醋酸纤维素薄膜电泳分离血清蛋白

合集下载

醋酸纤维薄膜电泳分离血清蛋白实验结果

醋酸纤维薄膜电泳分离血清蛋白实验结果

醋酸纤维薄膜电泳分离血清蛋白实验结果一、前言醋酸纤维薄膜电泳是一种常见的分离血清蛋白的方法,它能够将复杂的血清样品中的蛋白质分离出来,从而便于进行后续的研究。

本文将详细介绍醋酸纤维薄膜电泳分离血清蛋白实验结果。

二、实验方法1. 样品制备将血清样品加入到离心管中,并进行离心处理,去除其中的颗粒物和红细胞等杂质。

然后取出上清液,进行下一步处理。

2. 薄膜电泳将制备好的样品加入到电泳槽中,并在两端接上电极。

然后通过调节电场强度和时间等参数,使得不同分子量的蛋白质在电场作用下向不同方向移动,并最终被分离开来。

3. 银染将分离好的样品进行银染处理,使得其中存在的蛋白质能够被显色。

然后观察显色效果,并对其进行记录和分析。

三、实验结果经过以上实验步骤,我们成功地得到了血清样品中的蛋白质分离结果。

具体结果如下:1. 蛋白质谱图通过醋酸纤维薄膜电泳分离出来的血清蛋白质谱图如下图所示:(图片略)从图中可以看出,我们成功地将血清样品中的蛋白质分离成了不同的条带,并且这些条带在电泳过程中向不同方向移动,最终被分离开来。

2. 蛋白质种类通过对分离出来的蛋白质进行银染处理后,我们可以看到其中存在多种不同种类的蛋白质。

具体包括:(1)白蛋白(2)球蛋白(3)免疫球蛋白(4)转铁蛋白等。

3. 调整实验参数对结果的影响在实验过程中,我们还尝试了调整一些实验参数,以观察其对结果的影响。

具体包括:(1)电场强度:当电场强度较大时,不同分子量的蛋白质能够更快地向两端移动,并且更容易被分离开来。

但是,如果电场强度过大,也会导致蛋白质的断裂和聚集,从而影响分离效果。

(2)电泳时间:当电泳时间较长时,不同分子量的蛋白质能够更充分地被分离开来,并且条带也更加清晰。

但是,如果电泳时间过长,也会导致蛋白质的断裂和聚集,从而影响分离效果。

四、结论通过以上实验结果的观察和分析,我们可以得出以下结论:1. 醋酸纤维薄膜电泳是一种有效的血清蛋白质分离方法。

醋酸纤维薄膜电泳分离血清蛋白质并定量

醋酸纤维薄膜电泳分离血清蛋白质并定量

临床意义
血浆蛋白是血浆中最主要的固体成分,含量为60~80g/L , 血浆蛋白是血浆中最主要的固体成分,含量为60~ 绝大部分由肝脏合成, 绝大部分由肝脏合成,仅γ球蛋白由浆细胞合成 正常值: 白蛋白57% 72% 正常值: 白蛋白57%—72% α1球蛋白 α1球蛋白2%—5% 球蛋白2 α2球蛋白 α2球蛋白4%—9% 球蛋白4 β球蛋白6.5%—12% 球蛋白6.5% 12% γ球蛋白12%—20% 球蛋白12% 20%
电泳影响因素
蛋白质在电场中移动的速度取决于蛋白质所 带的电荷性质、数量及质点的大小和形状; 带的电荷性质、数量及质点的大小和形状; 此外还受外界因素的影响如,电场强度、 此外还受外界因素的影响如,电场强度、溶 液的PH、离子强度及电渗等。 常见的有: 液的PH、离子强度及电渗等。 常见的有: 醋酸纤维膜电泳、 聚丙烯酰胺凝胶电泳、 醋酸纤维膜电泳、 聚丙烯酰胺凝胶电泳、 毛细管电泳
操 作
1、准备 (1)电泳仪的准备 (2)薄膜的准 备: 在薄膜无光泽面标记点样位置 将薄膜置于巴比妥缓冲液中浸泡
2、点样
(1)无光泽面朝上,吸去多余Buffer, )无光泽面朝上,吸去多余Buffer, (2)用盖玻片蘸取少量血浆,垂直印在划线 用盖玻片蘸取少量血浆, 处。 注意:不能超出边缘;不能重复点样; 注意:不能超出边缘;不能重复点样;必须与 边缘平行要适量、均匀和垂直, 边缘平行要适量、均匀和垂直,并避免弄破薄 膜。
3、平衡: 平衡: 无光泽面朝下,点样侧位于阴极( 无光泽面朝下,点样侧位于阴极(5min) 4、电泳: 电泳: 打开电源, 160V或 打开电源,U=160V或I=1.6mA t=45-50min;冬季1 t=45-50min;冬季1小时 5、染色:氨基黑10B 染色:氨基黑10B 染色充分,5-10min 染色充分, 6、漂洗: 漂洗: 3-4个漂洗皿,洗去染料至背景无色。 个漂洗皿,洗去染料至背景无色。

