§1.1 MATLAB操作界面

合集下载

MATLAB软件简介

MATLAB软件简介

MATLAB在信号与系统课程中的应用
EE of BUPT
1.4.3 工作空间浏览器和开始按钮
Workspace Browser 在默认情况下,该命令窗口出现在MATLAB操作界面
的左上方的前台。在这个窗口中,用户可以查出工作空 间中所有变量的类别、名称和大小。用户可以在这个窗 口中观察、编辑和提取这些变量。 开始按钮:这个按钮是MATLAB 6.5以后增加的。单击 后会出现MATLAB的现场菜单
HELP FUN displays a description of and syntax for the function FUN. 例如 help plot;
LOOKFOR Search all M-files for keyword. 例如lookfor jacobian将在所有M文件中搜索包 含关键字jacobian的文件名。
MATLAB在信号与系统课程中的应用
EE of BUPT
1.4.4 图形窗
只要执行了任一种绘图命令,就会自动产生图形窗。 以后的图形都在这一个图形窗中进行:
如想再建一个或几个图形窗,则可键入figure, MATLAB会新建一个空白的图形窗,并自动给它依 次排序。如键入logo,即可生成MATLAB的标志图 形;利用图形窗上的一排按钮,可以对图形进行修 改和注释。
安装时应根据自己的需要选择安装的组件
MATLAB在信号与系统课程中的应用
EE of BUPT
1.4.1 命令窗及几个主要命令
命令窗是用户进行各种操作的主要窗口。用户可输 入各种MATLAB命令,函数和表达式。操作和运算的 结果也会在该窗口中出现。
命令行提示符“>>” 命令窗口显示方式的设置:菜单

matlab第一讲

matlab第一讲
系统科学研究所
·
1.2 MATLAB 集成开发环境
如果一个命令行很长,一个物理行之内写不下,可以在第1个物理行之 后加上3个小黑点并按下回车键,然后接着下一个物理行继续写命令的 其他部分。3个小黑点称为续行符,即把下面的物理行看作该行的“逻 辑”继续。 例如:
z=1+1/(1*2)+(1*2*3)+1/(1*2*3*4)+…
系统科学研究所
1.2 MATLAB 集成开发环境
MATLAB的工具栏提供了一些命令按钮和一个当前路径列表框。
2.命令窗口
一般来说,在命令编辑区的一个命令行输入一条命令,命令行以回车 结束。但一个命令行可以输入若干条命令,各命令之间以逗号分隔, 若前一命令后带有分号,则逗号可以省略。例如:
x=720,y=68 x= 720 y=86 x=720;y=86 y=86
1.3MATLAB 的帮助功能
1.3.1帮助界面
进入MATLAB帮助界面可以通过以下3种方法。 单击MATLAB主窗口工具栏中的Help按钮。
在命令窗口中输入”helpwin”、”helpdesk”或“doc”命令。
选择Help菜单中的”MATLAB Help”选项。 1.3.2帮助命令
1.help命令
系统科学研究所
1.2 MATLAB 集成开发环境
检查该命令是否为MATLAB 搜索路径中其他目录下的M文件。 2.设置搜索路径
用户可以将自己的工作目录列入MATLAB搜索路径,从而将用户目录
纳入MATLAB系统统一管理。 (1)用path命令设置搜索路径 (2)用对话框设置搜索路径
·
系统科学研究所
统程序设计语言一样进行程序设计,而且结合MATLAB的数值计算和

MATLAB实用中文手册

MATLAB实用中文手册

下拉菜单
功能
The MathWorks Web Site
连接到 MathWorks 公司的主页
MATLAB Central
连接到 MATLAB Central
MATLAB File Exchange
连接到 MATLAB File Exchange
MATLAB Newsgroup Access
连接到 MATLAB Newsgroup Access
1.1.2 MATLAB 功能和特点
1.功能强大 (1) 运算功能强大 MATLAB 的数值运算要素不是单个数据,而是矩阵,每个元素都可看作复数,运
算包括加、减、乘、除、函数运算等;
1
通过 MATLAB 的符号工具箱,可以解决在数学、应用科学和工程计算领域中常常 遇到的符号计算问题。
(2) 功能丰富的工具箱 大量针对各专业应用的工具箱的提供,使 MATLAB 适用于不同领域。
则以科学计数法显示结果。
显示格式设置:选择菜单“File”→“ Preferences”,则会出现参数设置对话框,
如图 1.10 所示;
图 1.10 参数设置对话框
直接在命令窗口中输入 “format” 命令来进行数值显示格式的设置。
format 格式描述
表 1.6 数据显示的 Format 格式
线性、连续或离散的系统,通过 Simulink 能够仿真并分析该系统。
1.2 MATLAB 6.5 环境设置
MATLAB6.5 版 的 界 面 更 加 方 便 , 运 行 界 面 称 为 MATLAB 操 作 界 面 (MATLAB Desktop),默认的操作界面如图 1.1 所示。
MATLAB 的操作界面是一个高度集成的工作界面,它的通用操作界面包括九个常用的 窗口,另外,MATLAB6.5 版还增加了“Start”开始按钮。

2024版matlab教程(全)资料ppt课件

2024版matlab教程(全)资料ppt课件

进行通信系统的建模、仿真和分析。
谢谢聆听
B
C
变量与赋值
在MATLAB中,变量不需要事先声明,可以 直接赋值。变量名以字母开头,可以包含字 母、数字和下划线。
常用函数
MATLAB提供了丰富的内置函数,如sin、 cos、tan等三角函数,以及abs、sqrt等数 学函数。用户可以通过help命令查看函数的
D
使用方法。
02 矩阵运算与数组操作
错误处理
阐述try-catch错误处理机制的语法、 执行流程及应用实例。
04
函数定义与调用
函数概述
阐述函数的概念、作用及分类,包括内置函数和 自定义函数。
函数调用
深入剖析函数的调用方法,包括直接调用、间接 调用及参数传递等技巧。
ABCD
函数定义
详细讲解自定义函数的定义方法,包括函数名、 输入参数、输出参数及函数体等要素。
拟合方法
利用已知数据点构造近似函数,如最小二乘法、多项 式拟合、非线性拟合等。
插值与拟合的比较
插值函数经过所有数据点,而拟合函数则追求整体上 的近似。
数值积分与微分
01
数值积分方法
利用数值技术计算定积分的近似 值,如矩形法、梯形法、辛普森 法等。
02
数值微分方法
通过数值技术求解函数的导数或 微分,如差分法、中心差分法、 五点差分法等。
02
01
矩阵运算
加法与减法
对应元素相加或相减,要求矩阵 大小相同
乘法
使用`*`或`mtimes`函数进行矩阵 乘法,要求内维数相同
点乘与点除
使用`.*`、`./`进行对应元素相乘或 相除,要求矩阵大小相同
特征值与特征向量

