标号法求最短路径例题详解
标数法: 用来解决计算最短路线问题的方法,在给出的图形中

“为什么蜈蚣出门要这么长时间呢?” “因为它要穿鞋呀… …”
7.
一只密蜂从 A 处出发, A 回到家里 B 处,每次只能从一个蜂房爬向右侧邻近的蜂房而 不准逆行,共有多少种回家的方法?
1 A 2 3 4 5 6 7 8 9 B
8. 在图中,用水平或垂直的线段连接相邻的字母,当沿着这些线段行走时,正好拼出 “ APPLE ”的路线共有多少条?
“为什么蜈蚣出门要这么长时间呢?” “因为它要穿鞋呀… …”
有问题跟我联系哦!wutong@ 【数学加油站答案】
1.
A E1 1 C 1 F2 3 1 D
3G 6 B
H
I
2. 首先明确三天所走的路线有什么不同?每天的路线有无限制条件?若有, 是什么?搞清 楚这些问题后,仍然用标数法求解.第一天(无限制条件)共有 16 条;第二天(必须 经过公园)共有 8 条;第三天(必须不经过公园)共有 8 条. 3. 因为 B 在 A 的右下方,由标号法可知,从 A 到 B 的最短路径上,到达任何一点的走法 数都等于到它左侧点的走法数与到它上侧点的走法数之和. 有积水的街道不可能有路线 经过,可以认为积水点的走法数是 0.接下来,可以从左上角开始,按照加法原理,依 次向下向右填上到各点的走法数.如右上图,从 A 到 B 的最短路线有 22 条.
“为什么蜈蚣出门要这么长时间呢?” “因为它要穿鞋呀… …”
标数法: 用来解决计算最短路线问题的方法,在给出的图形中 的每一个结点标出到达该点的方法 数,最后利用相加的原则求出到达目 的地的方法数。
从 A 到 B 的最短路线有多少条?
“为什么蜈蚣出门要这么长时间呢?” “因为它要穿鞋呀… …”
5. 用“标数”求出:从学校到养老院共 126 条.必经过市中心的 60 条,所以可行的路有: 126 60 66 (条) .
最短路径数学建模案例及详解

最短路径数学建模案例及详解最短路径问题是指给定一个有向图,找到其中两个节点之间的最短路径。
这个问题可以通过数学建模来解决。
以下是一个关于最短路径的案例及详解:案例:某个城市有多个地点,这些地点之间有高速公路相连。
现在需要找出两个地点之间的最短路径,以便安排货物的运输。
假设已知这个城市的高速公路网络以及每个道路的长度。
解决方案:1. 定义变量和参数:- 变量:设定一个变量x[i, j],表示从节点i到节点j的路径长度。
这个变量需要求解。
- 参数:给出每个节点之间的长度,可以用一个矩阵表示。
设长度矩阵为A。
2. 建立数学模型:- 目标函数:最小化总路径长度。
可以定义目标函数为:min x[i, j]。
- 约束条件:- 对于任意两个节点i和j来说,路径长度x[i, j]必须是非负的:x[i, j] ≥ 0。
- 对于任意两个节点i和j来说,路径长度x[i, j]等于路径长度x[j, i]:x[i, j] = x[j, i]。
- 对于任意两个节点i和j来说,路径长度x[i, j]需要满足下面的约束条件:x[i, j] ≤ x[i, k] + x[k, j],其中k是任意的节点。
这个约束条件保证了路径长度的传递性。
即,如果从i到j的路径经过节点k,那么整条路径的长度应该不小于x[i, k] + x[k, j]。
3. 求解:- 编写数学建模的代码,并使用求解器(如线性规划求解器)求解最优解。
- 分析优化结果,并得到最短路径的长度以及具体的路径。
总结:通过定义变量和参数,建立数学模型的方式来解决最短路径问题,可以帮助我们找到两个节点之间的最短路径。
数学建模可以提供一个系统化的框架,帮助我们理解问题,并找到最优解。
这种方法在物流、交通规划等领域都有广泛的应用。
标号法

标号法标号法是一种最佳算法,多用于求图的最短路问题。
一、标号法的概念:所谓标号,是指与图的每一个顶点相对应的一个数字。
标号法可以说是动态规划,它采用顺推的方法,对图的每一边检测一次,没有重复的回溯搜索,因此标号法是一种最佳算法。