实验七 醋酸纤维薄膜电泳法分离牛血清蛋白

实验七    醋酸纤维薄膜电泳法分离牛血清蛋白

实验七醋酸纤维薄膜电泳法分离牛血清蛋白一.目的掌握醋酸纤维薄膜电泳法分离蛋白质的原理和方法。

二、原理蛋白质是两性电解质。

当PH>PI时,蛋白质为负离子,在电场中向阳极移动;当PH<PI时,蛋白质为正离子,在电场中向阴极移动。

血清中含有数种蛋白质,在同一PH值时,因所带电荷不同,而在电场中的移动速度也不相同,故可用电泳法将其分离。

本试验以牛血清为材料,醋酸纤维薄膜为支持物,通过点样、电泳、染色、脱色从而得到血清中蛋白质的分离图谱,再进行观察和定量分析。

血清中含白蛋白、α-球蛋白、β-球蛋白、γ-球蛋白等。

其等电点低于pH7.0,在缓冲液中(pH8.6)中,电离成负离子,在电场中向阳极移动。

用醋酸纤维薄膜作蛋白电泳有简便,快速,分离清晰,容易定量等优点。

三、实验仪器1、牛血清2 、醋酸纤维薄膜3 、镊子4 、电泳仪5 、电泳槽6 、盖玻片四、实验试剂1、巴比妥—巴比妥钠缓冲液(离子强度,PH8.6):称取巴比妥1.66g 和巴比妥钠12.76g,溶于蒸馏水并稀释至1000ml。

用pH计较正后使用。

2、染色液:氨基黑10B0.5g,甲醇50ml,冰乙酸10ml,蒸馏水40ml 混匀即可。

3、漂洗液:95%乙醇45ml,冰乙酸5ml和蒸馏水50ml混匀即可。

五、实验步骤1、准备:用镊子取薄膜一条,浸入缓冲液中,完全浸透后(大约3-5分钟),用镊子取出,将无光泽的一面向上,平放在干净滤纸上,将滤纸对折,吸取多余的缓冲液(注意不要吸的太干)。

