方差与频率分布
频率分布直方图

风险评估和预测模型构建
风险等级划分
01
在金融、保险等领域中,频率分布直方图可以用于划分风险等
级,评估不同风险水平下的损失分布情况。
预测模型构建
02
在构建预测模型时,频率分布直方图可以帮助确定输入变量的
分布特征,从而选择合适的模型类型和建模方法。
蛋白质表达水平
将蛋白质表达量按不同 水平分组,并通过直方 图呈现各组频数,有助 于分析蛋白质功能与疾 病的关系。
代谢物浓度分布
利用频率分布直方图展 示生物样本中代谢物的 浓度分布情况,为代谢 组学研究和疾病诊断提 供参考。
THANKS
感谢观看
处理异常值
在绘制频率分布直方图之前,可以对数据进行预处理,例如采用箱线图等方法识别并处理 异常值,以减少异常值对直方图形状的影响。同时,也可以在直方图上标注出异常值的位 置和数值,以便观察者更好地了解数据的分布情况。
06
案例:频率分布直方图在医学领域应
用
疾病发病率分布情况展示
发病率地域分布
通过频率分布直方图展示不同地区的疾病发病率,帮助医学研究 者识别高发区域和潜在风险因素。
图形表示不同
条形图用条形的长度表示各类别数 据的频数或频率,而频率分布直方 图用矩形的面积表示各组数据的频 数或频率。
横轴意义不同
条形图的横轴表示类别,而频率分 布直方图的横轴表示数据范围。
02
绘制频率分布直方图步骤
数据收集与整理
收集数据
根据研究目的确定需要收集的数据,并确保数据的准确性和 完整性。
频率分布直方图
汇报人:XX
• 频率分布直方图基本概念 • 绘制频率分布直方图步骤 • 频率分布直方图解读技巧 • 频率分布直方图在数据分析中应用 • 频率分布直方图优缺点及改进措施 • 案例:频率分布直方图在医学领域应
方差和标准差,频数分布表

方差和标准差1一、自学指导:看书P 140-P145 回答下列问题:1、一组数据中_____________________的差,叫做这组数据的极差,极差是表示两组数据变化范围的大小,极差大的变化范围______,极差小的变化范围______2、n x x x x ...,,,321为一组数据x 为它们的平均数,方差的基本公式2S =_______________,方差描述了一组数据__________的大小,方差的值越小,数据的波动越小,越________,越__________3、标准差就是____________的算术平方根,公式为σ=___________,它能更精确的描述了一组数据波动的大小4、表示一组数据波动大小的量有____________________二、自学书P143例1、P144例2并完成书后练习三、自学反馈:1.已知某样本的方差是4,则这个样本的标准差是_____.2.已知一个样本1,3,2,x ,5,其平均数是3,则这个样本的标准差是_____.极差是______3.甲、乙两名战士在射击训练中,打靶的次数相同,且打中环数的平均数 乙甲x x =如果甲的射击成绩比较稳定,那么方差的大小关系是S 甲2___S 乙2。
4.已知一个样本的方差的平均数是S 2=51[(X 1-4)2+(x 2-4)2+…+(x 5-4)2],这个样本的平均数是____,样本的容量是_____② 请根据这两名射击手的成绩在图中画出折线图(说明极差的概念)③你认为挑选哪一位比较适宜?为什么?6八年级(5)班要从黎明的张军两位获选人中选出一人去参加学科竞赛,他们在平时的5次测试中成绩如下(单位:分)黎明:652 652 654 652 654张军:667 662 653 640 643如果你是班主任,在收集了上述数据或,你将利用哪些统计的知识来决定这一个名额?四、拓展提高:1、已知一组5个数据的和为100,平方和为2010,求方差和标准差2、若1,2,3,x 的平均数为3,又4,5,x ,y 的平均数为5,则样本0,1,2,3,4,x ,y 的方差是_________五、检测:求 -4,-3, 0, 4 , 3的极差,方差,标准差和平均数方差和标准差2 射击次序2543211、甲、乙两人在相同条件下各射10(1)请填写下表:(2)请你就下列四个不同的角度对这次测试结果进行分析:从平均数和方差相结合看,谁的成绩好?从平均数和命中9环以上的次数相结合看,谁的成绩较好?从折线图上两人射击命中环数的走势看,谁更有潜力?2、探究:1、分别求下列各组数据的平均数、方差、标准差:①已知两组数据1,2,3,4,5,和101,102,103,104,105.②已知两组数据为1,2,3,4,5和3,6,9,12,15.通过以上两题的计算,你发现的结论是________________________③用你发现的结论来解决以下的问题: 十九八七六五四三二一987654321已知数据x 1,x 2,x 3………,x n 的平局数为a ,方差为b ,标准差为c 则 数据x 1+3,x 2+3,x 3+3,……,x n +3的平均数为_______,方差为_______,标准差为___________.(2)x 1-3,x 2-3,x 3-3,,……,x n -3的平均数为________,方差为________,标准差为__________.(3)数据4x 1,4x 2,4x 3,…,4x n 的平均数为_________, 方差为_________, 标准差为__________(4)数据2x 1-3,2x 2-3,2x 3-3,…,2x n -3的平均数为_________, 方差为________, 标准差为__________。
高中数学频率分布直方图

频率分布直方图作频率分布直方图的方法为:(1)把横轴分成若干段,每一线段对应一个组的组距;(2)以此线段为底作矩形,它的高等于该组的组距频率,这样得出一系列的矩形;(3)每个矩形的面积恰好是该组上的频率.频率折线图:如果将频率分布直方图中各相邻的矩形的上底边的中点顺次连接起,就得到一条折线,称这条折线为本组数据的频率折线图.作茎叶图的方法是:将所有两位数的十位数字作为“茎”,个位数字作为“叶”,茎相同者共用一个茎,茎按从小到大的顺序从上向下列出,共茎的叶一般按从大到小(或从小到大)的顺序同行列出.知识点1:利用频率分布直方图分析总体分布例题1: 2000辆汽车通过某一段公路时的时速的频率分布直方图如右图所示,时速在[50,60)的汽车大约有 A .30辆 B .60辆 C .300辆 D .600辆变式:某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是 [96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是A.90B.75C. 60D.45变式:某初一年级有500名同学,将他们的身高(单位:cm )数据绘制成频率分布直方图(如图),若要从身高在[)120,130,[)130,140,[]140,150三组内的学生中,用分层抽样的方法选取30人参加一项活动,则从身高在[)130,140内的学生中选取的人数为 .知识点2:用样本分估计总体例题2某市2010年4月1日—4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85,75,71,49,45,96 98 100 102 104 106 0.1500.125 0.1000.0750.050 克 频率/组距100 110 120130 140 150 身高频率|组距0.0050.0100.020a0.035(Ⅰ) 完成频率分布表;(Ⅱ)作出频率分布直方图;(Ⅲ)根据国家标准,污染指数在0~50之间时,空气质量为优:在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染。