Matlab功能应用介绍

Matlab功能应用介绍

Matlab用法简介绪论Matlab是“Matrix Laboratory”的缩写,意为“矩阵实验室”,是当今美国很流行的科学计算软件.信息技术、计算机技术发展到今天,科学计算在各个领域得到了广泛的应用.在许多诸如控制论、时间序列分析、系统仿真、图像信号处理等方面产生了大量的矩阵及其相应的计算问题.自己去编写大量的繁复的计算程序,不仅会消耗大量的时间和精力,减缓工作进程,而且往往质量不高.美国Mathwork软件公司推出的Matlab软件就是为了给人们提供一个方便的数值计算平台而设计的.Matlab是一个交互式的系统,它的基本运算单元是不需指定维数的矩阵,按照IEEE的数值计算标准(能正确处理无穷数Inf(Infinity)、无定义数NaN(not-a-number)及其运算)进行计算.系统提供了大量的矩阵及其它运算函数,可以方便地进行一些很复杂的计算,而且运算效率极高.Matlab命令和数学中的符号、公式非常接近,可读性强,容易掌握,还可利用它所提供的编程语言进行编程完成特定的工作.除基本部分外,Matlab还根据各专门领域中的特殊需要提供了许多可选的工具箱,如应用于自动控制领域的Control System工具箱和神经网络中Neural Network工具箱等.第一节Matlab的安装及使用§1.1 Matlab的安装Matlab有各种版本,早期有Matlab 1.0 for 386的DOS版本,后来逐步发展.这里介绍的版本是Matlab 6.x for Windows.因为它使用方便,界面美观,我们选择它作为主要讲解版本.Matlab还有许多附加的部分,最常见的部分称为Simulink,是一个用作系统仿真的软件包,它可以让您定义各种部件,定义各自对某种信号的反应方式及与其它部件的连接方式.最后选择输入信号,系统会仿真运行整个模拟系统,并给出统计数据.Simulink有时是作为Matlab的一部分提供的,称为Matlab with Simulink版本.Matlab还有许多工具箱,它们是根据各个特殊领域的需要,用Matlab自身的语言编写的程序集,使用起来非常§1.2 Matlab基本用法从Windows中双击Matlab图标,会出现Matlab命令窗口(Command Window),在一段提示信息后,出现系统提示符“>>”.Matlab是一个交互系统,您可以在提示符后键入各种命令,通过上下箭头可以调出以前打入的命令,用滚动条可以查看以前的命令及其输出信息.如果对一条命令的用法有疑问的话,可以用Help菜单中的相应选项查询有关信息,也可以用help命令在命令行上查询,您可以试一下help、help help和help eig(求特征值的函数)命令.下面我们先从输入简单的矩阵开始掌握Matlab的功能.§1.2.1输入简单的矩阵输入一个小矩阵的最简单方法是用直接排列的形式.矩阵用方括号括起,元素之间用空格或逗号分隔,矩阵行与行之间用分号分开.例如输入:A=[1 2 3 ; 4 5 6 ; 7 8 0]系统会回答A =1 2 34 5 67 8 0表示系统已经接收并处理了命令,在当前工作区内建立了矩阵A.大的矩阵可以分行输入,用回车键代替分号,如:A=[ 1 2 34 5 67 8 0 ]结果和上式一样,也是A =1 2 34 5 67 8 0§1.2.2矩阵元素Matlab的矩阵元素可以是任何数值表达式.如:x=[ -1.3 sqrt(3) (1+2+3)*4/5]结果:x =-1.3000 1.7321 4.8000在括号中加注下标,可取出单独的矩阵元素.如:x(5)=abs(x(1))结果x =-1.3000 1.7321 4.8000 0 1.3000注:结果中自动产生了向量的第5个元素,中间未定义的元素自动初始为零.大的矩阵可把小的矩阵作为其元素来完成,如:A=[A; [10 11 12]]结果A =1 2 34 5 67 8 010 11 12小矩阵可用“:”从大矩阵中抽取出来,如:A=A(1:3,:);即从A中取前三行和所有的列,重新组成原来的A. (详细介绍参见第二节的相关内容)§1.2.3语句和变量Matlab的表述语句、变量的类型说明由Matlab系统解释和判断.Matlab语句通常形式为:变量=表达式或者使用其简单形式为:表达式表达式由操作符或其它特殊字符、函数和变量名组成.表达式的结果为一个矩阵,显示在屏幕上,同时保存在变量中以留用.如果变量名和“=”省略,则具有ans名(意思指回答)的变量将自动建立.例如:键入1900/81结果为:ans =23.4568需注意的问题有以下几点:●语句结束键入回车键,若语句的最后一个字符是分号,即“;”,则表明不输出当前命令的结果.●如果表达式很长,一行放不下,可以键入“…”(三个点,但前面必须有个空格,目的是避免将形如“数2 …”理解为“数2.”与“..”的连接,从而导致错误),然后回车.●变量和函数名由字母加数字组成,但最多不能超过63个字符,否则系统只承认前63个字符.●Matlab变量字母区分大小写,如A和a不是同一个变量,函数名一般使用小写字母,如inv(A)不能写成INV(A),否则系统认为未定义函数.§1.2.4 who和系统预定义变量输入who命令可检查工作空间中建立的变量,键入:who系统输出为:Your variables are:A ans x这里表明三个变量已由前面的例子产生了.但列表中列出的并不是系统全部的变量,系统还有以下内部变量:eps、pi、Inf、NaN变量eps在决定诸如矩阵的奇异性时,可作为一个容许差,容许差的初值为1.0到1.0以后计算机所能表示的下一个最大浮点数,IEEE在各种计算机、工作站和个人计算机上使用这个算法.用户可将此值置为任何其它值(包括0值).Matlab的内部函数pinc和rank以eps为缺省的容许差.变量pi是 ,它是用imag(log(-1))建立的.Inf表示无穷大.如果您想计算1/0S=1/0结果会是Warning:Divide by zeroS=Inf具有IEEE规则的机器,被零除后,并不引出出错条件或终止程序的运行,而产生一个警告信息和一个特殊值在计算方程中列出来.变量NaN表示它是个不定值.由Inf/Inf或0/0运算产生.要了解当前变量的信息请键入whos,屏幕将显示:Name Size Bytes ClassA 4x3 96 double arrayS 1x1 8 double arrayans 1x1 8 double arrayx 1x5 40 double arrayGrand total is 19 elements using 152 bytes从size及bytes项目可以看出,每一个矩阵实元素需8个字节的内存.4×3的矩阵使用96个字节,全部变量的使用内存总数为152个字节.