测控专业英语Unit 4资料

合集下载

测控专业英语

测控专业英语
synonymous 同义的
integrated control 集中控制
drawback 缺点
length 持续时间 长度
distributed control 分散型控制 分布式控制、、
launch 提出 开创 开始
de-facto standard 事实上的标准
acronym缩写字
supervision programs 监督控制
elusive 逃避的
optimization programs 优化程序
direct digital control 直接数字控制器
soda ash 纯碱
centralise =centralize 集中
monolith 整体 单一 一致】
timer 定时器 计时器
ladder diagram 梯形图
programmable logic controller 可编程逻辑控制器
single-board computer 单板机
oem()original equipment manufacturer 原始设备制造商
lottery 彩票
AOT analogue output card 输出
PIN pulse input card 脉冲输入卡
DIN discrete ---- 离散
DOT discrete output card 离散输出卡
RTC real time clock 实时时钟
peripheral 周边的,外围的
pulp and paper 制浆与造纸
utility 公用工程
hierarchical approach 低阶方法

专业英语4

专业英语4

hall-type displacement sensors
Hall displacement sensor measuring principle is to maintain its Hall component (see semiconductor magnetic components) of the excitation current constant, and make it in a uniform magnetic field gradient to move, then move the displacement is proportional to the output of the Hall Potential.
Principle of capacitive displacement sensors
S
C S r0S d
dd
ε
S ——plate relative area covered; d ——the distance between the plates;
εr——relative dielectric constant; ε0——permittivity of vacuum; ε —the dielectric constant of medium between capacitor plates。
Displacement Sensors
Members: Wei Gao Wenjing Ning Wanfeng Li Qian Zhang
Contents
1. Introduction 2. The categories of displacement sensors 3. The illustrate of displacement sensors 4. Sensor market prospects

专业英语(测控专业)

专业英语(测控专业)

Lession 1Function in use•normal probability function 概率正态分布函数•orthonormal function 正交函数•self-correlation function 自相关函数•trigonometrical function 三角函数•unbounded function 无界函数•unit step function 单位阶跃函数•zero Bessel function 零次贝塞尔函数•function of first degree 一次函数•function of many variables 多元函数•function of random variable 随机变量函数Periodic signals 周期信号Time-domain description 时域描述Polynomial expansion 多项式Taylor series 泰勒级数Fourier series 傅里叶级数Frequency-domain description 频域描述Orthogonal function 正交函数Vectors 矢量Description in dictionary•描述:描述的行为,过程或技术•声明,叙述:描述某事的声明或叙述•用画表示:•一种,一类:Description in text•A discussion of orthogonal functions and of their value for the description of signals may be conveniently introduced by considering the analogy between signals and vectors.•通过分析信号和矢量之间的相似之处,引入用来描述信号的正交函数概念。

Description in use•published a description of her travels; gave a vivid description of the game•出版她的游记;关于这场比赛的生动描述•Monet's ethereal descriptions of haystacks and water lilies.•莫内关于干干草垛和睡莲的精妙描绘•cars of every size and description.•各种大小和类型的小汽车Function in dictionary•作用,功能•职务,职责•角色,工作•重大聚会,庆典•函数:功能:•操作:子程序•Function in text•The fact that great majority of functions which may usefully be considered as signals are functions of lends justification to the treatment of signal theory in terms of time and of frequency.•借助于时间和频率的信号处理理论,许多常被看作是信号的函数都用来进行信号处理。

测控专业英语Unit 4

测控专业英语Unit 4

③The uncertainty of the standard used for calibration.
仪器的准确度取决于三个主要因素:① 距离上次校准的 时间; ②校准和使用时的温差; ③用于标定的标准的不确 定度。
Unit 4
Calibration
2.1 In most organizations,calibration is the responsibility of a separate group. That group is responsible for maintaining working standards, keeping records of instruments for periodic calibration and certification, and being knowledgeable of the latest calibration procedures.
What should the separate calibration groups do according to their tasks and office authorities? 办公权限
Questions before reading
Q4
What are calibration procedures and instrument performance check, and how are they implemented? 校准程序
校准是指为了使仪器与已有标准完全一致 (匹配)而将一个测量仪器与一个标准的或其他 已知准确度的仪器相比较的过程。
Unit 4
Calibration
The established standard is normally of at least four 1.3 times greater accuracy than the instrument being calibrated or the average of multiple standards if the four-times criterion is not feasible. 已有标准通常至少四倍于待校准仪器的准确度,或者 当四倍标准不可行时,则采用多重标准平均方式。 To say that an instrument is calibrated means that it 1.5 indicates measurements within specified limits of error for that instrument. 也就是说,仪器校准表明了其测量误差的确定限度。