二、标号法的算法流程:现有一图G,求从起点Vs到终点Ve的最短距离。
设:Sum(j)───顶点Vj的标号,代表的是Vs到Vj的最短距离。
Vj•已标味着Vs到Vj的最短路以及这条路径的长度已求出。
M(i,j)───Vi到Vj的非负长度。
H(j)───顶点Vj的前趋结点。
标号法的算法流程如下:sum(s)←0↓Vs进入队列L↓-----→移出队列L的队首Vk←-----| ↓ || Vk是不是Ve------------------|---→计算结束打印路径| N∣ Y || ↓ || 由Vk扩展出结点Vj || (Vk与Vj之间相连) || Sj←Sum(k)+M(k,j) || ↓ || Sj小于Sum(j) || | || Y | N || | --------------------| || ↓| Sum(j)←Sj| H(j)← Vk| Vj加入队列L并对队列L按Sum值由小到大排序| ↓---------------注意:1.只有两个顶点间的距离为非负时,才可用标号法。
2.只有队列的首结点是目标结点时,才可停止计算。
•否则得出的不一定是最优解。
三、例题解析:1.相邻项序列(GDOI97第四题)问题描述:对于一个N*N(<=100)的正整数矩阵M,存在从M[A1,•B1] •开始到M[A2,B2]结束的相邻项序列.两个项M[I,J]和M[K,L]•相邻的件是指满足如下情况之一:(1)I=K+-1和J=L(2)I=K和J=L+-1。
任务:从文件中输入矩阵M,再读入K(K<=4)组M[A1,B1]和M[A2,B2]的值。
对于每一组M[A1,B1]和M[A2,B2],求一相邻项序列,使得相邻项之差的绝对值之和为最小。
最短路径问题例题与讲解

13.4 课题学习最短路径问题1.最短路径问题(1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.如下图,点A,B分别是直线l异侧的两个点,在l上找一个点C,使CA+CB最短,这时点C是直线l与AB的交点.(2)求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.如下图,点A,B分别是直线l同侧的两个点,在l上找一个点C,使CA+CB最短,这时先作点B关于直线l的对称点B′,则点C是直线l与AB′的交点.为了证明点C的位置即为所求,我们不妨在直线上另外任取一点C′,连接AC′,BC′,B′C′,证明AC+CB<AC′+C′B.如下:证明:由作图可知,点B和B′关于直线l对称,所以直线l是线段BB′的垂直平分线.因为点C与C′在直线l上,所以BC=B′C,BC′=B′C′.在△AB′C′中,AB′<AC′+B′C′,所以AC+B′C<AC′+B′C′,所以AC+BC<AC′+C′B.【例1】在图中直线l上找到一点M,使它到A,B两点的距离和最小.分析:先确定其中一个点关于直线l的对称点,然后连接对称点和另一个点,与直线l的交点M即为所求的点.解:如下图:(1)作点B关于直线l的对称点B′;(2)连接AB′交直线l于点M.(3)则点M即为所求的点.点拨:运用轴对称变换及性质将不在一条直线上的两条线段转化到一条直线上,然后用“两点之间线段最短”解决问题.运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不管题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同.警误区利用轴对称解决最值问题应注意题目要求根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.解决这类最值问题时,要认真审题,不要只注意图形而忽略题意要求,审题不清导致答非所问.3.利用平移确定最短路径选址选址问题的关键是把各条线段转化到一条线段上.