2、点样:取盖玻片一块,用玻璃棒将血清均匀的涂在盖玻片的一端面上,直直的在薄膜一端1/3处点样。

3、电泳:将薄膜平贴于放在电泳槽上并已浸透缓冲液的滤纸上,无光泽面要向下放置,点样端放在阴极,进行电泳。

电泳条件:电压90-110V,电流0.4-0.6A,通电60分钟。

4、染色:电泳完毕,将薄膜浸入染色液(回收)中10分钟,进行染色。

5、漂洗:染色完毕,将薄膜取出,放入漂洗液中漂洗至背景无色,在浸入蒸馏水中。

醋酸纤维素薄膜电泳分离及定量测定血清蛋白成分

醋酸纤维素薄膜电泳分离及定量测定血清蛋白成分

醋酸纤维素薄膜电泳分离及定量测定血清蛋白成分一、实验目的1(掌握醋酸薄膜电泳的原理及操作。

2(定量测定人血清中各种蛋白质的相对百分含量。

3(掌握分光光度计的原理及操作二、实验原理采用醋酸纤维薄膜为支持物的电泳方法,叫做醋酸纤维素薄膜电泳。

醋酸纤维素,是纤维素的羟基乙酰化所形成的纤维素醋酸酯。

将它溶于有机溶剂(如:丙酮、氯仿、氯乙烯、乙酸乙酯等)后,涂抹成均匀的薄膜则成为醋酸纤维素薄膜。

该膜具有均一的泡沫状的结构,有强渗透性,厚度约为120μm。

醋酸纤维素薄膜电泳是近年来推广的一种新技术。

它具有微量、快速、简便、分辨力高、对样品无拖尾和吸附现象等优点。

该技术已广泛应用于血清蛋白、糖蛋白、脂蛋白、结合球蛋白、同功酶的分离和测定等方面。

目前,醋酸纤维薄膜电泳趋向于代替纸电泳。

四、试剂和器材(一)试剂(1)新鲜血清——无溶血现象。

(2)巴比妥——巴比妥钠缓冲液(pH8.6,0.07M,离子强度0.06):称取巴比妥1.66g和巴比妥钠12.76g,溶于少量蒸馏水后定容1 000ml。

?(3)染色液:称取氨基黑10B 0.5g,加入蒸馏水40ml,甲醇50ml和冰乙酸10ml,混匀,在具塞试剂瓶内贮存。

?(4)漂洗液:取95,乙醇45ml,冰乙酸,ml和蒸馏水50ml。

混匀,在具塞试剂瓶内贮存。

[易挥发、密封]?(5)透明液[易挥发、密封]甲液—取冰乙酸15ml和无水乙醇85ml,混匀,装入试剂瓶内,塞紧瓶塞,备用。

乙液—取冰乙酸25ml和无水乙醇75ml,混匀,装入试剂瓶内,塞紧瓶塞,备用。

(6)液体石腊。

(7)0.4mol氢氧化钠溶液:称取16g氢氧化钠(分析纯)用少量蒸馏水溶解后定容到1000ml。

(二)器材(1)醋酸纤维素薄膜—2?×8?(浙江黄岩曙光化工厂等处生产)(2)培养皿(直径9,10?) (3)血色素吸管或点样器(4)直尺和铅笔 (5)镊子(6)电泳仪和电泳槽 (7)万用电表(8)玻璃板(8?×12?) (9)普通滤纸(10)试管和试管架 (11)吹风机(12)单面刀片 (13)擦镜纸(14)吸量管(2ml、5ml)和吸量管架 (15)722型分光光度计五、实验仪器介绍(1)722型分光光度计?测量原理分光光度法测量的理论依据是伯郎—比耳定律:当容液中的物质在光的照射和激发下,产生了对光吸收的效应。

醋酸纤维薄膜电泳法分离血清蛋白实验报告_0

醋酸纤维薄膜电泳法分离血清蛋白实验报告_0

醋酸纤维薄膜电泳法分离血清蛋白实验报告前言血清蛋白:血清蛋白是血液中脂肪酸的载体当身体需要能量或建筑材料时,脂肪细胞将脂肪酸释放到血液中,脂肪酸被血清蛋白捕获并运送到所需的位置牛血清白蛋白的相对分子质量是10的四次方,这是不确定的,但是是一种聚合物,并且在一些地方测量到70,000,这是一个数据。

它将用于聚合酶链反应牛血清蛋白是血液的主要成分,分子量为68kD。

等电点4.8氮含量16%,糖含量0.08%只含有己糖和己糖胺,脂肪含量仅为0.2%白蛋白由581个氨基酸残基组成,其中35个半胱氨酸残基形成17个二硫键,在肽链的第34位有一个游离巯基白蛋白可以与各种阳离子、阴离子和其他小分子物质结合血液中的白蛋白主要起维持渗透压、缓冲液、载体和营养的作用。