自由空间的大小决定了系统变量的多少,如计算机上有虚拟内存的话,其可定义的变量个数会大大增加.§1.2.5数和算术表达式Matlab中数的表示方法和一般的编程语言没有区别.如:3 -99 0.00019.63972 1.6021E-20 6.02252e23在计算中使用IEEE浮点算法其舍入误差是eps.浮点数表示范围是10-308~10308.数学运算符有:+ 加- 减* 乘/ 右除\ 左除^ 幂这里1/4和4\1有相同的值都等于0.25(注意比较:1\4=4).只有在矩阵的除法时左除和右除才有区别.§1.2.6复数与矩阵在Matlab中输入复数首先应该建立复数单位:i=sqrt(-1)及j=sqrt(-1)之后复数可由下面语句给出:Z=3+4i (注意:在4与i之间不要留有任何空间!)输入复数矩阵有两个方便的方法,如:A=[1 2; 3 4] + i*[5 6; 7 8]和A=[1+5i 2+6i; 3+7i 4+8i]两式具有相等的结果.但当复数作为矩阵的元素输入时,不要留有任何空间,如1+5i,如在“+”号左右留有空格,就会被认为是两个分开的数.不过实际使用复数时并没有这么麻烦,系统有一个名为startup.m的Matlab命令文件,建立复数单位的语句也放在其中.当Matlab启动时,此文件自动执行,i和j将自动建立.§1.2.7输出格式任何Matlab语句执行结果都可在屏幕上显示,同时赋给指定的变量,没有指定变量时赋给ans.数字显示格式可由format命令来控制(Windows系统下的Matlab系统的数字显示格式可以由Option菜单中的Numerical Format菜单改变).format仅影响矩阵的显示,不影响矩阵的计算与存贮.(Matlab以双精度执行所有的运算)首先,如果矩阵元素是整数则矩阵显示就没有小数,如x=[-1 0 1],结果为:x=-1 0 1x=[4/3 1.2345e-6]在不同的输出格式下的结果为:短格式 1.3333 0.0000短格式e方式 1.3333e+000 1.234e-006长格式 1.333333333333333 0.000001234500000长格式e方式 1.333333333333333e-000 1.23450000000000e-006有理数格式4/3 1/81004516进制格式3ff5555555555555 3eb4b6231abfd271+格式+ +对于短格式,如果矩阵的最大元素比数999999999大,或者比数0.0001小,则在打印时,将加入一个普通的长度因数.如y=1.e20*x,意为x被1020乘,结果为:y=1.0e+020*1.3333 0.0000“+”格式是显示大矩阵的一种紧凑方法,“+”,“-”和空格显示正数、负数和零元素.最后format compact命令压缩显示的矩阵,以允许更多的信息显示在屏幕上.§1.2.8 Help求助命令和联机帮助Help求助命令很有用,它对Matlab大部分命令提供了联机求助信息.您可以从Help 菜单中选择相应的菜单,打开求助信息窗口查询某条命令,也可以直接用help命令.键入help得到help列表文件,键入“help 指定项目”,如:键入help eig则提供特征值函数的使用信息.键入help [显示如何使用方括号等.键入help help显示如何利用help本身的功能.还有,键入lookfor <关键字>:可以从m文件的help中查找有关的关键字.§1.2.9 退出和存入工作空间退出Matlab可键入quit或exit或选择相应的菜单.中止Matlab运行会引起工作空间中变量的丢失,因此在退出前,应键入save命令,保存工作空间中的变量以便以后使用.键入save则将所有变量作为文件存入磁盘Matlab.mat中,下次Matlab启动时,键入load将变量从Matlab.mat中重新调出.save和load后边可以跟文件名或指定的变量名,如仅有save时,则只能存入Matlab.mat 中.如save temp命令,则将当前系统中的变量存入temp.mat中去,命令格式为:save temp x 仅仅存入x变量.save temp X Y Z 则存入X、Y、Z变量.load temp可重新从temp.mat文件中提出变量,load也可读ASCII数据文件.详细语法见联机帮助.第二节向量与矩阵运算Matlab能处理数、向量和矩阵.但一个数事实上是一个1×1的矩阵,1个n维向量也不过是一个1×n或n×1的矩阵.从这个角度上来讲,Matlab处理的所有的数据都是矩阵.Matlab的矩阵处理能力是非常灵活、强大的.以下我们将从矩阵的产生、基本运算、矩阵函数等几个方面来说明.§2.1向量及矩阵的生成除了我们在上节介绍的直接列出矩阵元素的输入方法,矩阵还可以通过几种不同的方式输入到Matlab中.§2.1.1 通过语句和函数产生1. 向量的产生除了直接列出向量元素(即所谓的“穷举法”)外,最常用的用来产生相同增量的向量的方法是利用“:”算符(即所谓的“描述法”).在Matlab中,它是一个很重要的字符.如:z=1:5z =1 2 3 4 5即产生一个1~5的单位增量是1的行向量,此为默认情况.用“:”号也可以产生单位增量不等于1的行向量,语法是把增量放在起始量和结尾量的中间.如:x=0:pi/4:pi即产生一个由0~pi的行向量,单位增量是pi/4=3.1416/4=0.7854.x =0 0.7854 1.5708 2.3562 3.1416也可以产生单位增量为负数的行向量.如:y=6:-1:1y =6 5 4 3 2 12. 矩阵的产生ones(3)ans =1 1 11 1 11 1 1eye(3)ans =1 0 00 1 00 0 1除了以上产生标准矩阵的函数外,Matlab还提供了产生随机(向量)矩阵的函数rand 和randn,及产生均匀级数的函数linspace、产生对数级数的函数logspace和产生网格的函数meshgrid等等.详细使用请查阅随机文档.“: ”冒号可以用来产生简易的表格,为了产生纵向表格形式,首先用冒号“: ”产生行向量,再进行转置,计算函数值的列,然后形成有二列的矩阵.例如命令:x=(0.0:0.2:3.0)';y=exp(-x).*sin(x);[x y]产生结果为:ans =0 00.2000 0.16270.4000 0.26100.6000 0.30990.8000 0.32231.0000 0.30961.2000 0.28071.4000 0.24301.6000 0.20181.8000 0.16102.0000 0.12312.2000 0.08962.4000 0.06132.6000 0.03832.8000 0.02043.0000 0.0070§2.1.2 通过后缀为.m的命令文件产生如有文件data.m,其中包括正文:A=[ 1 2 34 5 67 8 0]则用data命令执行data.m,可以产生名为A的矩阵.