高中数学统计与概率知识点归纳全

高中数学统计与概率知识点归纳全统计与概率是数学中重要的一部分,出现在中学数学和高中数学的教学中。
它涵盖了很多基本的概念和方法,并且在实际生活中有广泛的应用。
本文将全面归纳高中数学统计与概率的知识点,以帮助读者更好地理解和掌握这一领域的内容。
一、基本概念1. 数据与统计:数据是通过观察、测量或实验获得的信息,统计是对数据进行收集、整理、分析和解释的过程。
2. 总体与样本:总体是指研究对象的全体,样本是从总体中选取的一部分。
3. 参数与统计量:参数是描述总体的数值特征,统计量是根据样本数据计算得到的总体参数的估计值。
4. 随机事件与样本空间:随机事件是指一个结果不确定、以概率形式描述的事件,样本空间是随机事件可能发生的所有结果的集合。
5. 概率:概率是用来描述随机事件发生可能性大小的数值。
它可以通过实验、几何、统计推理等方法进行计算。
二、统计方法1. 数据收集与处理:包括数据的收集、整理和清洗,以及计算数据的频数、频率、中位数、平均数等。
2. 描述统计和推断统计:描述统计通过图表、图像和数值等形式展示数据的分布特征;推断统计则通过样本数据进行参数估计、假设检验等,从而对总体进行推断。
3. 频数分布与频率分布:频数分布是指将数据按照取值范围划分成若干组,并统计每组中数据出现的频数;频率分布则是统计每组数据出现的频率。
三、概率相关知识1. 事件的概率:事件A发生的概率记为P(A),它满足0≤P(A)≤1。
2. 基本事件与复合事件:基本事件是样本空间中的单个事件,复合事件由一个或多个基本事件组成。
3. 互斥事件与相对事件:互斥事件是指两个事件不可能同时发生,相对事件是指两个事件都能够发生,或者都不能发生。
4. 概率的计算:通过等可能原理、频率法、古典概型等方法计算事件的概率。
5. 条件概率与独立事件:条件概率是指在已知事件B发生的条件下,事件A发生的概率,记为P(A|B);独立事件是指事件A和事件B的发生与否互不影响。
难点解析京改版八年级数学下册第十七章方差与频数分布章节训练试题(含答案解析)

京改版八年级数学下册第十七章方差与频数分布章节训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若样本12,,,n x x x ⋯的平均数为10,方差为2,则对于样本1232,32,,32n x x x ++⋅⋅⋅+,下列结论正确的是( )A .平均数为30,方差为8B .平均数为32,方差为8C .平均数为32,方差为20D .平均数为32,方差为182、如图是某校九年级部分男生做俯卧撑的成绩(次数)进行整理后,分成五组,画出的频率分布直方图,已知从左到右前4个小组的频率分别是0.05,0.15,0.25,0.30,第五小组的频数为25,若合格成绩为20,那么此次统计的样本容量和本次测试的合格率分别是( ).A .100,55%B .100,80%C .75,55%D .75,80%3、为了估计鱼塘中的鱼数,养鱼者首先从鱼塘中打捞n 条鱼,在每一条鱼身上做好记号后把这些鱼放归鱼塘,再从鱼塘中打捞a 条鱼,如果在这a 条鱼中有b 条鱼是有记号的,那么估计鱼塘中鱼的条数为( )A .an bB .bn aC .b anD .a bn4、为了了解某校七年级800名学生的跳绳情况(60秒跳绳的次数),随机对该年级50名学生进行了调查,根据收集的数据绘制了如图所示的频数分布直方图(每组数据包括左端值不包括右端值,如最左边第一组的次数x 为:6080x ≤<,则以下说法正确的是( )A .跳绳次数不少于100次的占80%B .大多数学生跳绳次数在140160-范围内C .跳绳次数最多的是160次D .由样本可以估计全年级800人中跳绳次数在6080-次的大约有84人5、小明同学对数据15,28,36,4□,43进行统计分析,发现其中一个两位数的个位数字被黑水涂污看不到了,则统计结果与被涂污数字无关的是( )A .平均数B .标准差C .中位数D .极差6、甲、乙、丙、丁四名学生近4次数学测验成绩的平均数都是110分,方差分别是S 甲2=6,S 乙2=24,S 丙2=25.5,S 丁2=36,则这四名学生的数学成绩最稳定的是( )A .甲B .乙C .丙D .丁7、已知一组数据﹣1,2,0,1,﹣2,那么这组数据的方差是( )A .10B .4C .2D .0.28、甲、乙、丙、丁四名学生近4次数学测验成绩的平均数都是90分,方差分别是S 甲2=5,S 乙2=20,S 丙2=23,S 丁2=32,则这四名学生的数学成绩最稳定的是( )A .甲B .乙C .丙D .丁9、新型冠状病毒肺炎(CoronaVriusDisease 2019,COVID ﹣19),简称“新冠肺炎”,世界卫生组织命名为“2019冠状病毒病”,英文单词CoronaVriusDisease 中字母r 出现的频数是( )A .2B .11.1%C .18D .21810、某班在体育活动中,测试了十位学生的“一分钟跳绳”成绩,得到十个各不相同的数据.在统计时,出现了一处错误:将最高成绩写得更高了,则计算结果不受影响的是( )A .平均数B .中位数C .方差D .众数第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、甲、乙两同学5次数学考试的平均成绩都是132分,方差分别为S 甲2=38,S 乙2=10,则______ 同学的数学成绩更稳定.2、已知样本25,21,25,21,23,25,27,29,25,28,30,29,26,24,25,27,27,22,24,26,若组距为2,那么应分为_____组,在24.5~26.5这一组的频数是_____.3、甲、乙两射击运动员10次射击训练的平均成绩恰好都是8.5环,方差分别是20.85S =甲,21.45S =乙则在本次测试中,_______运动员的成绩更稳定(填“甲”或“乙”).4、某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉40只黄羊,发现其中两只有标志.从而估计该地区有黄羊____只.5、若一组数据1x ,2x ,…n x 的平均数是2,方差是1.则132x +,232x +,…32n x +的平均数是_______,方差是_______.三、解答题(5小题,每小题10分,共计50分)1、某校为研究学生的课余爱好情况,采取抽样调査的方法,从阅读、运动、娱乐、上网等四个方面调查了若干学生的兴趣爱好;并将调查的结果绘制成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次研究中,一共调查了______名学生;若该校共有1500名学生,估计全校爱好运动的学生共有_______名;(2)补全条形统计图,并计算阅读部分圆心角是_______度;(3)若该校九年级爱好阅读的学生有150人,估计九年级有多少学生?2、某校在开展读书交流活动中全体师生积极捐书.为了解所捐书籍的种类,对部分书籍进行了抽样调查,李老师根据调查数据绘制了如图所示不完整统计图.请根据统计图回答下面问题:(1)本次抽样调查的书籍有多少本?(2)请通过计算补全条形统计图;(3)本次活动师生共捐书1200本,请估计有多少本科普类书籍?3、2021年12月2日是第十个“全国交通安全日”公安部、中央网信办、中央文明办、教育部、司法部、交通运输部、应急管理部、共青团中央联合发出通知,决定自2021年11月18日起至年底,以“守法规知礼让、安全文明出行”为主题,共同组织开展第十个“全国交通安全日”群众性主题活动.