在动物细胞的无血清培养中,白蛋白的加入可以起到生理和机械的保护作用和载体作用。

醋酸纤维素薄膜电泳:醋酸纤维素薄膜电泳以醋酸纤维素薄膜为载体它是纤维素的乙酸酯,由纤维素的羟基乙酰化而成。

它溶解在有机溶液如丙酮中,并可被涂覆成厚度为0.1毫米-0.15毫米的均匀微孔膜太稠,吸水性差,分离效果差;如果它太薄,如果它缺乏应有的机械强度,膜就会变脆。

醋酸纤维素薄膜电泳操作简单、快速、廉价。

它已广泛应用于血清蛋白、血红蛋白、球蛋白、脂蛋白、糖白蛋白、甲胎蛋白、类固醇激素和同工酶等的分离和分析。

虽然其分辨率低于聚丙烯酰胺凝胶电泳,但具有简单、快速的优点。

功能:1。

(1)醋酸纤维素膜对蛋白质样品的吸附很少,没有“拖尾”现象。

染色后,背景可以完全脱色,各种蛋白染色带可以清晰分离,提高了测定的准确性。

(2)快速节省时间醋酸纤维素膜的亲水性比滤纸差,膜中含有的缓冲溶液少,电渗少,电泳时大部分电流由样品传导,分离速度快,电泳时间短。

一般来说,电泳时间只有45-60分钟。

染色和脱色后,整个电泳过程只需约90分钟。

(3)灵敏度高,样品消耗少。

血清蛋白仅需要2μl血清,即使样品体积小至0.1μl,对于仅含5μg蛋白的样品也可获得清晰的分离带。

醋酸纤维薄膜电泳分离血清蛋白

醋酸纤维薄膜电泳分离血清蛋白

【 注意事项】
⑴ 醋酸纤维素薄膜的预处理

薄膜的浸润与选膜是电泳成败的重要关键之一。将干膜片 漂浮于电极缓冲液表面,其目的是选择膜片厚薄及均匀度, 如漂浮 15-30s 时,膜片吸水不均匀,则有白色斑点或条纹, 这提示膜片厚薄不均,应弃去不用,以免造成电泳后区带 扭曲,界线不清,背景脱色困难,结果难以重复。
③透明液:临用前配制。

甲液:取冰乙酸(AR)15mL,无水乙醇(AR)85mL, 混匀置试剂瓶内,塞紧瓶塞,备用。
乙液:取冰乙酸(AR)25mL,无水乙醇(AR)75mL, 混匀置试剂瓶内,塞紧瓶塞,备用。
④保存液:液体石蜡。
⑤定量洗脱液(0.4mol/L NaOH溶液):

称取 16g 氢氧化钠( AR )用少量蒸馏水溶解后定容 至1000ml。
取出薄膜放在滤纸上,用吹风机的冷风将薄膜 吹干。

图 3-8 血清蛋白与脂蛋白醋酸纤维素薄膜电泳 图谱比较示意图 a.蛋白染色 b.脂蛋白染色
6、结果判断与定量 一般血清蛋白电泳经蛋白染色后,可显示 5 条区 带,其排列顺序见图 3-8a ,未经透明处理的电 泳图谱可直接用于定量测定。 可采用洗脱法或光吸收扫描法,测定各蛋白组 分相对百分含量。
表3-12 人血浆蛋白质的等电及迁移率 泳动脉/(cm2· V-1· S-1) 分子量 蛋白质名称 等电点 清蛋白 4.88 -5.9×10-5 69000
α1-球蛋白 α2-球蛋白 β-球蛋白 γ-球蛋白 纤维蛋白元 5.06 5.06 5.12 -5.1×10-5 -4.1×10-5 -2.8×10-5 200000 300000 9000-150000 156000-300000
【实验材料】
1.电泳仪 包括直流电源整流器和 电泳槽两个部分。 2.醋酸纤维素薄膜。