§2.2 矩阵操作在Matlab中可以对矩阵进行任意操作,包括改变它的形式,取出子矩阵,扩充矩阵,旋转矩阵等.其中最重要的操作符为“:”,它的作用是取出选定的行与列.例如:A(:,:) 代表A的所有元素;试比较A(:), 将A按列的方向拉成长长的1列(向量);A(:,J) 代表A的第J列;A(J:K) 代表A(J), A(J+1), …, A(K),如同A(:)的第J到第K个元素;A(:,J:K) 代表A(:,J), A(:,J+1), …, A(:,K),如此类推.对矩阵可以进行各种各样的旋转、变形、扩充:Matlab中有内部函数fliplr ( Flip matrix in the left/right direction),它对矩阵进行左右旋转.例x = 1 2 3 fliplr(x)为 3 2 14 5 6 6 5 4同样有flipud:x = 1 4 flipud(x)为 3 62 5 2 53 6 1 4矩阵的转置用符号“' ”表示:如A=[1 2 3; 4 5 6 ; 7 8 0]那么:计算B=A'B =1 4 72 5 83 6 0符号“' ”为矩阵的转置,如果Z为复矩阵,则Z'为它的复数共轭转置,非共轭转置使用Z.' 或conj(Z')求得.reshape改变矩阵的形状,这是什么意思呢?可举一个例子来说明.A=[A;[10 11 12]]A =1 2 34 5 67 8 010 11 12则 reshape(A,2,6)ans =1 72 83 04 105 116 12可见,reshape 是将矩阵元素以列为单位进行重组,原来4×3的矩阵变为了2×6的矩阵.那么以下的语句也不难理解了,它将矩阵A 按列打开(size 函数返回矩阵A 的行数与列数).reshape(A,1,size(A,1)*size(A,2)),它等价于A(:)' .还有函数rot90,它可以将矩阵进行各种90度的旋转;tril 及triu 取出矩阵的下三角及上三角阵等.详细的用法可以在需要使用时查阅手册.第三节 矩阵的基本运算§3.1 加和减如矩阵A 和B 的维数相同,则A+B 与A-B 表示矩阵A 与B 的和与差.如果矩阵A 和B 的维数不匹配,Matlab 会给出相应的错误提示信息.如:A= B=1 2 3 1 4 74 5 6 2 5 87 8 0 3 6 0C =A+B 返回:C =2 6 106 10 1410 14 0如果运算对象是个标量(即1×1矩阵),可和其它矩阵进行加减运算.例如:x= -1 y=x-1= -20 -12 1§3.2矩阵乘法Matlab 中的矩阵乘法有通常意义上的矩阵乘法,也有Kronecker 乘法,以下分别介绍. §3.2.1 矩阵的普通乘法矩阵乘法用“ * ”符号表示,当A 矩阵列数与B 矩阵的行数相等时,二者可以进行乘法运算,否则是错误的.计算方法和线性代数中所介绍的完全相同.如:A=[1 2 ; 3 4]; B=[5 6 ; 7 8]; C=A*B ,结果为C=⎪⎪⎭⎫ ⎝⎛4321×⎪⎪⎭⎫ ⎝⎛8765=⎪⎪⎭⎫ ⎝⎛⨯+⨯⨯+⨯⨯+⨯⨯+⨯8463745382617251=⎪⎪⎭⎫ ⎝⎛50432219 即Matlab 返回:C =19 2243 50如果A 或B 是标量,则A*B 返回标量A (或B )乘上矩阵B (或A )的每一个元素所得的矩阵.§3.2.2 矩阵的Kronecker 乘法对n ×m 阶矩阵A 和p ×q 阶矩阵B ,A 和B 的Kronecher 乘法运算可定义为:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⊗=B a B a B a B a B a B a B a B a B a B A C nm n n m m (21)2222111211 由上面的式子可以看出,Kronecker 乘积A ⊗B 表示矩阵A 的所有元素与B 之间的乘积组合而成的较大的矩阵,B ⊗A 则完全类似.A ⊗B 和B ⊗A 均为np ×mq 矩阵,但一般情况下A ⊗B ≠B ⊗A .和普通矩阵的乘法不同,Kronecker 乘法并不要求两个被乘矩阵满足任何维数匹配方面的要求.Kronecker 乘法的Matlab 命令为C=kron(A,B),例如给定两个矩阵A 和B :A = B= 则由以下命令可以求出A 和B 的Kronecker 乘积C :A=[1 2; 3 4]; B=[1 3 2; 2 4 6]; C=kron(A,B)C =1 32 2 6 42 4 6 4 8 123 9 64 12 86 12 18 8 16 24作为比较,可以计算B 和A 的Kronecker 乘积D ,可以看出C 、D 是不同的:A=[1 2; 3 4]; B=[1 3 2; 2 4 6]; D=kron(B,A)D =1 2 3 6 2 43 4 9 12 6 82 4 4 8 6 126 8 12 16 18 24§3.3 矩阵除法在Matlab 中有两种矩阵除法符号:“\”即左除和“/”即右除.如果A 矩阵是非奇异方阵,则A\B 是A 的逆矩阵乘B ,即inv(A)*B ;而B/A 是B 乘A 的逆矩阵,即B*inv(A).具体计算时可不用逆矩阵而直接计算.通常:x=A\B 就是A*x=B 的解;x=B/A 就是x*A=B 的解.当B 与A 矩阵行数相等可进行左除.如果A 是方阵,用高斯消元法分解因数.解方程:A*x(:, j)=B(:, j),式中的(:, j)表示B 矩阵的第j 列,返回的结果x 具有与B 矩阵相同的阶数,如果A 是奇异矩阵将给出警告信息.如果A 矩阵不是方阵,可由以列为基准的Householder 正交分解法分解,这种分解法可以解决在最小二乘法中的欠定方程或超定方程,结果是m ×n 的x 矩阵.m 是A 矩阵的列数,n 是B 矩阵的列数.每个矩阵的列向量最多有k 个非零元素,k 是A 的有效秩.右除B/A 可由B/A=(A'\B')'左除来实现.§3.4矩阵乘方A^P 意思是A 的P 次方.如果A 是一个方阵,P 是一个大于1的整数,则A^P 表示A的P次幂,即A自乘P次.如果P不是整数,计算涉及到特征值和特征向量的问题,如已经求得:[V,D]=eig(A),则:A^P=V*D.^P/V(注:这里的.^表示数组乘方,或点乘方,参见后面的有关介绍)如果B是方阵,a是标量,a^B就是一个按特征值与特征向量的升幂排列的B次方程阵.如果a和B都是矩阵,则a^B是错误的.§3.5 矩阵的超越函数在Matlab中解释exp(A)和sqrt(A)时曾涉及到级数运算,此运算定义在A的单个元素上.Matlab可以计算矩阵的超越函数,如矩阵指数、矩阵对数等.