《测控技术与仪器专业英语》张凤登UNIT-4-电路-参考译文及练习答案

《测控技术与仪器专业英语》张凤登UNIT-4-电路-参考译文及练习答案
L di 1 + Ri + ò idt = e dt C
(4-9)
已知电流 i=dq/dt 的,将该变量代入上式,可以消除方程中的积分。由此可得到一个二阶微 分方程
L d 2q dq q +R + =e 2 dt dt C
练习答案 1. Use the information from the reading passage to complete the answer below. (1) It has an effect on total line voltage. (2) Their individual characteristics are unchanged. (3) Current is commonly used as reference. (4) They will be in phase. (5) The difference of XL and XC must be determined. (6) They are the Pythagorean Theorem-based formula, phasoral layout and triangulation. (7) It represents total impedance. (8) It refers to the fact that XL and XC are equal, and line voltage and current are in phase. 2. Fill in the following blanks with the words or expressions given below. Change the forms where necessary. (1) triangulation (2) Impedance (3) reactive (4) capacitors (5) inductive (6) Resistive (7) magnetic (8) electromotive 3. Select the best choices to complete the article. (1) transformer (2) down (3) generated (4) little (5) current (6) resistance (7) less (8) low (9) Direct (10) alternating current

测控专业英语课后单词及翻译

测控专业英语课后单词及翻译

P1U1A Electrical Networks 电路network n. 网络,电路resistor n. 电阻器inductor n. 电感器capacitor n. 电容器passive network 无源网络active network 有源网络characteristic adj. 特性(的);n. 特性曲线Ohm n. 欧姆Faraday n. 法拉第electric charge 电荷integral n. 积分increment n. 增量armature n. 电枢,衔铁,加固aforementioned adj. 上述的,前面提到的represent v. 代表,表示,阐明amplify v. 放大symbolic adj. 符号的,记号的mesh n. 网孔Kirchhoff’s first law 基尔霍夫第一定律loop current 回路电流voltage drop 电压降in series 串联differential adj. 微分的;n. 微分variable n. 变量outline n. 轮廓;v. 提出……的要点eliminate v. 消除,对消[1] In the case of a resistor, the voltage-current relationship is given by Ohm’s law, which states that the voltage across the resistor is equal to the current through the resistor multiplied by the value of the resistance.就电阻来说,电压—电流的关系由欧姆定律决定。

欧姆定律指出:电阻两端的电压等于电阻上流过的电流乘以电阻值。

Which做关系代词,以引出非限制性定语从句。

[2]It may be that the inductor voltage rather than the current is the variable of interest in the circuit.或许在电路中,人们感兴趣的变量是电感电压而不是电感电流。

2018-测控技术与仪器科技英语-word范文 (12页)