某中学团委组织开展交通安全知识竞赛现从七、八年级中各随机抽取20名同学的竞赛成绩(百分制)进行整理和分析(成绩均为整数,成绩得分用x表示),共分成五个等级:A.060≤≤,xB.6070<≤,E.90100xx<≤(其中成绩大于等于<≤,D.8090<≤,C.7080xx....),......90的为优秀下面给出了部分信息.七年级抽取的20名学生的竞赛成绩在D等级中的数据分别是:83,85,85,85,85,89.八年级抽取的20名学生的竞赛成绩在D等级中的数据分别是:83,85,85,85,85,85,89.七、八年级抽取的学生竞赛成绩统计表根据以上信息,解答下列问题:(1)请补全条形统计图,并直接写出a、b的值;(2)根据以上数据分析,你认为哪个年级的竞赛成绩更好,并说明理由(写出一条理由即可);(3)已知该校七、八年级共有1200名学生参与了知识竞赛,请估计两个年级竞赛成绩优秀的学生人数是多少?4、国家应急管理部、司法部、中华全国总工会、全国普法办共同举办的第三届全国应急管理普法知识竞赛于今年10月18日开赛.某校学生处在七年级和八年级开展了应急管理普法知识竞赛活动,并从七、八年级各随机抽取了40名同学的知识竞赛成绩数据,并将数据进行整理分析.(竞赛成绩用x 表示,共分为四个等级:A.x<70,B.70≤x<80,C.80≤x<90,D.90≤x≤100);下面给出了部分信息:七年级C等级中全部学生的成绩为:86, 87, 83, 88, 84, 88, 86, 89, 89, 85.八年级D等级中全部学生的成绩为:92, 95, 98, 98, 98, 98, 98, 100, 100, 100.七八年级抽取的学生知识竞赛成绩统计表根据以上信息,解答下列问题:(1)直接写出上述表中a,b,c,m的值;(2)根据以上数据,你认为该校七、八年级的知识竞赛,哪个年级的成绩更好,并说明理由(写出一条理由即可);(3)该校七年级的1800名学生和八年级的240名学生参加了此次知识竞赛,若成绩在90分(包含90分)以上为优秀,请你估计两个年级此次参加知识竞赛优秀的总人数.5、在新冠状病毒防控期间,各地纷纷展开了停课不停学活动,学校为了了解学生自主阅读情况,抽样调查了部分学生每周用于自主阅读的时间,过程如下:收集数据:从全校随机抽取20名学生,每周用于自主阅读时间的调查,数据如下:(单位:min)30 60 81 50 44 110 130 146 80 10060 80 120 140 75 81 10 30 81 92整理数据:按下表分段整理样本数据:分析数据:样本的平均数、中位数、众数如下表所示:请回答下列问题:a_______,b=________,c=_______;(1)表格中的数据=(2)用样本中的统计量估计该校学生每周用于课外阅读时间的等级为______;(3)假设平均阅读一本课外书的时间为320分钟,请你用样本平均数...估计该校学生每人一年(按52周计算)平均阅读________本课外书.-参考答案-一、单选题1、D【分析】由样本12,,,n x x x ⋯的平均数为10,方差为2,可得()()()()222212312310,101010102,n n x x x x n x x x x n ++++=-+-+-++-=再利用平均数公式与方差公式计算1232,32,,32n x x x ++⋅⋅⋅+的平均数与方差即可.【详解】 解: 样本12,,,n x x x ⋯的平均数为10,方差为2,()()()()()22221231231110,2,n n x x x x x x x x x x x x x n n ⎡⎤∴=++++=-+-+-++-=⎢⎥⎣⎦ ()()()()222212312310,101010102,n n x x x x n x x x x n ∴++++=-+-+-++-=∴()123132323232n x x x x n ++++++++ ()1131023232,n n n n n=⨯+=⨯= ()()()()222212313232323232323232n x x x x n ⎡⎤+-++-++-+++-⎣⎦ ()()()()22221231910910910910n x x x x n ⎡⎤=-+-+-++-⎣⎦ 19218,n n=⨯⨯= 故选D【点睛】本题考查的是平均数,方差的含义与计算,熟练的运用平均数公式与方差公式进行推导是解本题的顾客.2、B【分析】根据频率分布直方图的意义,从左到右各个小组的频率之和是1,结合题意,可得第五小组的频率,进而根据同时每小组的频率=小组的频数:总人数可得此次统计的样本容量;又因为合格成绩为20,可得本次测试的合格率,即答案.【详解】解:由频率的意义可知,从左到右各个小组的频率之和是1,从左到右前四个小组的频率分别是0.05,0.15,0.25,0.30,∴第五小组的频率是10.050.150.250.300.25----=,∴此次统计的样本容量是250.25100÷=.∵合格成绩为20,∴本次测试的合格率是0.250.300.250.880%++==.故选B.【点睛】本题属于统计内容,考查分析频数分布直方图和频率的求法.解本题要懂得频率分布直分图的意义,了解频率分布直分图是一种以频数为纵向指标的条形统计图.3、A【分析】首先求出有记号的b条鱼在a条鱼中所占的比例,然后根据用样本中有记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数.【详解】解:∵打捞a条鱼,发现其中带标记的鱼有b条,∴有标记的鱼占ba,∵共有n条鱼做上标记,∴鱼塘中估计有n÷ba=anb(条).故选:A.【点睛】此题考查了用样本估计总体,关键是求出带标记的鱼占的百分比,运用了样本估计总体的思想.4、A【分析】根据频数发布直方图,跳绳次数不少于100次的人数相加除总人数后再乘100%即可得;由频数分布直方图可知,大多数学生跳绳次数在120140-范围内;因为每组数据包括左端值不包括右端值,所以跳绳次数最多的不是160次;由样本可以估计全年级800人中跳绳次数在6080-次的大约有48006450⨯=(人),进行判断即可得. 【详解】A 、跳绳次数不少于100次的占101812100%80%50++⨯=,选项说法正确,符合题意; B 、由频数分布直方图可知,大多数学生跳绳次数在120140-范围内,选项说法错误,不符合题意;C 、每组数据包括左端值不包括右端值,故跳绳次数最多的不是160次,选项说法错误,不符合题意;D 、由样本可以估计全年级800人中跳绳次数在6080-次的大约有48006450⨯=(人),选项说法错误,不符合题意;故选A .【点睛】本题考查了频数(率)分布直方图,解题的关键是能够根据频数(率)分布直方图所给的信息进行求解.5、C【分析】利用中位数、平均数、标准差和极差的定义对各选项进行判断.【详解】解:五个数据从小到大排列为:15,28,36,4□,43或15,28,36,43,4□,∴这组数据的平均数、标准差和极差都与被涂污数字有关,而两种排列方式的中位数都是36,∴计算结果与被涂污数字无关的是中位数.故选:C .【点睛】本题考查了中位数、平均数、标准差和极差,解决本题的关键是掌握中位数、平均数、标准差和极差的定义.6、A【分析】根据方差的意义求解即可.【详解】解:∵S 甲2=6,S 乙2=24,S 丙2=25.5,S 丁2=36,∴S 甲2<S 乙2<S 丙2<S 丁2,∴这四名学生的数学成绩最稳定的是甲,故选:A .【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.