如果两点在一条直线的同侧时,过两点的直线与原直线的交点处构成线段的差最大,如果两点在一条直线的异侧时,过两点的直线与原直线的交点处构成的线段的和最小,都可以用三角形三边关系来推理说明,通常根据最大值或最小值的情况取其中一个点的对称点来解决.解决连接河两岸的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题.在解决最短路径问题时,我们通常利用轴对称、平移等变换把不在一条直线上的两条线段转化到一条直线上,从而作出最短路径的方法来解决问题.【例2】如图,小河边有两个村庄A,B,要在河边建一自来水厂向A村与B村供水.(1)假设要使厂部到A,B村的距离相等,则应选择在哪建厂?(2)假设要使厂部到A,B两村的水管最短,应建在什么地方?分析:(1)到A,B两点距离相等,可联想到“线段垂直平分线上的点到线段两端点的距离相等”,又要在河边,所以作AB的垂直平分线,与EF的交点即为符合条件的点.(2)要使厂部到A村、B村的距离之和最短,可联想到“两点之间线段最短”,作A(或B)点关于EF的对称点,连接对称点与B点,与EF的交点即为所求.解:(1)如图1,取线段AB的中点G,过中点G画AB的垂线,交EF于P,则P到A,B的距离相等.也可分别以A、B为圆心,以大于12AB 为半径画弧,两弧交于两点,过这两点作直线,与EF 的交点P 即为所求.(2)如图2,画出点A 关于河岸EF 的对称点A ′,连接A ′B 交EF 于P ,则P 到A ,B 的距离和最短.【例3】 如图,从A 地到B 地经过一条小河(河岸平行),今欲在河上建一座与两岸垂直的桥,应如何选择桥的位置才能使从A 地到B 地的路程最短?思路导引:从A 到B 要走的路线是A →M →N →B ,如下图,而MN 是定值,于是要使路程最短,只要AM +BN 最短即可.此时两线段应在同一平行方向上,平移MN 到AC ,从C 到B 应是余下的路程,连接BC 的线段即为最短的,此时不难说明点N 即为建桥位置,MN 即为所建的桥.解:(1)如图2,过点A 作AC 垂直于河岸,且使AC 等于河宽.(2)连接BC与河岸的一边交于点N.(3)过点N作河岸的垂线交另一条河岸于点M.则MN为所建的桥的位置.4.生活中的距离最短问题由两点之间线段最短(或三角形两边之和大于第三边)可知,求距离之和最小问题,就是运用等量代换的方式,把几条线段的和想方法转化在一条线段上,从而解决这个问题,运用轴对称性质,能将两条线段通过类似于镜面反射的方式转化成一条线段,如图,AO+BO=AC的长.所以作已知点关于某直线的对称点是解决这类问题的基本方法.【例4】(实际应用题)茅坪民族中学八(2)班举行文艺晚会,桌子摆成如图a所示两直排(图中的AO,BO),AO桌面上摆满了橘子,OB桌面上摆满了糖果,站在C处的学生小明先拿橘子再拿糖果,然后到D处座位上,请你帮助他设计一条行走路线,使其所走的总路程最短?图a 图b解:如图b.(1)作C点关于OA的对称点C1,作D点关于OB的对称点D1,(2)连接C1D1,分别交OA,OB于P,Q,那么小明沿C→P→Q→D 的路线行走,所走的总路程最短.利用轴对称和三角形的三边关系是解决几何中的最大值问题的关键.先做出其中一点关于对称轴的对称点,然后连接对称点和另一个点,所得直线与对称轴的交点,即为所求.根据垂直平分线的性质和三角形中两边之差小于第三边易证明这就是最大值.破疑点解决距离的最值问题的关键运用轴对称变换及三角形三边关系是解决一些距离的最值问题的有效方法.【例5】如下图,A,B两点在直线l的两侧,在l上找一点C,使点C到点A、B的距离之差最大.分析:此题的突破点是作点A(或B)关于直线l的对称点A′(或B′),作直线A′B(AB′)与直线l交于点C,把问题转化为三角形任意两边之差小于第三边来解决.解:如下图,以直线l为对称轴,作点A关于直线l的对称点A′,A′B的连线交l于点C,则点C即为所求.理由:在直线l上任找一点C′(异于点C),连接CA,C′A,C′A′,C′B.因为点A,A′关于直线l对称,所以l为线段AA′的垂直平分线,则有CA=CA′,所以CA -CB=CA′-CB=A′B.又因为点C′在l上,所以C′A=C′A′.在△A′BC′中,C′A-C′B=C′A′-C′B<A′B,所以C′A′-C′B<CA-CB.点拨:根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.。