血清蛋白醋酸纤维素薄膜电泳

血清蛋白醋酸纤维素薄膜电泳

血清蛋白醋酸纤维素薄膜电泳血清蛋白醋酸纤维素薄膜电泳,是一种分析和测定蛋白质的方法。

下面将介绍一些相关的参考内容,以帮助您更深入了解这一方法。

1. 应用和原理血清蛋白醋酸纤维素薄膜电泳(SER-PAGE)是一种常用的蛋白质电泳分析方法,可以用于分离和检测血清蛋白及其亚类。

其原理是基于蛋白质在电场中的迁移速率与其电荷质量比有关。

在薄膜电泳中,蛋白质样品在醋酸纤维素薄膜上进行电泳分离,然后通过染色等方法进行定量或定性分析。

2. 薄膜电泳装置和操作步骤薄膜电泳装置包括电源、原电极、测电极、薄膜和样品槽。

操作步骤通常包括制备样品和电解液,加载样品和电解液到薄膜中,接通电源,进行电泳分离,然后进行染色和分析。

3. 应用领域SER-PAGE广泛应用于生物化学、生物医药和临床诊断等领域。

在生物化学中,SER-PAGE可用于研究蛋白质结构与功能的关系。

在生物医药中,SER-PAGE可用于血清蛋白分析、监测蛋白质药物的纯度和一致性。

在临床诊断中,SER-PAGE可用于检测血清中的异常蛋白质,辅助癌症、心脏和免疫系统相关疾病的诊断。

4. SER-PAGE与其他电泳方法的比较相比较传统的PAGE方法,SER-PAGE具有操作简单、不需要注入胶、迁移速度快等优点。

与SDS-PAGE相比,SER-PAGE适用于纯化量较小的样品,并且对样品中的蛋白质亚基分离效果更好。

与凝胶电泳相比,SER-PAGE不需要特殊仪器设备,成本较低。

5. 发展趋势与进展SER-PAGE作为一种传统的电泳技术,仍在不断发展和改进。

比如,一些新的薄膜材料和成像技术的引入,使得分离和检测的灵敏度得到提高。

同时,一些研究也在调整电解液组成和pH值,以优化蛋白质的分离和迁移。

总结起来,血清蛋白醋酸纤维素薄膜电泳是一种广泛应用于蛋白质分离和分析的方法。

通过了解其原理、操作步骤和应用领域,可以更好地理解和应用这一技术。

随着技术的不断进步和改进,SER-PAGE有望在生物化学、生物医药和临床诊断等领域发挥更大的作用。

生物化学实验2.醋酸纤维素薄膜电泳分离血清蛋白质

生物化学实验2.醋酸纤维素薄膜电泳分离血清蛋白质

5. 染色 电泳完毕后断电,用镊子取出薄膜条投入染
液氨基黑中1分钟,染色过程中不时轻轻晃动 染色皿,使染色充分。 6. 漂洗
用漂洗液漂洗,不停摆动薄膜条,至背景 颜色脱去。将薄膜夹在干净滤纸中,吸去多余 溶液。
注意: 控制染色和漂洗的时间,防止背景过深或 某些区带太浅。
五、结果与分析:
一般的染色后的薄膜上 可显现清楚的五条区带。 从正极端起,依次为白蛋 白、α1球蛋白、α2球蛋 白、β球蛋白和γ球蛋白
实验二 醋酸纤维素薄膜电泳分离蛋白质
蛋白质是生命的物质承担者,要揭示生命 的本质,探讨各种生命活动的物质基础,就必 须对蛋白质的结构、性质和功能进行深入的研 究,这首先就需要将蛋白质分离出来,进行纯 化,再进一步进行测定。
蛋白质是是构成人体及动物细胞组织的重要成分,参 与机体内的各种生命活动
人体内蛋白质含量直接关系着人体的健康状况,测定 蛋白质含量在临床上尤为重要。
注意: 分清电泳槽上的正负极 如有很多膜条同时电泳时,膜条间应相距 1~3mm ,使之不互相接触,以免相互干扰。
4. 电泳 将电泳槽和电泳仪连接,注意电泳槽上的
正负极(红正黑负)。调节电流1.5mA/1膜; 通电时间45-60分钟。
点样端
1.滤纸桥 2.电泳槽 3.醋酸纤维素薄膜 4.电泳槽膜支架 5.电极室中央隔板
区带观察:1.排列顺序 2.区带宽窄 3.颜色深浅
临床意义
肝硬化:白蛋白降低,γ-球蛋白极度升高; 肝癌患者:白蛋白与球蛋白间多出一条甲胎蛋白
(AFP)带; 急慢性肾炎、肾病综合症:白蛋白降低,a1、a2
和β球蛋白升高;
注意事项
分清光面和毛面 取样要适量、均匀(点样器下端均匀沾有一层血 清即可) 点样时动作要轻稳,用力要均匀,点样时用力不 能太大,以免损坏膜片或印出凹陷影响电泳区带 分离效果。 只能点一次。 分清电泳槽上的正负极 如有很多膜条同时电泳时,膜条间应相距1~ 3mm ,使之不互相接触,以免相互干扰。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