掌握方差的意义是解题的关键.7、C【分析】根据方差公式进行计算即可.方差:一般地,各数据与平均数的差的平方的平均数叫做这组数据的方差.2222121[()()()]n S x x x x x x n=-+-++-… 【详解】﹣1,2,0,1,﹣2,这组数据的平均数为()11201205-+++-=222221[12125]2S =⨯+++= 故选C【点睛】本题考查了求一组数据的方差,掌握方差的计算公式是解题的关键.8、A【分析】根据方差的意义求解即可.【详解】解:∵S 甲2=5,S 乙2=20,S 丙2=23,S 丁2=32,∴S 甲2<S 乙2<S 丙2<S 丁2,∴这四名学生的数学成绩最稳定的是甲,故选:A .【点睛】本题主要考查了方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.9、A【分析】根据CoronaVriusDisease 中共有18个字母,其中r 出现2次可得答案.【详解】解:CoronaVriusDisease 中共有18个字母,其中r 出现2次,∴频数是2,故选A .本题主要考查了频数的定义:熟知定义是解题的关键:频数是指变量值中代表某种特征的数出现的次数.10、B【分析】根据中位数的特点,与最高成绩无关,则计算结果不受影响,据此即可求得答案【详解】根据题意以及中位数的特点,因为中位数是通过排序得到的,所以它不受最大、最小两个极端数值的影响,故选B【点睛】本题考查了中位数,平均数,方差,众数,理解中位数的意义是解题的关键,中位数是另外一种反映数据的中心位置的指标,其确定方法是将所有数据以由小到大的顺序排列,位于中央的数据值就是中位数,因为中位数是通过排序得到的,所以它不受最大、最小两个极端数值的影响,而且部分数据的变动对中位数也没有影响.二、填空题1、乙【分析】根据平均数相同时,方差越小越稳定可以解答本题.【详解】解:∵甲、乙两同学5次数学考试的平均成绩都是132分,方差分别为S甲2=38,S乙2=10,∴S甲2 S乙2,∴乙同学的数学成绩更稳定,故答案为:乙.本题考查了方差,解题的关键是明确方差越小越稳定.2、5 7【分析】根据题意可以求出这组数据的极差,然后根据组距即可确定组数,再根据题目中的数据即可得到在24.5~26.5这一组的频数.【详解】解:由所给的数据可知,最大的数为30,最小的数为21,∴极差是:30219-=,∵组距为2,92 4.5÷=,∴应分为5组;∴在24.5~26.5这一组的数据有:25、25、25、25、26、25、26、∴在24.5~26.5这一组的频数是7.故答案为:5,7.【点睛】本题考查频数分布表,解答本题的关键是明确题意,会求一组数据的极差和划分相应的组数.3、甲【分析】先根据甲的方差比乙的方差小,再根据方差越大,波动就越大,数据越不稳定,方差越小,波动越小,数据越稳定即可得出答案.【详解】解:∵20.85S =甲,21.45S =乙∴22S S <甲乙,∴甲运动员比乙运动员的成绩稳定;故答案为:甲.【点睛】本题考查了方差的意义,解题的关键是掌握方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.4、400【分析】设这个地区有黄羊x只,根据第二次捕捉40只绵羊,其中有2只有记号,即可列方程求解.【详解】设这个地区有黄羊x只,由题意得240=20xx=解得400则估计这个地区有黄羊400只.故答案为:400【点睛】本题考查的是用样本估计总体,解答本题的关键是读懂题意,得到第二次捕捉的绵羊中有记号的占全部有记号的比例.5、8 9【分析】根据平均数和方差的性质及计算公式直接求解可得.【详解】解:∵数据x1,x2,…x n的平均数是2,∴数据3x1+2,3x2+2,…+3x n+2的平均数是3×2+2=8;∵数据x1,x2,…x n的方差为1,∴数据3x1,3x2,3x3,……,3x n的方差是1×32=9,∴数据3x1+2,3x2+2,…+3x n+2的方差是9.故答案为:8、9.【点睛】本题考查平均数和方差的变换特点,若在原来数据前乘以同一个数,平均数也乘以同一个数,而方差要乘以这个数的平方,在数据上同加或减同一个数,方差不变.三、解答题1、(1)100,600;(2)图形见解析,108°;(3)500【分析】(1)根据娱乐的人数以及百分比求出总人数即可.再根据抽查的学生中爱好运动的学生比例计算全校爱好运动的人数.(2)求出阅读的人数,画出条形图即可,利用360°×百分比取圆心角.(3)根据总人数,个体,百分比之间的关系解决问题即可.【详解】(1)总人数=20÷20%=100(名),若该校共有1500名学生,估计全校爱好运动的学生有1500×40100=600(名).故答案为100,600.(2)阅读人数10040201030---=人圆心角=30360108 100⨯︒=︒条形图如图所示:故答案为108.(3)150÷30%=500(名),答:估计九年级有500名学生.【点睛】本题考查条形统计图,扇形统计图,样本估计总体等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2、(1)40;(2)见解析;(3)360【分析】(1)由艺术类书籍的数量及其所占百分比可得抽取的总数量;(2)用样本容量乘以其它类书籍对应的百分比求出具体数量,从而补全图形;(3)用总数量乘以样本中科普类书籍数量所占比例可得.【详解】(1)本次抽样调查的书有8÷20%=40(本);(2)其它类的书的数量为40×15%=6(本),补全图形如下:(3)估计科普类书籍的本数为1200×1240=360(本). 【点睛】本题考查的是条形统计图和扇形统计图,解决问题的关键是读懂统计图,从不同的统计图中得到必要的信息.3、(1)84a =,85b =,统计图见解析;(2)八年级的成绩比七年级的成绩好,理由见解析;(3)估计两个年级竞赛成绩优秀的学生人数是330人.【分析】(1)根据中位数的定义即可得到七年级的中位数是第10名和第11名的成绩,然后确定中位数在D 等级里面即可得到答案;由八年级统计图可知,八年级C 等级人数=20-7-6-2-1=4人,由八年级的满分率为15%,得到八年级满分人数=20×15%=3人,即可确定八年级这20名学生成绩出现次数最多的是85,由此求解即可;(2)七、八年级,众数与优秀率相同,可从平均数与中位数进行阐述;(3)先算出样本中两个年级的优秀率,然后估计总体即可.【详解】解:(1)∵七年级一共有20人,∴七年级的中位数是第10名和第11名的成绩,∵七年级A 等级人数=2010%2⨯=人,七年级B 等级人数=2015%3⨯=人,七年级C 等级人数=2020%4⨯=人,∴七年级的中位数在D等级里面,即为8385842+=,∴84a=;由八年级统计图可知,八年级C等级人数=20-7-6-2-1=4人,∵八年级的满分率为15%,∴八年级满分人数=20×15%=3人,∴可知八年级这20名学生成绩出现次数最多的是85,即众数为85,∴85b=,补全统计图如下:(2)∵七、八年级的众数,优秀率都相同,但是八年级的平均数大于七年级的平均数,八年级的中位数也大于七年级的中位数,∴八年级的成绩比七年级的成绩好;(3)由题意得:两个年级竞赛成绩优秀的学生人数2025%61200100%3302020⨯+⨯⨯=+人,答:估计两个年级竞赛成绩优秀的学生人数是330人.【点睛】本题主要考查了中位数与众数,统计图,用样本估计总体,解题的关键在于能够熟练掌握相关知识进行求解.4、(1)a=10,b=89,c=100,m=7.5;(2)七年级的成绩更好,理由见解析;(3)估计两个年级此次知识竞赛中优秀的人数约为873人.