最短路径算法例题

最短路径算法例题最短路径算法是图论中非常重要的算法之一,用于找到两个顶点之间的最短路径。
最短路径问题在实际生活中有很多应用,例如导航系统中的路线规划、网络中的数据传输等。
下面我们给出一个例题来说明最短路径算法的应用。
假设我们有一个城市的地图,其中包含了多个交叉路口和道路,每个道路都有一个权值表示该道路的长度。
我们需要找到从起点到终点的最短路径。
给定以下城市地图示例:```A/2 5/B---3---C| |4 6| |D---1---E```其中,A、B、C、D、E代表交叉路口,数字代表道路的长度。
现在我们要找到从起点A到终点E的最短路径。
我们可以使用Dijkstra算法来解决这个问题。
Dijkstra算法的基本思想是通过不断扩展路径,更新起点到每个顶点的最短路径。
具体步骤如下:1. 初始化距离数组dist,起点到每个顶点的距离初始设为无穷大,起点到自身的距离为0。
2. 选择起点A作为当前顶点,更新起点到A相邻顶点的距离。
对于起点A的相邻顶点B和C,更新dist[B] = 2和dist[C] = 5。
同时将A标记为已访问。
3. 在未访问的顶点中选择距离起点最近的顶点作为当前顶点,这里选择B作为当前顶点。
更新起点到B的相邻顶点D的距离,即更新dist[D] = 6。
同时将B标记为已访问。
4. 重复步骤3,选择距离起点最近的未访问顶点作为当前顶点,直到终点E被标记为已访问。
5. 最终得到起点到终点的最短路径长度为dist[E] = 7。
在本例中,起点到终点的最短路径是A->B->D->E,总长度为7。
最短路径算法是图论中的经典算法之一,有多种实现方式,包括Dijkstra算法、Bellman-Ford算法、Floyd-Warshall算法等。
不同的算法适用于不同的问题场景,选择合适的算法可以提高计算效率。
总结起来,最短路径算法可以帮助我们在图中找到起点到终点的最短路径,解决实际生活中的路径规划问题。
最短路径与标号法

最短路径与标号法前面我们学习过动态规划的应用,图中没明显阶段求最短路径的问题属于无明显阶段的动态规划,通常用标号法求解,求最短路径问题是信息学奥赛中很重要的一类问题,许多问题都可转化为求图的最短路径来来解,图的最短路径在图论中有经典的算法,本章介绍求图的最短路径的dijkstra算法、Floyed算法,以及标号法。
一、最短路径的算法1、单源点最短路径(dijkstra算法)给定一个带权有向图G=(V,E),其中每条边的权是一个非负实数,另外,还给定V中的一个顶点,称为源点。
求从源点到所有其他各顶点的最短路径长度。
这个问题称为单源最短路径问题。
求单源最短路径可用dijkstra算法求解。
(dijkstra算法)算法思想:设源点为x0,dist[i]表示顶点i到源点x0的最短路径长度,map[i,j]表示图中顶点i到顶点j的长度,用数组mark对所有的顶点作标记,已求出源点到达该点J的最短路径的点J记为mark[j]=true,否则标记为false。
初始时,对源点作标记,然后从未作标记的点中找出到源点路径长度最短的顶点minj,对该顶点作标记,并对其它未作标记的点K作判断:if dist[minj]+map[minj,k]<dist[k] then dist[k]= dist[minj]+map[minj,k]。
重复处理,直到所有的顶点都已作标记,这时求出了源点到所有顶点的最短路径。