一个超越函数可以作为矩阵函数来解释,例如将“m”加在函数名的后边而成expm(A)和sqrtm(A),当Matlab运行时,有下列三种函数定义:expm 矩阵指数logm 矩阵对数sqrtm 矩阵开方所列各项可以加在多种m文件中或使用funm.请见应用库中sqrtm.m,1ogm.m,funm.m 文件和命令手册.§3.6数组运算数组运算由线性代数的矩阵运算符“*”、“/”、“\”、“^”前加一点来表示,即为“.*”、“./”、“.\”、“.^”.注意没有“.+”、“.-”运算.§3.6.1数组的加和减对于数组的加和减运算与矩阵运算相同,所以“+”、“-”既可被矩阵接受又可被数组接受.§3.6.2数组的乘和除数组的乘用符号.*表示,如果A与B矩阵具有相同阶数,则A.*B表示A和B单个元素之间的对应相乘.例如x=[1 2 3]; y=[ 4 5 6];计算z=x.*y结果z=4 10 18数组的左除(.\)与数组的右除(./),由读者自行举例加以体会.§3.6.3 数组乘方数组乘方用符号.^表示.例如:键入:x=[ 1 2 3]y=[ 4 5 6]则z=x.^y=[1^4 2^5 3^6]=[1 32 729](1) 如指数是个标量,例如x.^2,x同上,则:z=x.^2=[1^2 2^2 3^2]=[ 1 4 9](2) 如底是标量,例如2 .^[x y] ,x、y同上,则:z=2 .^[x y]=[2^1 2^2 2^3 2^4 2^5 2^6]=[2 4 8 16 32 64] 从此例可以看出Matlab算法的微妙特性,虽然看上去与其它乘方没什么不同,但在2和“.”之间的空格很重要,如果不这样做,解释程序会把“.”看成是2的小数点.Matlab 看到符号“^”时,就会当做矩阵的幂来运算,这种情况就会出错,因为指数矩阵不是方阵.§3.7 矩阵函数Matlab的数学能力大部分是从它的矩阵函数派生出来的,其中一部分装入Matlab本身处理中,它从外部的Matlab建立的M文件库中得到,还有一些由个别的用户为其自己的特殊的用途加进去的.其它功能函数在求助程序或命令手册中都可找到.手册中备有为Matlab提供数学基础的LINPACK和EISPACK软件包,提供了下面四种情况的分解函数或变换函数:(1)三角分解;(2)正交变换;(3) 特征值变换;(4)奇异值分解.§3.7.1三角分解最基本的分解为“LU”分解,矩阵分解为两个基本三角矩阵形成的方阵,三角矩阵有上三角矩阵和下三角矩阵.计算算法用高斯变量消去法.从lu函数中可以得到分解出的上三角与下三角矩阵,函数inv得到矩阵的逆矩阵,det 得到矩阵的行列式.解线性方程组的结果由方阵的“\”和“/”矩阵除法来得到.例如:A=[ 1 2 34 5 67 8 0]LU分解,用Matlab的多重赋值语句[L,U]=lu(A)得出注:L结果只需计算L*U即可.求逆由下式给出:x=inv(A)x =从LU的值可由下式给出:d=det(A)d =27直接由三角分解计算行列式:d=det(L)*det(U)d =27.0000为什么两种d的显示格式不一样呢? 当Matlab做det(A)运算时,所有A的元素都是整数,所以结果为整数.但是用LU分解计算d时,L、U的元素是实数,所以Matlab产生的d也是实数.例如:线性联立方程取b=[ 135]解Ax=b方程,用Matlab矩阵除得到x=A\b结果x=0.33330.33330.0000由于A=L*U,所以x也可以有以下两个式子计算:y=L\b,x=U\y.得到相同的x值,中间值y为:y =5.00000.28570.0000Matlab中与此相关的函数还有rcond、chol和rref.其基本算法与LU分解密切相关.chol 函数对正定矩阵进行Cholesky分解,产生一个上三角矩阵,以使R'*R=X.rref用具有部分主元的高斯-约当消去法产生矩阵A的化简梯形形式.虽然计算量很少,但它是很有趣的理论线性代数.为了教学的要求,也包括在Matlab中.§3.7.2正交变换“QR”分解用于矩阵的正交-三角分解.它将矩阵分解为实正交矩阵或复酉矩阵与上三角矩阵的积,对方阵和长方阵都很有用.例如A=[ 1 2 34 5 67 8 910 11 12]是一个降秩矩阵,中间列是其它二列的平均,我们对它进行QR分解:[Q,R]=qr(A)R的下三角都给出0,并且R(3,3)=0.0000,说明矩阵R与原来矩阵A都不是满秩的.下面尝试利用QR分解来求超定和降秩的线性方程组的解.例如:b=[ 1357]讨论线性方程组Ax=b,我们可以知道方程组是超定的,采用最小二乘法的最好结果是计算x=A\b.结果为:Warning: Rank deficient, rank = 2 tol = 1.4594e-014x =0.50000.1667我们得到了缺秩的警告.用QR分解法计算此方程组分二个步骤:y=Q'*bx=R\y求出的y值为xWarning: Rank deficient, rank = 2 tol = 1.4594e-014x =0.50000.1667用A*x来验证计算结果,我们会发现在允许的误差范围内结果等于b.这告诉我们虽然联立方程Ax=b是超定和降秩的,但两种求解方法的结果是一致的.显然x向量的解有无穷多个,而“QR”分解仅仅找出了其中之一.§3.7.3奇异值分解在Matlab中三重赋值语句[U,S,V]=svd(A)在奇异值分解中产生三个因数:A=U*S*V 'U矩阵和V矩阵是正交矩阵,S矩阵是对角矩阵,svd(A)函数恰好返回S的对角元素,而且就是A的奇异值(其定义为:矩阵A'*A的特征值的算术平方根).注意到A矩阵可以不是方的矩阵.奇异值分解可被其它几种函数使用,包括广义逆矩阵pinv(A)、秩rank(A)、欧几里德矩阵范数norm(A,2)和条件数cond(A).§3.7.4 特征值分解如果A是n×n矩阵,若λ满足Ax=λx,则称λ为A的特征值,x为相应的特征向量.函数eig(A)返回特征值列向量,如果A是实对称的,特征值为实数.特征值也可能为复数,例如:A=[ 0 1-1 0]eig(A)产生结果ans =0 + 1.0000i0 - 1.0000i如果还要求求出特征向量,则可以用eig(A)函数的第二个返回值得到:[x,D]=eig(A)D的对角元素是特征值.x的列是相应的特征向量,以使A*x=x*D.计算特征值的中间结果有两种形式:Hessenberg形式为hess(A),Schur形式为schur(A).schur形式用来计算矩阵的超越函数,诸如sqrtm(A)和logm(A).如果A和B是方阵,函数eig(A,B)返回一个包含一般特征值的向量来解方程Ax=λBx双赋值获得特征向量[X,D]=eig(A,B)产生特征值为对角矩阵D.