【分析】(1)用七年级C等人数除以40即可得出C等所占比例,再用单位“1”分别减去B、C、D所占比例即可得出a的值;根据中位数的定义(将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数)可得b的值;根据众数的定义(一组数据中出现次数最多的数据叫做众数)可得c的值;用满分人数除以40即可得出m的值;(2)根据中位数,满分率解答即可;(3)总人数乘以90分(包含90分)以上人数所占比例即可【详解】解:(1)∵七年级C等有10人,∴C等所占比例为1040×100%=25%,∴a%=1-20%-45%-25%=10%,∴a=10,七年级A等有:40×10%=4(人),B等有:40×20%=8(人),把七年级所抽取了40名同学的知识竞赛成绩从低到高排列,排在最中间的是第20名和第21名的成绩,分别是89,89,∴中位数b=89;∵七年级满分人数为:40×25%=10(人),∴众数c=100;八年级满分率为:340×100%=7.5%,∴m=7.5;(2)因为两个年级的平均数相同,而七年级的中位数、众数和满分率都过于八年级,所以七年级的成绩更好;(3)1800×45%+250×1040×100%≈873(人),答:估计两个年级此次知识竞赛中优秀的人数约为873人.【点睛】本题考查扇形统计图、中位数、众数、平均数、利用数据进行决策,用样本估计总体等知识点,熟悉掌握相关知识点是正确解答的关键.5、(1)5,80.5,81;(2)B;(3)13【分析】(1)用总人数减去A,B,D等级的人数即可求出a的值;根据中位数概念即可求出b的值;根据众数的概念即可求出c的值;(2)根据平均数,中位数和众数即可得出该校学生每周用于课外阅读时间的等级;(3)用阅读书籍的平均时间乘以一年的周数,再除以阅读每本书所需时间即可得.【详解】(1)203845a=---=;20名学生每周用于自主阅读的时间从小到大排列为如下:10,30,30,44,50,60,60,75,80,80,81,81,81,92,100,110,120,130,140,146,∵第10、11个数据分别为80、81,∴中位数808180.52b+==;出现次数最多的数是81,∴众数是81.故答案为:5,80.5,81;(2)∵平均数为80,中位数为80.5,众数为81,∴用样本中的统计量估计该校学生每周用于课外阅读时间的等级为B;故答案为:B;(3)估计该校学生每人一年(按52周计算)平均阅读课外书为805213320⨯=(本),故答案为:13.【点睛】此题主要考查数据的统计和分析的知识.准确把握三数(平均数、中位数、众数)和理解样本和总体的关系是关键.。
6.6方差_频率分布

方差 频率分布【课内四基达标】1.填空题(1)-1,2,0,1,-2的方差是 .(2)在对100个数据进行整理的频率分布表中,各组的频数之和等于 . (3)若样本1,2,3,x 的平均数为5,又样本1,2,3,x ,y 的平均数为6,则样本1,2,3,x ,y 的方差是 .(4)若样本a 1,a 2,a 3,…,a n 的平均数x =5,方差S 2=0.025,则样本4a 1 ,4a 2,4a 2,4a 3,…,4a n 的平均数x = ,方差2S = .(5)已知样本x 1,x 2,…,x n 的方差是3,则样本2x 1+2,2x 2+2,…,2x n +2的标准差为 . (6)某动动员在一次射击练习中,打靶的环数为7、9、6、8、10,样本的平均数是 ;样本的方差是 ;样本的标准差是 。
(7)在求频率分布时,把数据分成了5组,若已知其中的前四组的频率分别为0.1,0.3,0.3 ,0.1,则第5组的频率是 .(8)如果一个有40个数据的平均数是5,标准差为3,则这个样本数据的平方和为 .(9)一组数据的方差是m 2,将这组数据中的每个数据都乘以2,所得到的一组新数据的方差是 。
(10)在频率分布直方图中,小长方形的高与 成正比,由于各小长方形的面积等于相应各组的 ,因此各小长方形的面积和等于 。
2.选择题(1)数据70,71,72,73的标准差是( )A.2B.2C.25 D.45 (2)下列说法错误的是( )A.在统计里,把所需考察对象的全体叫做总体.B.一组数据的平均数一定大于这组数据中的每个数据.C.平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.D.一组数据的方差越大,说明这组数据的波动越大. (3)下列说法中,正确的是( ) A.数据5,4,4,3,5,2的众数是4B.一组数据的标准差是这组数据的方差的平方C.数据2,3,4,5的标准差是数据4,6,8,10的标准差的一半D.频率分布直方图中各小长方形的面积等于相应各组的频数(4)从甲、乙两班分别任抽10名学生进行英语口语测验,其测验成绩的方差分别为S 甲2= 13.2,S 乙2=26.26,则( )A.甲班10名学生的成绩比乙班10名学生的成绩整齐B.乙班10名学生的成绩比甲班10名学生的成绩整齐C.甲、乙两班10名学生的成绩一样整齐D.不能比较甲、乙两班10名学生成绩的整齐程度(5)对一组数据进行适当整理,有如下几个结论,其中正确的是( ) A.众数所在组的频率最大B.若最大值与最小值之差等于15,取组距为3时,数据应分为5组C.画频率分布直方图时,小长方形的高与频数与正比D.各组的频数之和等于1 (6)在样本方差公式S 2=n1〔(x 21+x 22+…+x 2n )-n 2x 〕中,下列说法不正确的是( ) A.n 是样本容量 B.x n 是样本的个体 C.x 是样本的平均数 D.S 是样本方差3.从甲、乙两种玉米苗中各抽10株,分别测得它们的株高如下(单位cm) 甲:25,41,40,37,22,14,19,39,21,42 乙:27,16,44,27,44,16,40,40,16,40 问:(1)哪种玉米的苗长得高? (2)哪种玉米的苗长得齐?4.有甲、乙、丙三名射击运动员,要从中选拔一名参加比赛,在选拔赛中每人打10发,环数如下:甲:10、10、9、10、9、9、9、9、9,乙:10、10、10、9、10、8、8、10、10、8, 丙:10、9、8、10、8、9、10、9、9、9. 根据以上环数谁应参加比赛?【能力素质提高】1.初三(1)班男生在一次体验中,体重(单位:千克)如下:41~45千克3人,46~50千克7人 ,51~55千克12人,56~60千克5人,60~65千克3人.则体重在51~55千克这一小组的频数为 ,各小组的频数之和为 ,体重在51~55千克这一小组的频率为 ,各小组的频率之和为 .2.一个样本数据为19,43,20,x ,样本的平均数为整数,且20<x <28,求样本的标准差.3.为了解某地初三年级男生的身高情况,从其中的一个学校选取容量为60的样本(60(1)求出表中的a,m 的值.(2)画出频率直方图.4.某农户在山上种了脐橙果树44株,现进入第三年收获,收获时,先随意采摘5株果树上的脐橙,称得每棵果树上的脐橙重量如下(单位:千克)35,35,34,39,37(1)根据样本平均数估计,这年脐橙的总产量是多少?(2)若市场上脐橙售价为每千克5元,则这年该农户卖脐橙的收入将达多少元?(3)已知该农户第一年卖脐橙的收入为5500元,根据以上估算,试求第二年,第三年卖脐橙收入的平均增长率【渗透拓展创新】为了了解学生的体能情况,抽取了某校一个年级的部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如下图),已知图中从左到右前三个小组的频率分别为 0.1、0.3、0.4,第一小组的频数为5.