算法过程:const maxn=100;varmap: array[1..maxn,1..maxn] of integer;dist: array[1..maxn] of integer;mark: array[1..maxn] of Boolean;n,k: integer;procedure dijkstra;var I,j,min,minj,temp:integer;beginfillchar(mark,sizeof(mark),0);for I:=1 to n do dist[i]:=maxint;dist[k]:=0;for I:=1 to n-1 dobeginmin:=maxint;for j:=1 to n doif (not mark[j]) and (dist[j]<min) thenbeginmin:=dist[j]; minj:=j;end;mark[minj]:=true;for j:=1 to n doif (not mar[j]) and (map[minj,j]>0) thenbegintemp:=dist[minj]+map[minj,j];if temp<dist[j] then dist[j]:=temp;end;end;end;以上只是求出了从源点到其它所有点的最短路径长度,所经过的具体路径没有保存,如果要求出具体的路径来,那么在求最短路径的过程中要将经过的中间点记录下来。
dijkstra 标号法 floyd

dijkstra 标号法floyd全文共四篇示例,供读者参考第一篇示例:Dijkstra算法和Floyd算法是两种最经典的图论算法,用来解决最短路径问题。
它们分别有着独特的算法思想和实现方式,在不同的场景中表现出各自的优势。
本文将介绍Dijkstra算法和Floyd算法的基本原理和应用,以及它们之间的区别和优缺点。
让我们来了解一下Dijkstra算法。
Dijkstra算法是由荷兰计算机科学家艾兹赫·迪克斯特拉于1956年提出的,用来解决单源最短路径问题。
所谓单源最短路径问题,就是给定一个带权有向图G=(V, E),其中V为顶点集合,E为边集合,每条边的权值为正数,以及一个源点s,求出从源点s到图中其他所有顶点的最短路径。
Dijkstra算法的基本思想是以源点为中心,逐步找出源点到其他各顶点的最短路径。
具体步骤如下:1. 创建一个集合S,用来存放已确定最短路径的顶点,初始时将源点加入其中;2. 初始化一个数组dist,用来记录从源点到各顶点的最短距离,初始时将源点到自身的距离设为0,其余顶点的距离设为无穷大;3. 重复以下步骤直到集合S包含所有顶点:a. 从dist中找出当前距禓源点最近的顶点u,将其加入集合S;b. 更新以u为起点的边的权值,更新dist数组中相应的距禓;4. 得到源点到其他各顶点的最短路径。
Dijkstra算法的时间复杂度为O(V^2),其中V为顶点数,这主要取决于选取最短路径顶点的方式。
当使用最小堆或斐波那契堆优化时,时间复杂度可以降至O(E+VlogV)。
1. 初始化一个二维数组dist,用来记录任意两顶点之间的最短路径距禓,初始时将dist[i][j]设为顶点i到顶点j的直接距禓,如果i和j 之间没有直接边,则设为无穷大;2. 重复以下步骤直到二维数组dist不再更新:a. 遍历所有顶点对(i, j),尝试以顶点k为中转点,更新dist[i][j]的值;3. 得到任意两顶点之间的最短路径。
最短路径问题的求解PPT精选文档

.
3
最短路径问题的求解
三、等代价搜索法 等代价搜索法也是在宽度优先搜索的基础上进行了部分优化的一种算法,它与
启发式搜索的相似之处都是每次只展开某一个结点(不是展开所有结点),不同之 处在于:它不需要去另找专门的估价函数,而是以该结点到A点的距离作为估价值, 也就是说,等代价搜索法是启发式搜索的一种简化版本。它的大体思路是:
.
2
最短路径问题的求解
二、 启发式搜索 在宽度优先搜索算法的基础上,每次并不是把所有可展开的结点展开,
而是对所有没有展开的结点,利用一个自己确定的估价函数对所有没展开 的结点进行估价,从而找出最应该被展开的结点(也就是说我们要找的答 案最有可能是从该结点展开),而把该结点展开,直到找到目标结点为止。
.
