关系,反映了一个事物随着另一个事物变化而变化的关系和规律.函数思想的实质是剔除问题的非数学特征,用联系和变化的观点提出数学对象,抽象其数学特征,建立函数关系.
在解决某些数字问题时,先设定一些未知数,然后把它们当作已知数,根据题设本身各量间的制约,列出等式,所设未知数沟通了变量之间的关系,这就是方程的思想.
函数与方程是两个不同的概念,但它们之间有着密切的联系,一个函数若有解析表达式,那么这个表达式就可看成是一个方程.一个二元方程,两个变量存在着对应关系,如果这个对应关系是函数,那么这个方程可以看成是一个函数,一个一元方程,它的两端可以分别看成函数,方程的解即为两个函数图象交点的横坐标,因此,许多有关方程的问题可以用函数的方法解决;反之,许多有关函数的问题则可以用方程的方法解决.总之,在复习中要注意领悟蕴含在知识和解题过程中函数和方程的思想,用它来指导解题.在解题中,同时要注意从不同的角度去观察探索,寻求多种方法,从而得到最佳解题方案.
一、例题分析
例1.已知F(x)=xα-xβ在x∈(0,1)时函数值为正数,试比较α,β的大小.分析:一般情况下,F(x)可以看成两个幂函数的差.已知函数值为正数,即f1(x)=xα的图象在x∈(0,1)上位于f2(x)=xβ的图象的上方,这时为了判断幂指数α,β的大小,就需要讨论α,β的值在(1,+∞)上,或是在(0,1)上,或是在(0,1)内的常数,于是F (x)成为两个同底数指数函数之差,由于指数函数y=a t(0<α<1)是减函数,又因为xα-xβ>0,所以得α<β.
例2.已知0<a<1,试比较的大小.
分析:为比较aα与(aα) α的大小,将它们看成指数相同的两个幂,由于幂函数
在区间[0,+∞]上是增函数,因此只须比较底数a与aα的大小,由于指数函数y=a x(0<a<1)为减函数,且1>a,所以a<aα,从而aα<(aα) α.
比较aα与(aα) α的大小,也可以将它们看成底数相同(都是aα)的两个幂,于是可以利用
指数函数是减函数,由于1>a,得到aα<(aα) α.由于a<aα,函数y=a x(0<a<1)是减函数,因此aα>(aα) α.
综上,.
解以上两个例题的关键都在于适当地选取某一个函数,函数选得恰当,解决问题简单.
例3.关于x的方程有实根,且根大于3,求实数a的范围.
分析:先将原方程化简为a x=3,但要注意0<x<3且x≠1.现将a x看成以a为底的指数函数,考虑底数a为何值时,函数值为3.如图(1),过(3,3)点的指数函数的底
,现要求0<x<3时,a x=3,所以,又因为x≠1,在图(1)中,过
(1,3)点的指数函数的底a=3,所以.
若将a x=3变形为,令,现研究指数函数a=3t,由0<x<1且x≠1,得
,如图(2),很容易得到:.
通过本例,说明有些问题可借助函数来解决,函数选择得当,解决就便利.
例4.函数f(x)是定义在实数集上的周期函数,且是偶函数,已知当x∈[2,3]时,f(x)=x,则当x∈[-2,0]时,f(x)的解析式是().
(A)f(x)=x+4 (B)f(x)=2-x
(C)f(x)=3-|x+1| (D)f(x)=3+|x+1|
解法一、∵f(-2)=f(2)=2 f(-1)=f(3)=3,∴只有(A)、(C)可能正确.
又∵f(0)=f(2)=2,∴(A)错,(C)对,选(C).
解法二、依题意,在区间[2,3]上,函数的图象是线段AB,∵函数周期是2,∴线段AB左移两个单位得[0,1]上的图象线段CD;再左移两个单位得[–2,1]上的图象线段EF .∵函数是偶函数,∴把线段CD沿y轴翻折到左边,得[–1,0]上的图象线段FC.于是由直线的点斜式方程,得函数在[–2,0]上的解析式:
即
由于x∈[-2,-1]时,x+1≤0,x∈(-1,0)时,x+1>0,所以y=3-
|x+1|, x∈[-2,0].
解法三、当x∈[-2,-1]时,x+4∈[2,3],
∵函数周期是2,
∴f(x+4)=f(x).
而f(x+4)=x+4,∴x∈[-2,-1]时,f(x)=x+4=3+(x+1).