2018-测控技术与仪器科技英语-word范文 (12页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==测控技术与仪器科技英语篇一:测控技术与仪器科技英语第四课翻译与课文Unit 4Digital Signal Processing (DSP)Having heard a lot about digital signal processing (DSP) technology , investigate why DSP is preferred to analog circuitry for many types of operations , and discover how to learn enough to design your own DSP system .This article , the first of a series , is an opportunity to take a substantial first step towards finding answers to your question .This series is an introduction to DSP topics from the point of analog system designers seeking additional tools for handing analog signal. Designers reading this series can lean about the possibilities of DSP to deal with analog signals and where to find additional sources of information and assistance.4.1 What Is DSP?In brief, DSPs are processors or microcomputers whose hardware, software, and instruction sets are optimized high-speed numeric processing applications-an essential for processing digital data representing analog signals in real time. What a DSP does is straightforward. When acting as a digital filter, for example, the DSP receives digital values based on samples of a signal, calculates the results of a filter function operating on these values, and provides digital values that represent the filter output; it can also provide system control signals based on properties of these values. The DSP’s high-speed arithmetic and logical hardware is programmed to rapidly execute algorithms modeling the filter transformation.The combination of design elements a arithmetic operators, memory handling, instruction set, parallelism, data addressing that provide this ability forms the key difference between DSPs and other kinds of processors. Understanding the relationship between real-time signal and DSP Calculation speed provides some background on just how special this combination is .The real-time signal comes to the DSP asa train of individualsamples from an analog-to-digital converter (ADC) .To do filtering in real-time, the DSP must complete all the calculations and operations required for processing each samples (usually updating a process involving many previous samples ) before the next sample arrives. To perform high-order filtering of real-world signals having significant frequency content calls for really fast processors.4.2 Why Use a DSP?To get an ideal of the type of calculations of DSP dose and get an ideal of how an analog circuit compares with a DSP system , one could compare the two systems in terms of a filter function. The familiar analog filter uses resistors ,capacitors,inductors ,amplifiers .It can be cheap and easy to assemble ,but difficult to calibrate,modify, and maintain a difficulty that increases exponentially with filter order .For many purposes, one can more easily design ,modify,and depend on filters using a DSP because the filter function on the DSP is software-based, flexible ,and repeatable.Further,to createflexibly adjustable filter s with higher-order response requires only software modifications,with no additional hardware unlike purely analog circuits .An ideal bandpass filter,with the frequency response shown in Fig.4.1,would have the following characteristics:? a response within the passband that is completely flat with zero phase shift? infinite attenuation in the stopband.Useful additions would include:? passband tuning and width control? Stopband rolloff controlAs Fig.4.1 shows, an analog approach using second-order filters would require quite a few staggered high-Q sections; the difficulty of tuning and adjusting it can beimagined.With DSP software ,there are two basic approaches to filter design : finite impulse response (FIR) and infinite impulse response(IIR) .The FIR filter's time response to an impulse is thestraightforward weighted sum of the present and a finite number of previousinput samples. Having no feedback,its response to a given sample ends when the sample reaches the "end of the line "(Fig. 4 . 2). An FIR filter's frequency response has no poles, only zeros. The IIR filter , by comparison, is called infinite because it is a recursivefunction:its output is a weighed sum of inputs and outputs. Since itis recursive , its response can continue indefinitely . An IIR filter frequency response has both poles and zeros. .The x(s) are the input samples, y(s) are the output samples, a(s) are input sample weighings, and b(s) are sample weighings. Nis thepresent sample time, and M and N are the number of samples programmed (the filter's order). Note that the arithmetic operations indicatedfor both types are simply sums and products in potentially great number. In fact ,multiply-and-add is the case for many DSP algorithms that represent mathematical operations of great sophistication and complexity.Approximating an ideal filter consists of applying a transferfunction with appropriate coefficients and a high enough order , or number of taps (considering the train of input samples as tappeddelay line). Fig. 4.3shows the response of a 90-tap FIR filter compared with sharp-cutoff Chebyshev filters of various orders. The90-tap example suggests how close the filter can come toapproximating an ideal filter. Within a DSP system, programming a 90-tap FIR filter like the one in Fig. 4.3 is not a difficult task. By comparison, it would no be cost-effective to attempt this level of approximation with a purely analog circuit. Another crucial point in favor of using a DSP to approximate the ideal fillter is long-term stability. With an FIR (or an IIR having sufficientresolution to avoid truncation-error buildup), the programmable DSP achieves the same response,time after time. Purely analog filter responses of high order areless stable with time.Mathematical transform theory and practice are the core requirementfor creating DSP application and understanding their limits. This article series walks through a few signal-analysis and-processing examples to introduce DSP concepts. The series also provides references to texts for further study and identifies software tools that case the development of signal-processing software.4.3 Sampling Real-world SignalsReal-world phenomena are analog the continuously changing energylevels of physical processes like sound, light, heat, electricity, magnetism, A transducer converts these levels into manageableelectrical voltage and current signals, and an ADC sampling frequency, of the ADC is critically important in digital processing processingof real-world signals.This sampling rate is determined by the amount of signal information that is needed for processing the signal adequately for a given application. In order for an ADC to provide enough samples to accurately describe the real-world signal, the sampling rate must beat least twice the highest-frequency component of the analog signal. For example, to accurately describe an audio signal containing frequencies up to 20kHz, the ADC must sample the signal at a minimumof 40kHz. Since arriving signal can easily contain component frequencies above 20kHz (including noise), they must be removedbefore sampling by feeding the signal through a low-pass filter, is intend to remove the frequencies above 20kHz that could corrupt the converted signal.However, the anti-aliasing filter has a finite frequency rolloff, so additional bandwidth must be provided for the filter's transition band. For example, with an inputsignal bandwidth of 20kHz, one might allow 2 to 4kHz of extra bandwidth.Figure 4.4 depicts the filter needed to reject any signals with frequencies above half of a 48kHz sampling rate.Second sample .The time between samples is the time budget for the DSP to preform all processing tasks.For the audio example ,a 48kHz sample rate corresponds to a 20.833vs sampling interval. Fig.4.5 relates the the analog signal and digital sample rate .图Next consider the relation between the speed of the DSP andcomplexity of the algorithm (the software containing the transform or other set of numeric operations ).Complex algorithm require more processing tasks.Because the time between samples is fixed ,thehigher complexity calls for faster processing .For example ,suppose that the algorithm requires 50 processing operations to be performed。