醋酸纤维素薄膜电泳分离血清蛋白[目的与原理] 掌握醋酸纤维素薄膜电泳原理及操作技术,利用该电泳技术分析和测定人或鱼血清中各种蛋白质相对百分含量。

醋酸纤维素薄膜电泳(cellulose acetate membrance electrophoresis)以醋酸纤维薄膜为支持物。

它是纤维素的醋酸酯,由纤维素的羟基经乙酰化而制成。

它溶于丙酮等有机溶液中,即可涂布成均一细密的微孔薄膜,厚度以0.1mm—0.15mm为宜。

太厚吸水性差,分离效果不好;太薄则膜片缺少应有的机械强度则易碎。

本实验以醋酸纤维素为支持物,分离各种血清蛋白,血清中含有清蛋白,α—球蛋白、β—球蛋白、γ—球蛋白和各种脂蛋白等。

各种蛋白质由于氨基酸组分、立体构象、分子量、等电点及形状不同(表1-2-8),在电场中迁移速度不同,分子量小、等电点低、在相同碱性pH 缓冲系统中,带负电荷多的蛋白质颗粒在电场中迁移速度快例如,以醋酸纤维素薄膜为支持物,正常人血清在pH8.6的缓冲体系中电泳1h左右,染色后显示5条区带。

清蛋白泳动最快,其余依次为α1—,α2—,β—,及γ—球蛋白(如图1-2-7)。

这些区带经洗脱后可用分光光度计法定量,也可直接进行光吸收扫描自动绘出区带吸收峰及相对百分比。

临床医学常利用它们间相对百分比的改变或异常区带的出现作为临床鉴别诊断的依据。

此法由于操作简单、快速、分辨率高及重复性好等优点。

目前,以成为临床生化检验的常规操作之一。

它不仅可用于分离血清蛋白,还可以分离脂蛋白,血红蛋白及同工酶的分离测定。

图1-2-7正常人血清醋酸纤维素薄膜电泳示意图1.为清蛋白,2,3,4,5,分别为α1—,α2—,β—,及γ—球蛋白,6为点样原点[试剂与器材]试剂:1、巴比妥—巴比妥钠缓冲液(pH8.6,0.07mol/L,离子强度0.06):称取1.66g巴比妥(AR)和12.76g巴比妥钠(AR),置于三角烧瓶中,加蒸馏水约600ml,稍加热溶解,冷却后用蒸馏水定容至1000ml。

置4℃保存,备用。

2、血清蛋白染色(1)染色液(0.5%氨基黑10B):称取0.5g氨基黑10B,加蒸馏水40ml,甲醇(AR)50ml,冰乙酸(AR)10ml混匀溶解后置具塞试剂瓶中贮存。

(2)漂洗液:取95%乙醇(AR)45ml,冰乙酸(AR)5ml和蒸馏水50 ml混匀置具塞试剂瓶贮存。

(3)透明液:临用前配制。

甲液:取冰乙酸(AR)15ml,无水乙醇(AR)85ml,混匀置试剂瓶内,塞紧瓶塞,备用。

乙液:取冰乙酸(AR)25ml,无水乙醇(AR)75ml,混匀置试剂瓶内,塞紧瓶塞,备用。

(4)保存液:液体石蜡。

(5)定量洗脱液(0.4mol/L NaOH溶液):称取16g氢氧化钠(AR)用少量蒸馏水溶解后定容至1000ml。

材料:未溶血的人或动物血清器材:醋酸纤维薄膜(2×8厘米);常压电泳仪;点样器(市售或自制);培养皿(染色及漂洗)(直径9cm—10cm);普通滤纸;玻璃板;钝头镊子;白瓷反应板;试管(15~20ml);水浴;分光光度计;离心机;比色杯(光径1cm)[实验步骤]1、电泳槽与薄膜的制备(1)醋酸纤维素薄膜的湿润与选择:用钝头镊子取一片薄膜,在薄膜无光泽面上,距边2cm 处用铅笔各划一条直线此线为点样标志区。

小心地平放在盛有缓冲液的平皿中。

若漂浮于液面的薄膜在15s—30s内迅速湿润,整条薄膜色泽深浅一致,则此膜均匀可用于电泳;若薄膜湿润缓慢,色泽深浅不一或有条纹及斑点,则表示薄膜厚薄不均匀应舍去,以免影响电泳结果,将选好的薄膜用竹夹子轻压,使其完全浸泡于缓冲液中约30min后方可用于电泳。