12
最短路径问题的求解
八、Dijkstra算法(从一个顶点到其余各顶点的最短路径,单源最短路径) 例3、如下图,假设C1,C2,C3,C4,C5,C6是六座城市,他们之间的连线表示两 城市间有道路相通,连线旁的数字表示路程。请编写一程序,找出C1到Ci 的最短路径(2≤i≤6),输出路径序列及最短路径的路程长度。
3、由数轴可见,A与A'点相比,A点离原点近,因而保留A点,删除A'点,相应的,B、B'点保留B点, D、D'保留D',E、E'保留E',得到下图:
.
11
最短路径问题的求解
4、此时再以离原点最近的未展开的点B联接的所有点,处理后,再展开离原点最近未展开的D点, 处理后得到如下图的最终结果:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四步:
标号法求v0到v5的最短路径
r vi
v0
v1
v2
v3
0
014
1
1/v0 3 8
2
3/v0 8
3
7
v4
v5
6
4
4/v2 10
6
标号法求最短路径
第五步:
标号法求v0到v5的最短路径
r vi
v0
v1
v2
v3
v4
v5
0
0 1 4
1
1/v0 3 8
6
2
3/v0 8
4
3
7 4/v2 10
4
标号法求最短路径
第三步:
标号法求v0到v5的最短路径
r vi
v0
v1
v2
v3
v4
v5
0
0 1 4
1
1/v0 3 8
6
2
3/v0 8
4
因为第二步得到的数字当中3最小,v2最短为3。
因为通过v2不能直接到达v3,所以v3下面还是8。
通过v2到达v4需要4
到达不了v5
5
标号法求最短路径
标号法(E.W.Dijkstra, 1959)
设带权图G=<V,E,w>, 其中eE, w(e)0. 设V={v1,v2,,vn}, 求v1到其余各顶点的最短路径
p标号(永久性标号)l
( i
r
):
第r步获得的v1到短路径的
权
t到标达号v(i临的时路性径标的号最)小li(权r) :,
第r步获得的v1经过p标号顶点 是v1到vi的最短路径的权的上
( j
r
1)
}
,
vi获得p标号:
l (r ) i
l (r1) i
.
令 Pr=Pr-1{vi}, Tr=Tr-1-{vi}.
若Tr=, 则结束.
3.
vjTr,
令
l(r) j
m
in{l
( j
r
1)
,
li(
r
)
wij }
令r=r+1, 转2.
2
标号法求最短路径
第一步:
标号法求v0到v5的最短路径
r vi
v0
v1
v2
v3
v4
v5
0
0 1 4
因为第一步v0只能够到达v1和v2,所以v1和v2下面写到达 的权重,而v3~v5写无穷大。
3
标号法求最短路径
第二步:
标号法求v0到v5的最短路径
r vi
v0
v1
v2
v3
v4
v5
0
0 1 4
1
1/v0 3 8
6
因为第一步得到的数字当中除了已经确定的0以外,1最小, 所以到达v1的最短路径确定了,为1,并且通过v0。 因为通过v1到达v2需要3步,比4小,所以v2处写3。 同理,因为通过v1到达v3和v4的权重和小于正无穷。
vi所需要的最短路径
8
界
第r步通过集Pr={v | v在第r步已获得永久性标号} 第r步未通过集Tr=V-Pr
1
标号法(续)
算法:
1. v1获p标号:
l
( i
0
)
=0,
P0={v1},
T0=V-{v1},
vj(j=2,3,,n)获t
标
号:
l (0) j
=wij.
令r1.
2. 设
l (r1) i
min {l
v j Tr1
4
7/v4
9
7
r vi v0
0
0
1
2
3
4
5
w0
v1
v2
v3
v4
v5
1 4
1/v0 4 8
6
4/v0 8
5
8 5/v2 6
8
6/v4
8/v1
1485
6
=v0v1v2v4v3v5, w()=6
同理得到第五行,只是得到第五行以后所有都标红了,也就是所有都结束
了,最后加一行,把所有标红的数字重新写一遍,这些数字就是到达相应