测控技术与仪器专业英语unit

测控技术与仪器专业英语unit
主语为the reduction和the presence,谓语为pose,宾语 challenges。
全句译为:然而,供应电压从5V衰减到3.3V甚至更低, 以及系统中多种电压形式的出现,并不只是对最智能的传 感器提出的考验。
Separate integrated circuits (ICs) are available to handle the variety of voltages and resolve the problem, but they add to system and sensor complexity. 译为:单独的集成电路(ICs)可用来处理各种不同的电压 并解决问题,但它们增加了系统和传感器的复杂ors
Some of those same semiconductor manufacturers are actively working on smarter silicon devices for the input and output sides of the control system as well. The term microelectromechanical system (MEMS)(微机电系统) is used to describe a structure created with semiconductor manufacturing processes for sensors and actuators.
译为:在今天几乎一切的技术领域都将智能一词作为 其前缀的候选。智能传感器这一术语是在20世纪80年代 中期出现的,从那以后,一些设备已被称之为智能传感器。
3
Unit3 Smart Sensors
The intelligence required by such devices is available from microcontroller unit (MCU), digital signal processor (DSP), and application-specific integrated circuit (ASIC) technologies developed by several semiconductor manufacturers.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由于环境因素能影戏那个某些标准的准确度和仪器的 性能,所以,标准实验室应具备环境控制(装置)保证 (校准和使用的)一致性。
2.8 Environmental factors that are controlled usually include temperature, humidity, vibration, dust, radiofrequency interference, grounding, and line voltage regulation.
校准是指为了使仪器与已有标准完全一致 (匹配)而将一个测量仪器与一个标准的或其他 已知准确度的仪器相比较的过程。
Unit 4 Calibration
1 .3 The established standard is normally of at least four times greater accuracy than the instrument being calibrated or the average of multiple standards if the four-times criterion is not feasible.
也就是说,仪器校准表明了其测量误差的确定限度。
Unit 4 Calibration
1.9The accuracy of an instrument is dependent on three major contributing fact it was last calibrated; ②The difference between the calibration temperature and
Questions before reading
▪ Q1 What is calibration, and why do people perform it at specified interv校al准s?
▪ Q2 What are the standards, and what requirement must they satisfy?
the operating temperature; ③The uncertainty of the standard used for calibration. 仪器的准确度取决于三个主要因素:① 距离上次校准的
时间; ②校准和使用时的温差; ③用于标定的标准的不确 定度。
Unit 4 Calibration
Chapter 1 Introduction to Measurement
Unit 4
Calibration
测控技术与仪器专业英语
Words and Expressions
criterion 标准、准则 established standard 现有标准 multiple standard 多重标准 feasible 可行的 specified limit 制定的限度 calibrate 校准 performance check 性能检查 progressive drift 逐渐地漂移 tolerance limit 随机误差
在大多数组织中,校准由一个独立(或单独的)小组 负责。这个小组负责维护现行标准,对仪器的周期性校准 和检定进行记录,并清楚了解最近一次校准的过程。
Unit 4 Calibration
2.5 The standards laboratory should have environmental controls to assure consistency because environmental factors can affect the accuracy of certain standards and the performance of instruments.
▪ Q3 What should the separate calibration groups do according to their tasks and office authorities? 办公权限
Questions before reading
▪ Q4 What are calibration procedures and instrument performance check, and how are they implemented? 校准程序
已有标准通常至少四倍于待校准仪器的准确度,或者 当四倍标准不可行时,则采用多重标准平均方式。
1.5 To say that an instrument is calibrated means that it indicates measurements within specified limits of error for that instrument.
Unit 4 Calibration
1.1 Calibration refers to the comparison of a measurement instrument to a standard or other instrument of known accuracy in order to bring the instrument into substantial agreement with an established standard.
2.1 In most organizations,calibration is the responsibility of a separate group. That group is responsible for maintaining working standards, keeping records of instruments for periodic calibration and certification, and being knowledgeable of the latest calibration procedures.
相关文档
最新文档