(2)电泳槽的准备:根据电泳槽的宽度,剪裁尺寸合适的滤纸条。

在两个电极槽中,各倒等体积的电极缓冲液,在电泳槽的两个膜支架上,各放两层滤纸条,使滤纸的长边与支架前沿对齐,另一端浸入电极缓冲液内。

当滤纸条全部浸润后,用玻璃棒轻轻挤压在膜支架上的滤纸以驱赶气泡,使滤纸的一端能紧贴在膜支架上。

滤纸条是两个电极槽联系醋酸纤维素膜的桥梁,因而称为滤纸桥。

2、点样用钝头镊子取出浸透的薄膜,夹在两层滤纸间以吸去多余的缓冲液,无光泽面向上平放在点样板上,点样时用点样器沾少许血清,再将点样器轻轻印在点样区内,样品线长度一般为1.5cm,宽度一般不超过3mm如图1-2-8所示,使血清完全渗透至薄膜内,形成一定宽度、粗细均匀的直线,此步是实验的关键,点样前应在滤纸上反复练习,掌握点样技术后在正式点样。

图1-2-8,醋酸纤维素薄膜规格及点样位置虚线处为点样位置3、电泳用钝头镊子将点样端的薄膜平贴在阴极电泳槽支架的滤纸桥上(点样面朝下),另一端平贴在阳极端支架上。

如图1-2-9所示,要求薄膜紧贴滤纸桥并绷直,中间不能下垂,如一电泳槽同时安放几张薄膜,则薄膜之间应隔几毫米,盖上电泳槽盖使薄膜平衡10min。

用导线将电泳槽的正、负极与电泳仪的正、负极分别连接,注意不要接错。

在室温下电泳,打开电源开关,调旋钮调到每厘米电流强度为0.3mA(8块薄膜则为4.8mA)。

通电10min—15min后,将电流调节到每厘米膜宽电流强度为0.5mA(8片共8mA),电泳时间约50min—60min。

电泳后调节旋钮使电流为零,关闭电泳仪切断电源或自然风干。

图1-2-9 醋酸纤维素薄膜装置示意图4、染色与漂洗用钝头镊子取出电泳后的薄膜,无光泽面向上,放在含有0.5%氨基黑10B染色液的培养皿中,浸染5min。

取出后用自来水冲去多余染料,然后放到盛有漂洗液的培养皿中,每隔10min 换漂洗液一次,连续数次,直至背景蓝色脱尽。

取出后放在滤纸上,用电吹风的冷风将薄膜吹干。

5、透明将脱色吹干后的薄膜浸入透明甲液中2min,立即放入透明乙液中浸泡1min,取出后立即紧贴于干净玻璃板上,两者间不能有气泡。

约2min—3min薄膜完全透明。

若透明太慢可用滴管取透明乙液少许在薄膜表面淋洗一次垂直放置待其自然干燥,或用吹风机冷风吹干且无酸味。

再将玻璃板放在流动的自来水下冲洗,当薄膜完全润湿后用单面刀片撬开薄膜的一角,用手轻轻将透明的薄膜取下,用滤纸吸干所有的水分,最后将薄膜置液体石蜡中浸泡3min,再用滤纸吸干液体石蜡,压平。

此薄膜透明,区带着色清晰,可用于光吸收计扫描。

长期保存不褪色。

6、定量(1)浸泡将膜片上的各蛋白质分离区带分段剪下,分别置于相应的标有编号的试管内,然后各加入0.4mol/L的氢氧化钠溶液进行浸泡。

浸泡淡色带所加入的0.4mol/L氢氧化钠溶液的量为4ml,深色带为8ml(此时的稀释倍数是淡色带的2倍)。

室温下的浸泡时间为30min~60min。

若在37℃水浴中浸泡,则为10min~15min。

浸泡期间振荡数次,使蛋白质区带浸出。

另外再剪取与色带膜条大小相同的无色带膜条作为空白,以相同的方式浸泡在0.4mol/L 氢氧化钠溶液中。

(2)比色浸泡完毕,将浸出的有色溶液在分光光度计上进行比色测定。

测定波长为620nm,光径为1cm。

若浸出液有混浊或沉淀,则以4000r/min的转速离心10min~20min除去,然后再取上清液进行比色测定。

(3)计算比色测定结束后,各组分的含量按下式计算:某蛋白质组分百分含量=某蛋白质组分的光吸收值/样品中各蛋白质组分的光吸收值总和×100%上式中深色带蛋白质组分的光吸收值应乘以稀释倍数2,例如血清白蛋白组分的分离区带为深色带,浸泡时所加入的0.4mol/L氢氧化钠的量是其它淡色带的2倍,所以应乘以2。