满秩矩阵X的列相应于特征向量,使A*X=B*X*D,中间结果由qz(A,B)提供.§3.7.5秩Matlab计算矩阵A的秩的函数为rank(A),与秩的计算相关的函数还有:rref(A)、orth(A)、null(A)和广义逆矩阵pinv(A)等.利用rref(A),A的秩为非0行的个数.rref方法是几个定秩算法中最快的一个,但结果上并不可靠和完善.pinv(A)是基于奇异值的算法.该算法消耗时间多,但比较可靠.其它函数的详细用法可利用Help求助.第四节Matlab中的图形§4.1二维作图绘图命令plot绘制x-y坐标图;loglog命令绘制对数坐标图;semilogx和semilogy命令绘制半对数坐标图;polor命令绘制极坐标图.§4.1.1 基本形式如果y是一个向量,那么plot(y)绘制一个y中元素的线性图.假设我们希望画出y=[0., 0.48, 0.84, 1., 0.91, 6.14 ]则用命令:plot(y)它相当于命令:plot(x, y),其中x=[1,2,…,n]或x=[1;2;…;n],即向量y的下标编号, n为向量y的长度Matlab会产生一个图形窗口,显示如下图形,请注意:坐标x和y 是由计算机自动绘出的.上面的图形没有加上x轴和y轴的标注,也没有标题.用xlabel,ylabel,title命令可以加上.如果x,y是同样长度的向量,plot(x,y)命令可画出相应的x元素与y元素的x-y坐标图.例:x=0:0.05:4*pi; y=sin(x); plot(x,y)grid on, title(' y=sin( x ) 曲线图' )xlabel(' x = 0 : 0.05 : 4Pi ')结果见下图.§4.1.2 多重线在一个单线图上,绘制多重线有三种办法.第一种方法是利用plot的多变量方式绘制:plot(x1,y1,x2,y2,...,xn,yn)x1,y1,x2,y2,...,xn,yn是成对的向量,每一对x, y在图上产生如上方式的单线.多变量方式绘图是允许不同长度的向量显示在同一图形上.第二种方法也是利用plot绘制,但加上hold on/off命令的配合:plot(x1,y1)hold onplot(x2,y2)hold off第三种方法还是利用plot绘制,但代入矩阵:如果plot用于两个变量plot(x,y),并且x,y是矩阵,则有以下情况:(1)如果y是矩阵,x是向量,plot(x,y)用不同的画线形式绘出y的行或列及相应的x 向量,y的行或列的方向与x向量元素的值选择是相同的.(2)如果x是矩阵,y是向量,则除了x向量的线族及相应的y向量外,以上的规则也适用.(3)如果x,y是同样大小的矩阵,plot(x,y)绘制x的列及y相应的列.还有其它一些情况,请参见Matlab的帮助系统.§4.1.3 线型和颜色的控制如果不指定划线方式和颜色,Matlab会自动为您选择点的表示方式及颜色.您也可以用不同的符号指定不同的曲线绘制方式.例如:plot(x,y,'*') 用'*'作为点绘制的图形.plot(x1,y1,':',x2,y2,'+') 用':'画第一条线,用'+'画第二条线.如果你的计算机系统不支持彩色显示,Matlab将把颜色符号解释为线型符号,用不同的线型表示不同的颜色.颜色与线型也可以一起给出,即同时指定曲线的颜色和线型.例如:t=-3.14:0.2:3.14;x=sin(t); y=cos(t);§4.1.4对数图、极坐标图及条形图loglog、semilogx、semilogy和polar的用法和plot相似.这些命令允许数据在不同的graph paper上绘制,例如不同的坐标系统.先介绍的fplot是扩展来的可用于符号作图的函数.●fplot(fname,lims) 绘制fname指定的函数的图形.●polar( theta, rho) 使用相角theta 为极坐标形式绘图,相应半径为rho,其次可使用grid命令画出极坐标网格.●loglog 用log10-log10标度绘图.●semilogx 用半对数坐标绘图,x轴是log10,y是线性的.●semilogy 用半对数坐标绘图,y轴是log10,x是线性的.●bar(x) 显示x向量元素的条形图,bar不接受多变量.●hist 绘制统计频率直方图.●histfit(data,nbins) 绘制统计直方图与其正态分布拟合曲线.fplot函数的绘制区域为lims=[xmin,xmax],也可以用lims=[xmin,xmax,ymin,ymax]指定y 轴的区域.函数表达式可以是一个函数名,如sin,tan等;也可以是带上参数x的函数表达式,如sin(x),diric(x,10);也可以是一个用方括号括起的函数组,如[sin, cos].例1:fplot('sin',[0 4*pi])例2:fplot('sin(1 ./ x)', [0.01 0.1])例3:fplot('abs(exp(-j*x*(0:9))*ones(10,1))',[0 2*pi],'-o')例4:fplot('[sin(x), cos(x) , tan(x)]',[-2*pi 2*pi -2*pi 2*pi]) %%(图4.1.4.1)下面介绍的是其它几个作图函数的应用.例5:半对数坐标绘图t=0.001:0.002:20; y=5 + log(t) + t; semilogx(t,y, 'b') hold onsemilogx(t,t+5, 'r') %% (图4.1.4.2)例6:极坐标绘图t=0:0.01:2*pi;polar(t,sin(6*t)) %% (图4.1.4.3)图4.1.4.3 极坐标绘图 图4.1.4.4正态分布的统计直方图与其正态分布拟合曲线例7:正态分布图我们可以用命令normrnd 生成符合正态分布的随机数. normrnd(u,v,m,n)其中,u 表示生成随机数的期望,v 代表随机数的方差. 运行:a=normrnd(10,2,10000,1); histfit(a) %% (图4.1.4.4)我们可以得到正态分布的统计直方图与其正态分布拟合曲线.例8:比较正态分布(图4.1.4.5(1))与平均分布(图4.1.4.5(2))的分布图:yn=randn(30000,1); %% 正态分布 x=min(yn) : 0.2 : max(yn); subplot(121) hist(yn, x)yu=rand(30000,1); %% 平均分布 subplot(122) hist(yu, 25)-5050500100015002000250000.512004006008001000120014004.1.4.5(1) 4.1.4.5(2)图4.1.4.5 正态分布与平均分布的分布图。