(1)求第四小组的频率;(2)问参加这次测试的学生数是多少?(3)若次数在75次以上(含75次)为达标,试估计该年级学生测试的达标率是多少?(4)问这次测试中,学生跳绳次数的中位数落在四个小组中的哪个小组内?并说明理由.【中考真题演练】1.(94年安徽省中考题)已知一组数据的方差为S2,将这组数据中的每个数据都乘以k,证明所得到的一组新数据的方差是k2S2.2.(96淮南市中考题)个体户王某经营一家餐馆,下面是餐馆所有工作人员在某个月份的工资 .王某:3000元;厨师甲:450元;厨师乙:400元;杂工:320元;招待甲:350元;招待乙:320元;会计:410元.(1)计算平均工资;(2)计算出的平均工资能否反映帮工人员这个月收入的一般水平?(3)去掉王某的工资后,再计算平均工资;(4)后一个平均工资能代表一般帮工人员的收入吗?(5)根据以上计算,从统计的观点看,你对(3)、(4)的结果有什么看法?【知识探究学习】1.一次科技知识竞赛,两组学生成绩统计如表1:分数50 60 70 80 90 100人数甲组 2 5 10 13 14 6 乙组 4 4 16 2 12 12 已经算得两个组的人均分都是80分,请你根据所学过的统计知识,进一步判断这两个组这次竞赛中成绩谁优谁次.并说明理由.2.为了了解学生的体能情况,抽取了某校一个的部分学生进行一分钟跳绳次数测试将所得数据整理后,画出频率分布直方图(如下图),已知图中从左到右前三个小组的频率分别为0.1、0.3、0.4,第一小组的频数为5.(1)求第四小组的频率;(2)问参加这次测试的学生数是多少?(3)若次数在75次以上(含75次)为达标,试估计该年级学生测试的达标率是多少?(4)问这次测试中,学生跳绳次数的中位数落在四个小组中的哪个小组内?并说明理由.提示:这题是用所学过的统计知识去解决实际问题,目的是要具备一定的阅读能力.数据处理能力和结论的表述能力.参考答案【课内四基达标】1.(1)2 (2)100,1 (3)26 (4)20,0.4 (5)23 (6)8,2,2 (7)0.2 (8)1120(9)4m2 (10)频率、频率、12.(1)C (2)D (3)C (4)A (5)C (6)D3.乙种玉米的苗长得高,甲种玉米的苗长得整齐.4.甲 ∵S 2甲=0.21<S 2乙=0.81 【能力素质提高】1.12,30,0.4,12.x =20+42x+,因x 是整数,∴2+x 是4的倍数,又20<x <2 8⇒22<x+2<30⇒x=22或x=26,当x=22时,x =26,S 2=97.5,S=9.87当x=26时,x =27,S 2=92.5,S=9.61 3.(1)a=0.45 m=6 (2)略4.(1)1584千克 (2)7920元 (3)20% 【渗透拓展创新】1.0.22.50人3.90%4.第三小组内。
高中数学 概率与统计知识点总结

高中数学概率与统计知识点总结概率与统计一、概率及随机变量的分布列、期望与方差1.概率及其计算概率是指某个事件发生的可能性大小,可以用数值表示。
计算概率时,可以采用几个互斥事件和事件概率的加法公式。
如果事件A与事件B互斥,则P(AB)=P(A)+P(B)。
如果事件A1,A2,…,An两两互斥,则事件A1+A2+…+An发生的概率等于这n个事件分别发生的概率的和,即P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An)。
如果事件B与事件A互为对立事件,则P(A)=1-P(B)。
2.随机变量的分布列、期望与方差随机变量是指在随机试验中可能出现的各种结果所对应的变量。
常用的离散型随机变量的分布列包括二项分布和超几何分布。
二项分布指在n次独立重复试验中,事件A发生k次的概率为C(n,k)p^k(1-p)^(n-k),事件A发生的次数是一个随机变量X,其分布列为X~B(n,p)。
超几何分布指在含有M件次品的N件产品中,任取n件,其中恰有X件次品的概率为C(M,k)C(N-M,n-k)/C(N,n),其中m=min(M,n),且n,N,M,N∈N*,称随机变量X的分布列为超几何分布列,称随机变量X服从超几何分布。
2.条件概率及相互独立事件同时发生的概率条件概率是指在已知事件A发生的条件下,事件B发生的概率。
一般地,设A,B为两个事件,且P(A)>0,则P(B|A)=P(AB)/P(A)。
在古典概型中,若用n(A)表示事件A中基本事件的个数,则P(B|A)=n(AB)/n(A)。
相互独立事件是指两个或多个事件之间互不影响,即其中一个事件的发生不会影响其他事件的发生。
如果A,B相互独立,则P(AB)=P(A)P(B)。
如果A与B相互独立,则A与B,A与B,A与B也都相互独立。
3.独立重复试验与二项分布独立重复试验是指在一系列相互独立的试验中,每个试验的结果只有两种可能,即成功或失败。
在n次独立重复试验中,事件A发生k次的概率为C(n,k)p^k(1-p)^(n-k),事件A发生的次数是一个随机变量X,其分布列为X~B(n,p)。
频率分布直方图方差的计算

频率分布直方图方差的计算
课题:频率分布直方图方差的计算频率分布直方图方差(Frequency Distribution Histogram Variance)是统计学中一种
重要的概念,它用于衡量一组数据的变异程度,方差值越大,数据点越分散,越不相关。
在计算频率分布直方图方差时,要先求出各个数据点的平均值,然后求出每个数据点与平均值之差的平方值,最后将每个数据点的平方值求和,再除以总的数据点数,就得到了频率分布直方图的方差。
首先,我们需要把统计学中的概念转换成具体的数学表达式,频率分布直方图方差可以用下面的公式表示:V = Σ( xi -
x )2/N其中,V表示方差,xi表示每个数据点,x表示数据点
的平均值,N表示数据点的数量。
具体的计算步骤是:首先,根据频率分布直方图统计出数据点的数量N;接着,计算数据点的平均值x,用下面的公式:x = Σ( xi )/N;接下来,将每个数据点xi与平均值x之差的平
方值求和,用下面的公式:Σ( xi - x )2;最后,将求和后的结
果除以数据点的数量N,就得到了频率分布直方图的方差V。
以上就是计算频率分布直方图方差的过程。
它是一种重要的统计量,可以用来衡量数据点的变异程度,方差越大,数据点越分散,越不相关。
此外,计算方差也可以帮助分析直方图中数据点的趋势变化,从而更好地了解数据的分布特征。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009年中考数学复习教材回归知识讲解+例题解析+强化训练方差与频率分布◆知识讲解1.方差的定义在一组数据x1,x2,…,x n中,各数据与它们的平均数x的差的平方的平均数,•叫做这组数据的方差.通常用“S2”表示,即S2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2].2.方差的计算(1)基本公式S2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2](2)简化计算公式(Ⅰ)S2=1n[(x12+x22+…+x n2)-n x2],也可写成S2=1n(x12+x22+…+x n2)-x2,此公式的记忆方法是:方差等于原数据平方的平均数减去平均数的平方.(3)简化计算公式(Ⅱ)S2=1n[(x`12+x`22+…+x`n2)-nx x`2].