[方法评估]1、醋酸纤维素薄膜与滤纸相比较,有以下优点(1)醋酸纤维素薄膜对蛋白质样品吸附极少,无“拖尾”现象,染色后背景能完全脱色,各种蛋白质染色带分离清晰,因而提高了测定的精确性。

(2)快速省时。

由于醋酸纤维素薄膜亲水性较滤纸小,薄膜中所容纳的缓冲液也较少,电渗作用小,电泳时大部分电流是由样品传导的,所以分离速度快,电泳时间短,一般电泳45—60min即可,加上染色,脱色,整个电泳完成仅需90min左右。

(3)灵敏度高,样品用量少。

血清蛋白仅需2μl血清,甚至加样体积少至0.1μl,仅含5μg 蛋白样品也可得到清晰的分离带。

临床医学检验利用这一点,检测在病理情况下微量异常蛋白的改变。

(4)应用面广。

某些蛋白在纸上电泳不易分离,如胎儿甲种球蛋白,溶菌酶,胰岛素,组蛋白等用醋酸纤维薄膜电泳能较好地分离。

(5)醋酸纤维素薄膜电泳染色后,经冰乙酸,乙醇混合液或其它溶液浸泡后可制成透明的干板,有利于扫描定量及长期保存。

2、醋酸纤维素薄膜电泳与聚丙烯酰胺凝胶电泳相比,操作简单,但分离效果不太好。

如血清蛋白在醋酸纤维素薄膜电泳中,只能分离出5—6条区带,而聚丙烯酰胺凝胶电泳可分离出数10条区带。

[应用意义] 由于醋酸纤维素薄膜电泳操作简单、快速、廉价。

目前已广泛用于检测血浆蛋白、脂蛋白、糖蛋白、胎儿甲种球蛋白、体液、脊髓液、脱氢酶、多肽、核酸及其他生物大分子,为心血管疾病,肝硬化及某些癌症鉴别诊断提供了可靠的依据,因而成为医学和临床检验的常规技术。

[注意事项]1、醋酸纤维素薄膜的预处理市售醋酸纤维素薄膜均为干膜片,薄膜的浸润与选膜是电泳成败的重要关键之一。

将干膜片漂浮于电极缓冲液表面,其目的是选择膜片厚薄及均匀度,如漂浮15s—30s时,膜片吸水不均匀,则有白斑点或条纹,这提示膜片厚薄不匀,应舍去不用,以免造成电泳后区带扭曲,界线不清,背景脱色困难,结果难以重复。

由于醋酸纤维薄膜亲水性比纸小,浸泡30min以上是保证膜片上有一定量的缓冲液,并使其恢复到原来多孔的网状结构。

最好是让漂浮于缓冲液的薄膜吸满缓冲液后自然下沉,这样可将膜片上聚集的小气泡赶着走。

点样时,应将膜片表面多余的缓冲液用滤纸吸去,以免缓冲液太多引起样品扩散。

但也不能吸得太干,太干则样品不易进入薄膜的网孔内,而造成电泳起始点参差不齐,影响分离效果。

吸水量以不干不湿为宜。

为防止指纹感染,取膜时,应戴指套或用镊子。

2、缓冲液的选择醋酸纤维素薄膜电泳常选用pH8.6巴比妥溶液,其浓度为0.05mol/L—0.09mol/L。

选择何种浓度与样品及薄膜的薄厚有关。

选择时,先初步定下某一浓度,如电泳槽两极之间的膜长度为8 cm—10cm,则需电压25V/cm膜长,电流强度为0.4mA/cm—0.5mA/cm膜宽。

当电泳达不到或超过这个值时,则应增加缓冲液浓度或进行稀释。

缓冲液浓度过低,则区带泳动速度快,并由于扩散变宽;缓冲液浓度过高,则区带泳动速度慢,区带分布过于集中不易分辨。

3、加样量加样品的多少与电泳条件、样品的性质、染色方法与检测手段灵敏度密切相关。

作为一般原则,检测方法越灵敏,加样量则越少,对分离更有利。

如加样量过大,则电泳后区带分离不清楚,甚至互相干扰,染色也较费时。

相关文档
最新文档