MATLAB中文手册簿

MATLAB中文手册簿

Matlab中文手册目录 (1)第1章MATLAB 6.5环境 (6)1.1 MA TLAB简介 (6)1.1.1 MATLAB工具箱 (6)1.1.2 MATLAB功能和特点 (6)1.2 MA TLAB 6.5环境设置 (7)1.2.1 菜单栏 (7)1.2.2 工具栏 (10)1.2.3 通用操作界面窗口 (10)1.3 MA TLAB 6.5帮助 (19)1.4 MATLAB 6.5其他管理 (20)1.4.1 MATLAB用户文件格式 (20)1.4.2设置搜索路径 (21)1.4.3文件管理命令 (22)1.4.4 退出MA TLAB (23)1.5 一个实例 (23)第2章MATLAB数值计算 (26)2.1 变量和数据 (26)2.1.1数据类型 (26)2.1.2数据 (26)2.1.3变量 (27)2.2 矩阵和数组 (28)2.2.1矩阵输入 (28)2.2.2矩阵元素和操作 (31)2.2.3字符串 (37)2.2.4矩阵和数组运算 (41)2.2.5多维数组 (52)2.3稀疏矩阵 (55)2.3.1稀疏矩阵的建立 (55)2.3.2稀疏矩阵的存储空间 (58)2.3.3稀疏矩阵的运算 (59)2.4多项式 (59)2.4.1多项式的求值、求根和部分分式展开 (59)2.4.2多项式的乘除法和微积分 (61)2.4.3多项式拟合和插值 (63)2.5元胞数组和结构数组 (65)2.5.1元胞数组 (65)2.5.2结构数组 (68)2.6数据分析 (71)2.6.1数据统计和相关分析 (71)2.6.2差分和积分 (72)2.6.3卷积和快速傅里叶变换 (74)2.6.4向量函数 (76)第3章MATLAB符号计算 (77)3.1 符号表达式的建立 (77)3.1.1 创建符号常量 (77)3.1.2 创建符号变量和表达式 (78)3.1.3 符号矩阵 (79)3.2符号表达式的代数运算 (81)3.2.1符号表达式的代数运算 (81)3.2.2 符号数值任意精度控制和运算 (83)3.2.3 符号对象与数值对象的转换 (84)3.3符号表达式的操作和转换 (85)3.3.1符号表达式中自由变量的确定 (85)3.3.2符号表达式的化简 (86)3.3.3符号表达式的替换 (89)3.3.4求反函数和复合函数 (90)3.3.5 符号表达式的转换 (92)3.4 符号极限、微积分和级数求和 (93)3.4.1符号极限 (93)3.4.2符号微分 (94)3.4.3符号积分 (96)3.4.4符号级数 (97)3.5 符号积分变换 (98)3.5.1傅里叶(Fourier)变换及其反变换 (98)3.5.2拉普拉斯(Laplace)变换及其反变换 (99)3.5.3 Z变换及其反变换 (100)3.6符号方程的求解 (101)3.6.1代数方程 (101)3.6.2符号常微分方程 (102)3.7符号函数的可视化 (103)3.7.1符号函数的绘图命令 (103)3.7.2图形化的符号函数计算器 (105)3.8 Maple函数的使用 (105)3.8.1访问Maple函数 (105)3.8.2 获得Maple的帮助 (106)第4章MA TLAB计算的可视化和GUI设计 (107)4.1二维曲线的绘制 (107)4.1.1基本绘图命令plot (107)4.1.2绘制曲线的一般步骤 (111)4.1.3多个图形绘制的方法 (112)4.1.4曲线的线型、颜色和数据点形 (114)4.1.5设置坐标轴和文字标注 (115)4.2 MA TLAB的三维图形绘制 (119)4.2.1绘制三维线图命令plot3 (119)4.2.2绘制三维网线图和曲面图 (120)4.2.3立体图形与图轴的控制 (123)4.2.4色彩的控制 (125)4.3 MA TLAB的特殊图形绘制 (128)4.3.1条形图 (128)4.3.2面积图和实心图 (129)4.3.3直方图 (130)4.3.4饼图 (131)4.3.5离散数据图 (132)4.3.6对数坐标和极坐标图 (132)4.3.7等高线图 (133)4.3.8复向量图 (134)4.4图形窗口的功能 (135)4.5对话框 (136)4.6句柄图形 (138)4.6.1句柄图形体系 (138)4.6.2图形对象的操作 (139)4.6.3图形对象属性的获取和设置 (142)4.7图形用户界面(GUI)设计 (144)4.7.1可视化的界面环境 (144)4.7.2菜单 (145)4.7.3控件 (146)4.7.5回调函数 (148)4.7.6 GUI应用举例 (148)4.8动画 (151)4.8.1以电影方式产生动画 (151)4.8.2以对象方式产生动画 (151)第5章MATLAB程序设计 (153)5.1脚本文件和函数文件 (153)5.1.1 M文本编辑器 (153)5.1.2 M文件的基本格式 (153)5.1.3 M脚本文件 (154)5.1.4 M函数文件 (155)5.2程序流程控制 (156)5.2.1 for ... end循环结构 (156)5.2.2 while ... end循环结构 .. (157)5.2.3 If...else...end条件转移结构 (158)5.2.4 switch...case开关结构 (158)5.2.5 try... catch... end试探结构 . (160)5.2.6流程控制语句 (160)5.3函数调用和参数传递 (162)5.3.2局部变量和全局变量 (163)5.3.3函数的参数 (164)5.3.4程序举例 (167)5.4 M文件性能的优化和加速 (169)5.4.1 P码文件 (169)5.4.2 M文件性能优化 (169)5.4.3 JIT和加速器 (170)5.5内联函数 (173)5.6利用函数句柄执行函数 (174)5.6.1函数句柄的创建 (174)5.6.2用feval命令执行函数 (175)5.7利用泛函命令进行数值分析 (176)5.7.1求极小值 (177)5.7.2求过零点 (178)5.7.3数值积分 (179)5.7.4微分方程的数值解 (179)第6章线性控制系统分析与设计 (181)6.1线性系统的描述 (181)6.1.1状态空间描述法 (181)6.1.2传递函数描述法 (182)6.1.3零极点描述法 (183)6.1.4离散系统的数学描述 (183)6.2线性系统模型之间的转换 (186)6.2.1连续系统模型之间的转换 (186)6.2.2连续系统与离散系统之间的转换 (189)6.2.3模型对象的属性 (192)6.3结构框图的模型表示 (194)6.4线性系统的时域分析 (202)6.4.1零输入响应分析 (202)6.4.2脉冲响应分析 (203)6.4.3阶跃响应分析 (204)6.4.4任意输入的响应 (205)6.4.5系统的结构参数 (207)6.5线性系统的频域分析 (208)6.5.1频域特性 (208)6.5.2连续系统频域特性 (209)6.5.3幅值裕度和相角裕度 (212)6.5.4离散系统频域分析 (213)6.6线性系统的根轨迹分析 (213)6.6.1绘制根轨迹 (213)6.6.2根轨迹的其它工具 (215)6.7线性系统的状态空间设计 (218)6.7.1极点配置法 (218)第7章Simulink仿真环境 (220)7.1演示一个Simulink的简单程序 (220)7.2 Simulink的文件操作和模型窗口 (222)7.2.1 Simulink的文件操作 (222)7.2.2 Simulink的模型窗口 (222)7.3 模型的创建 (224)7.3.1模块的操作 (224)7.3.2信号线的操作 (226)7.3.3给模型添加文本注释 (227)7.4 Simulink的基本模块 (227)7.4.1基本模块 (227)7.4.2常用模块的参数和属性设置 (229)7.5复杂系统的仿真与分析 (232)7.5.1仿真的设置 (232)7.5.2连续系统仿真 (233)7.5.3离散系统仿真 (236)7.5.4仿真结构参数化 (238)7.6子系统与封装 (238)7.6.1建立子系统 (238)7.6.2条件执行子系统 (240)7.6.3子系统的封装 (241)7.7用MA TLAB命令创建和运行Simulink模型 (245)7.7.1用MA TLAB命令创建Simulink模型 (245)7.7.2用MA TLAB命令运行Simulink模块 (247)7.8以Simulink为基础的模块工具箱简介 (248)第8章MA TLAB高级应用 (248)8.1 MA TLAB应用接口 (248)8.1.1 MEX文件 (248)8.1.2 使用MA TLAB编译器生成MEX和EXE文件 (252)8.2 低级文件的输入输出 (254)8.2.1打开和关闭文件 (254)8.2.2读写格式化文件 (255)8.2.3读写二进制数据 (257)8.2.4文件定位 (258)8.3 图形文件的转储 (260)8.4 Notebook (260)8.4.1 Notebook的安装 (260)8.4.2 Notebook的启动 (261)8.4.3 Notebook的使用 (262)8.4.4 Notebook中MA TLAB的使用 (265)第1章MATLAB 6.5环境1.1MATLAB简介●MATLAB(Matrix Laborator)是MathWorks公司开发科学与工程计算软件;●广泛应用于自动控制、数学运算、信号分析、计算机技术、图像信号处理、财务分析、航天工业、汽车工业、生物医学工程、语音处理和雷达工程等行业;●国内外高校和研究部门科学研究的重要工具;●MATLIB 已成为数学计算工具方面事实上的标准,MATLIB 6.5是最新版本。