当一组数据中的数据较大时,可以依照简化平均数的计算方法,将每个数据同时减去一个与它们的平均数接近的常数a,得到一组数据x`1=x1-a,x`2=x2-a,…x`n=x n-a,•那么S2=1n[(x`12+x`22+…+x`n2)-n x`2],也可写成S2=1n(x`12+x`22+…+x`n2)-x`2.记忆方法是:•方差等于新数据平方的平均数减去新数据平均数的平方.3.标准差的定义和计算方差的算术平方根叫做这组数据的标准差,用“S”表示,即4.方差和标准差的意义方差和标准差都是用来描述一组数据波动情况的特征数,常用来比较两组数据的波动大小,我们所研究的权是这两组数据的个数相等、平均数相等或比较接近时的情况.方差较大的数据波动较大,方差较小的数据波动较小.5.频率分布的意义前面学习的平均数与方差,反映了样本和总体的两个特征:平均水平和波动大小.但是在许多问题中,只知道这些还不够,还需要知道样本中数据在各个小范围所占的比例的大小,这就需要研究如何对一组数据进行整理,以便得到它的频率分布.6.研究频率分布的一般步骤及有关概念(1)研究样本的频率分布的一般步骤:①计算极差(最大值与最小值的差);②决定组距与组数;③决定分点;④列频率分布表;⑤画出频率分布直方图.(2)频率分布的有关概念:①极差:最大值与最小值的差;②频数:落在各个小组内的数据的个数;③频率:每一小组的频数与数据总体(样本容量n•)的比值叫做这一小组的频率.(3)几个重要的结论:①各小组的频数之和等于数据总数;②各小组的频率之和等于1;③频率分布直方图中,各小长方形的面积等于相应各组的频率,各小长方形面积之和等于1;④各小长方形的高与该组频数成正比.◆例题解析例1甲、乙两个学习小组各4名学生的数学测验成绩如下(•单位:分)甲组:86 82 87 85 乙组:85 81 85 89(1)分别计算这两组数据的平均数;(2)分别计算这两组数据的方差;(3)哪个学习小组学生的成绩比较整齐?【分析】应用平均数计算公式和方差的计算公式求平均数和方差.【解答】(1)x甲=14(6+2+7+5)+80=85,x乙=14(5+1+5+9)+80=85.(2)S甲2=14[(86-85)2+(82-85)2+(87-85)2+(85-85)2]=3.5,S乙2=14[(85-85)2+(81-85)2+(85-85)2+(89-85)2]=8.(3)∵S乙2>S甲2,∴甲组学习成绩较稳定.【点评】方差是反映一组数据波动大小的量.例2 为了迎接全市体育中考,•某中学对全校初三男生进行了立定跳远项目测试,并从参加测试的500名男生中随机抽取了部分男生的测试成绩(单位:m,精确到0.01m)作为样本进行分析,绘制了如图所示的频率分布直方图(•每组含最低值,不含最高值).已知图中从左到右每个小长方形的高比依次为2:4:6:•5:3,其中1.80~2.00这一小组的频数为8,请根据有关信息解答下列问题:(1)这次调查的样本容量为______,2.40~2.60这一小组的频率为_____.(2)请指出样本成绩的中位数落在哪一小组内,并说明理由;(3)样本中男生立定跳远的人均成绩不低于多少米?(4)请估计该校初三男生立定跳远成绩在2.00m以上(包括2.00m)•的约有多少人?【分析】样本容量是样本数据,不带单位,确定中位数时,首先将样本数据按大小排序后再求出,然后分析落在哪个小组.【解答】(1)由于1.80~2.00小组的频数为8,占总份数中的4份,总份数是20•分,故样本容量为:8÷420=40.2.40~2.60这个小组的频率为3÷20=0.15.(2)由于样本容量是40,则中位数是第20人和第21人成绩的平均数,而第20•人和第21人的成绩均在2.00~2.20这个小组,则中位数落在2.00~2.20这个小组.(3)因为第一组到第五组人数依次为4人,8人,12人,10人,6人,•则可求得样本中男生立定跳远的人均成绩不低于2.03m.(4)初中男生立定跳远成绩在2.00m以上的约有2540×500=350(人).【点评】频率分布直方图中各小组频率之和为1,掌握它是解题的关键.◆强化训练一、填空题1.(2005,荆门市)已知数据:1,2,1,0,-1,-2,0,-1,这组数据的方差为______.2.(2005,宜昌市)甲、乙、丙三台包装机同时分装质量为400g的茶叶,从它们各自分装的茶叶中分别随机抽取了10盒,得到它们的实际质量的方差如下表所示.根据表中数据,可以认为三台包装机中,______包装机包装的茶叶质量稳定.甲包装机乙包装机丙包装机方差/g2 31.96 7.96 16.323.2005年沈阳市春季房交会期间,某公司对参加本次房交会的消费者进行了随机的问卷调查,共发放1000份调查问卷,并全部收回.根据调查问卷,将消费者年收入情况整理后,制成表1;将消费者打算购买住房的面积的情况整理后,制成表2,并作出部分频率分布直方图(如图).表1 被调查的消费者年收入情况年收入/万元 1.2 1.8 3.0 5.0 10.0被调查的消费者数/人200 500 200 70 30表2 被调查的消费者打算购买住房的面积的情况分组/m2 频数频率40.5~60.5 0.0460.5~80.5 0.1280.5~100.5 0.36100.5~120.5120.5~140.5 0.20140.5~160.5 0.04合计1000 1.00注:住房面积取整数请你根据以上信息,回答下列问题:(1)根据表1可得,被调查的消费者平均年收入为______万元;被调查的消费者年收入的中位数是______万元;在平均数,中位数这两个数中,更能反映出被调查的消费者年收入的一般水平;(2)根据表2可得,打算购买100.5~120.5m2房子的人数是_____人;打算购买住房面积不超过100m2的消费者的人数占被调查人数的百分数是____;(3)在下图中补全这个频率分布直方图.4.青少年视力水平的下降已经引起全社会的关注,某校为了了解初中毕业年级500名学生的视力情况,从中抽查了一部分学生视力,通过数据处理,得到如下频率分布表和频率分布直方图.分组频数频率3.95~4.25 2 0.044.25~4.55 6 0.124.55~4.85 254.85~5.15 0.045.15~5.45 2 1.00合计请你根据给出的图表回答:(1)填写频率分布表中未完成部分的数据.(2)在这个问题中,总体是________,样本容量是________.(3)在频率分布直方图中,梯形ABCD的面积是______.(4)请你用样本估计总体,可以得到哪些信息(写一条即可):________.5.甲,乙两种产品进行对比试验,•得知乙产品比甲产品的性能更稳定,如果甲,乙两种产品抽样数据的方差分别是S甲2与S乙2,•则它们的方差的大小关系是_______.6.已知:一组数据-1,x,1,2,0•的平均数是0,•这组数据的方差是_____.7.若样本数据1,2,3,2的平均数是a,中位数是b,众数是c,则数据a,b,c的标准差是_______.8.若已知一组数据:x1,x2,…,x n的平均数为x,方差为S2,那么另一组数据:3x1-2,•3x2-2,…,3x n-2的平均数为______,方差为______.二、选择题9.在一次射击练习中,甲,乙两人前5次射击的成绩分别为(单位:环)甲:10 8 10 10 7 乙:7 10 9 9 10 则这次练习中,甲,乙两人方差的大小是()A.S甲2>S乙2B.S甲2<S乙2C.S甲2=S乙2D.无法确定10.已知甲,乙两组数据的平均数相等,•若甲组数据的方差S甲2=0.055,乙组数据的方差S乙2=0.105,则()A.甲组数据比乙组数据波动大B.乙组数据比甲组数据波动大C.甲组数据与乙组数据的波动一样大D.甲,乙两组数据的波动大小不能比较11.