当x∈[-1,0]时,-x∈[0,1],且-x+2∈[2,3].∵函数是偶函数,周期又是2,
∴,
于是在[–2,0]上,.由于x∈[-2,-1]时,x+1≤0,x∈(-1,0)时,x+1>0,根据绝对值定义有x∈[-2,0]时,f(x)=3-|x+1|.本题应抓住“偶函数”“周期性”这两个概念的实质去解决问题.例5.已知y=log a(2-ax)在[0,1]上是x的减函数,则a的取值范围是().(A)(0,1)(B)(1,2)(C)(0,2)(D)[2,+∞]分析:设t=2-ax,则y=log a t,因此,已知函数是上面这两个函数的复合函数,其增减性要考查这两个函数的单调性,另外,还要考虑零和负数无对数以及参数a对底数和真数的制约作用.解法一、由于a≠1,所以(C)是错误的.又a=2时,真数为2–2x,于是x≠1,这和已知矛盾,所以(D)是错的.
当0<a<1时,t=2-ax是减函数,而y=log a t也是减函数,故y=log a(2-ax)是x的增函数,所以(A)是错的.于是应选(B).
解法二、设t=2-ax,y=log a t 由于a>0,所以t=2-ax是x的减函数,因此,只有当a>1,y=log a t是增函数时,y=log a(2-ax)在[0,1]上才是减函数;
又x=1时,y=log a(2-a),依题意,此时,函数有定义,故2–a>0 综上可知:1<a<2,
故应选(B).
例6.已知,函数y=g(x)的图象与函数y=f-1(x+1)的图象关于y’=x对称,则g(5)=_____________-
解法一、由去分母,得,解出x,得
,
故,于是,
设,去分母得,,解出x,得,
∴的反函数.
∴.
解法二、由,则,∴,∴.
即的反函数为,
根据已知:
∴.
解法三、如图,f(x)和f-1(x)互为反函数,当f-1(x)的图象沿x轴负方向平移一个单位时,做为“镜面”的另一侧的“象”f(x)的图象一定向下平移1个单位,因此f-1(x+1)的图象与f(x)-1的图象关于y=x对称.故f-1(x+1)的反函数是g(x)=f(x)-1,
∴.
本解法从图象的运动变化中,探求出f-1(x+1)的反函数,体现了数形结合的优势出
二、巩固练习
(1)已知函数在区间上的最大值为1,求实数a的值.
(1)解:f(x)在区间上最大值可能在端点外取得,也可能在顶点外取得,
,,而顶点横坐标,最大值在顶点外取得,故此解舍去.
当最大值为f(2)时,f(2)=1,,顶点在应在区间右端点取得最大值,此解合理.
当最大值在顶点处取得时,由,解得,当
,此时,顶点不在区间内,应舍去.
综上,.
(2)函数的定义域是[a,b],值域也是[a,b],求a.b的值.2)解:y=f(x)的图象如图,分三种情况讨论.
当a<b≤0时,f(x)为递增函数,有,
解得,,由于b>0,应舍去.
当0≤a<b时,f(x)为递减函数,
有,解得:a=1,b=2.
当a<0<b时,f(x)最大值在顶点处取得,故,,所以最小值应在a处取得.(2)解:y=f(x)的图象如图,分三种情况讨论.
当a<b≤0时,f(x)为递增函数,有,
解得,,由于b>0,应舍去.
当0≤a<b时,f(x)为递减函数,
有,解得:a=1,b=2.
当a<0<b时,f(x)最大值在顶点处取得,故,,所以最小值应在a处取得.
,解得:,
综上,或
(3)求函数的最小值.解(3)分析:由于对数的底已明确是2,所以只须求的最小值.
(3)解法一:∵,∴x>2.
设,则,
由于该方程有实根,且实根大于2,
∴解之,μ≥8.
当μ=8时,x=4,故等号能成立.
于是log2≥0且x=4时,等号成立,因此的最小值是3.
解法二:∵,∴x>2
设,则 =
∴μ≥8且,即x=4时,等号成立,
∴log2μ≥3且x=4时,等号成立.
故的最小值是3.
(4)已知a>0,a≠1,试求方程有解时k的取值范
围. 4)解法一:原方程
由②可得:③,
当k=0时,③无解,原方程无解;
当k≠0时,③解为,代入①式,
.
解法二:原方程,
原方程有解,应方程组
,
即两曲线有交点,那么ak<-a或0<ak<a(a>0)
∴k<-1或0<k<1.
(5)设函数
(Ⅰ)解不等式f(x)≤1
(Ⅱ)求a的取值范围,使f(x)在[0,+∞]上是单调函数.
5)解(Ⅰ),不等式f(x≤1),即
由此得:1≤1+ax即ax≥0,其中常数a>0,
∴原不等式即
∴当0<a<1时,所给不等式解集为,
当a≥1时,所给不等式解集为{x|x≥0}.(Ⅱ)在区间[0,+∞)上任取x1,x2,使得x1<x2,
(ⅰ)当a≥1时,
∵
∴
又
∴
所以,当a≥1时,函数f(x)在区间[0,+∞)上是单调递减函数.
(ⅱ)当0<a<1时,在[0,+∞)上存在两点满足f(x1)=1,f(x2)=1 ,即f(x1)=f(x2),∴函数f(x)在区间[0,+∞)上不是单调函数.。