matlab教程ppt(完整版)

matlab教程ppt(完整版)

矩阵的数学运算
总结词
详细描述
总结词
详细描述
掌握矩阵的数学运算,如求逆 、求行列式、求特征值等。
在MATLAB中,可以使用inv() 函数来求矩阵的逆,使用det() 函数来求矩阵的行列式,使用 eig()函数来求矩阵的特征值。 例如,A的逆可以表示为 inv(A),A的行列式可以表示 为det(A),A的特征值可以表 示为eig(A)。
• 总结词:了解特征值和特征向量的概念及其在矩阵分析中的作用。 • 详细描述:特征值和特征向量是矩阵分析中的重要概念。特征值是满足Ax=λx的标量λ和向量x,特征向量是与特征值对
应的非零向量。特征值和特征向量在许多实际问题中都有应用,如振动分析、控制系统等。
04
MATLAB图像处理
图像的读取与显示
变量定义
使用赋值语句定义变量,例如 `x = 5`。
矩阵操作
学习如何创建、访问和操作矩 阵,例如使用方括号 `[]`。
函数编写
学习如何创建自定义函数来执 行特定任务。
02
MATLAB编程
变量与数据类型
01
02
03
变量命名规则
MATLAB中的变量名以字 母开头,可以包含字母、 数字和下划线,但不应与 MATLAB保留字冲突。
了解矩阵的数学运算在实际问 题中的应用。
矩阵的数学运算在许多实际问 题中都有应用,如线性方程组 的求解、矩阵的分解、信号处 理等。通过掌握这些运算,可 以更好地理解和解决这些问题 。
矩阵的分解与特征值
• 总结词:了解矩阵的分解方法,如LU分解、QR分解等。
• 详细描述:在MATLAB中,可以使用lu()函数进行LU分解,使用qr()函数进行QR分解。这些分解方法可以将一个复杂的 矩阵分解为几个简单的部分,便于计算和分析。

(完整版)Matlab入门教程

(完整版)Matlab入门教程

第1章MATLAB操作基础1.1 MATLAB概述1.1.2 MATLAB的主要功能1.数值计算MATLAB以矩阵作为数据操作的基本单位,还提供了十分丰富的数值计算函数。

2.绘图功能可以绘制二维、三维图形,还可以绘制特殊图形(与统计有关的图,例如:区域图、直方图、饼图、柱状图等)。

3.编程语言MATLAB具有程序结构控制、函数调用、数据结构、输入输出、面向对象等程序语言特征,而且简单易学、编程效率高。

4.MATLAB工具箱MATLAB包含两部分内容:基本部分和各种可选的工具箱。

MATLAB工具箱分为两大类:功能性工具箱和学科性工具箱。

1.1.3MATLAB语言的特点❖语言简洁紧凑,使用方便灵活,易学易用。

例如:A=[1 2 3;4 5 6;7 8 9]一条语句实现了对3x3矩阵的输入。

❖语句功能强大,一条语句相当于其它语言的一个子程序,例如fft。

❖语句简单,内涵丰富。

同一个函数有不同的输入变量和输出变量,分别代表不同的含义。

❖Matlab既具有结构化的控制语句(if、for、while)又支持面向对象的程序设计。

❖方便的绘图功能。

❖包含功能强劲的工具箱。

❖易于扩展。

1.1.4 初识MATLAB例1-1 绘制正弦曲线和余弦曲线。

x=[0:0.5:360]*pi/180;plot(x,sin(x),x,cos(x));例1-2 求方程3x4+7x3+9x2-23=0的全部根。

p=[3,7,9,0,-23]; %建立多项式系数向量x=roots(p) %求根例1-3 求积分quad('x.*log(1+x)',0,1)例1-4 求解线性方程组。

a=[2,-3,1;8,3,2;45,1,-9];b=[4;2;17];x=inv(a)*b1.2 MATLAB的运行环境与安装1.2.1 MATLAB的运行环境硬件环境:(1) CPU(2) 内存(3) 硬盘(4) CD-ROM驱动器和鼠标软件环境:(1) Windows 98/NT/2000 或Windows XP(2) 其他软件根据需要选用1.2.2 MATLAB的安装运行系统的安装程序setup.exe,可以按照安装提示依次操作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档