(2005,宜昌市)衡量样本和总体的波动大小的特征数是()A.平均数B.众数C.标准差D.中位数12.某少年军校准备从甲,乙,丙三位同学中选拔一人参加全市射击比赛,他们在选拔比赛中,射靶十次的平均环数是x甲=x乙=x丙=8.3,方差分别是S甲2=1.5,S乙2=2.8,S丙2=3.2.那么,根据以上提供的信息,•你认为应该推荐参加全市射击比赛的同学是()A.甲B.乙C.丙D.不能确定13.(2005,广州市)甲,乙两人在相同情况下,各射靶10次,•两人命中环数的平均数是x甲=x乙=7,方差S甲2=1.0,S乙2=1.2,则射击成绩较稳定的是()A.甲B.乙C.一样D.不能确定14.为参加电脑汉字输入比赛,甲和乙两位同学进行了6次测试,成绩如表所示:甲和乙两位同学6次测试成绩(每分钟输入汉字个数)及部分统计数据表第1次第2次第3次第4次第5次第6次平均数方差甲134 137 136 136 137 136 136 1.0乙135 136 136 137 136 136 136 有四位同学在进一步算得乙测试成绩的方差后分别作出了以下判断,•其中说法正确的是()A.甲的方差大于乙的方差,所以甲的成绩比较稳定B.甲的方差小于乙的方差,所以甲的成绩比较稳定C.乙的方差小于甲的方差,所以乙的成绩比较稳定D.乙的方差大于甲的方差,所以乙的成绩比较稳定15.在一次科技知识竞赛中,两组学生成绩统计如下表,通过计算可知两组的方差为S甲2=172,S乙2=256.下列说法:①两组的平均数相同;②甲组学生成绩比乙组学生成绩稳定;③甲组成绩的众数>乙组成绩的众数;•④两组成绩的中位数均为80,但成绩≥80的人数甲组比乙组多,从中位数来看,甲组成绩总体比乙组好;⑤成绩高于或等于90分的人数乙组比甲组多,高分段乙组成绩比甲组好.其中正确的共有(•)分数50 60 70 80 90 100人数甲组 2 5 10 13 14 6 乙组 4 4 16 2 12 12A.2种B.3种C.4种D.5种16.(2005,盐城市)如果将一组数据中的每一个数据都加上同一个非零常数,那么这组数据的()A.平均数和方差都不变B.平均数不变,方差改变C.平均数改变,方差不变D.平均和方差都改变三、解答题17.某校初三(1)班,三(2)班各有49名学生,两班一次数学测验中的成绩统计如下表:班级平均分众数中位数标准差初三(1)班79 70 87 19.8初三(2)班79 70 79 5.2(1)请你对下面的一段话给予简要分析:初三(1)班的小刚回家对妈妈说:“昨天的数学测验,全班平均79分,得70分的人最多,我得了85分,在班上可算上游!”(2)请你根据表中数据,对这两个班的测验情况进行简要分析,•并提出教学建议.18.武汉市教育局在中学开展的“创新素质实践行”中,进行了小论文的评比.各校交论文的时间为5月1日至30日,•评委会把各校交的论文的件数按5天一组分组统计,绘制了频率分布直方图,•已知从左到右各长方形的高的比为2:3:4:6:4:1,第二组的频数为18.请回答下列问题:(1)本次活动共有多少篇论文参加评比?(2)哪组上交的论文数量最多?有多少篇?(3)经过评比,第四组和第六组分别有20篇,4篇论文获奖,•问这两组哪组获奖率较高?19.(2008,金华)九(3)班学生参加学校组织的“绿色奥运”知识竞赛活动,•老师将对学生的成绩按10分的组距分段,统计每个分数段出现的频数,填入频数分布表,并绘制频数的分布直方图.九(3)班“绿色奥运”知识竞赛成绩频数分布表分数段/分49.5~59.5 59.5~69.5 69.5~79.5 79.5~89.5 89.5~99.5组中值/分54.5 64.5 74.5 84.5 94.5频数 a 9 10 14 5频率0.050 0.225 0.250 0.350 b (1)频数分布表中a=_____,b=___;(2)把频数分布直方图补充完整;(3)学校设定成绩在69.5分以上的学生将获得一等奖或二等奖,一等奖奖励作业本15本及奖金50元,二等奖奖励作业本10本及奖金30元.已知这部分学生共获得作业本335本,请你求出他们共获得的奖金.九(3)班“绿色奥运”知识竞赛成绩频数分布直方图20.甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图6-28所示.(1)请填写下表:平均数方差中位数命中8环以上次数甲7 1.2 1乙 5.4(2)请从下列四个不同的角度对这次测试结果进行分析.①从平均数和方差相结合看;②从平均数和中位数相结合看(分析谁的成绩好些);③从平均数和命中9环以上的次数相结合看(分析谁的成绩好些);④从折线图上两人射击命中环数的走势看(分析谁更有潜力).21.在“3.15”消费者权益日的活动中,对甲、•乙两家商场售后服务的满意度进行了抽查.如图反映了被抽查用户对两家商场售后服务的满意程度(以下称:用户满意度),分为很不满意,不满意,较满意,很满意四个等级,并依次为1分,2分,3分,4分.(1)请问:甲商场的用户满意度分数的众数为_____分;乙商品的用户满意度分数的众数为_______分.(2)分别求出甲、乙两商场的用户满意度分数的平均分.(精确到0.01)(3)请你根据所学统计知识,判断哪家商场的用户满意度较高,并简要说明理由.参考答案1.322.乙3.(1)2.39;1.8;中位数(2)240;52% (3)略4.(1)第二列从上至下两空分别填15,50;第三列从上至下两空分别填0.5,0.3 •(2)500名学生的视力情况;50 (3)0.8 (4)该校初中毕业年级学生视力在4.55~4.85的人数最多,约250人;或该校初中毕业年级学生视力在5.15以上的与视力在4.25以下的人数基本相等,各有20人左右5.S乙2<S甲26.2 7.0 8.3x-2 9S29.A 10.B 11.C 12.A 13.A 14.C 15.D 16.C17.(1)从平均数,众数和中位数角度分析;(2)平均分,众数均相同,但三(1)班的成绩中位数高,表示三(1)班成绩比三(2)•班好,但三(2)班标准差比三(1)班小,表示三(2)班学生成绩较整齐.18.(1)本次活动共有120篇文章参评(2)第四组上交的论文数量最多,有36篇(3)第六组获奖率最高.19.(1)2 0.125 (2)图略(3)由题中表得,有29名同学获得一等奖或二等奖.设有x名同学获得一等奖,则有(29-x)名同学获得二等奖,根据题意得15x+10(29-x)=335.解得x=9.∴50x+30(29-x)=1050,所以他们得到的奖金是1050元.20.(1)如下表:平均数方差中位数命中8环以上次数甲7 1.2 7 1乙7 5.4 7.5 3(2)①∵平均数相同,S甲2<S乙2,∴甲成绩比乙稳定.②∵平均数相同,甲的中位数<乙的中位数.∴乙的成绩比甲好些.③∵平均数相同,命中9环以上的次数甲比乙少.∴乙的成绩比甲好些.④甲成绩在平均数上下波动,而乙处于上升势头,从第4•次以后就没有比甲少的情况发生,乙较有潜力.21.(1)3 3(2)甲商场抽查用户数为:500+1000+2000+1000=4500(户),乙商场抽查用户数为:100+900+2200+1300=4500(户).所以甲商场满意度分数的平均值=50011000220003100044500⨯+⨯+⨯+⨯≈2.78(分).乙商场满意度分数的平均值=1001900222003130044500⨯+⨯+⨯+⨯≈3.04(分)答:甲,乙两商场用户满意度分数的平均值分别为2.78分,3.04分.(3)因为乙商场用户满意度分数的平均值较高(或较满意和很满意的人数较多),所以乙商场的用户满意度较多.。