凝析气藏
特殊气藏的开发与开采

特殊⽓藏的开发与开采第⼋章特殊⽓藏的开发与开采按照⽓藏的特征、开采特点和⽅式,可将其⼤体分为常规⽓藏和特殊⽓藏。
常规⽓藏⼀般是指以⽓体状态储存于储层,⽐较⼲净的天然⽓⽓藏;⽽特殊⽓藏主要是指或者是储层⽐较特殊,如煤层⽓⽓藏、疏松砂岩⽓藏等,或者是天然⽓性质⽐较特殊,如凝析⽓藏、⾼含硫⽓藏等。
特殊⽓藏由于储层或天然⽓性质⽐较特殊,在开采这类⽓藏时需要采取⼀些特殊的⼯艺措施。
本章主要介绍凝析⽓藏、煤层⽓⽓藏、⾼含硫⽓藏和疏松砂岩⽓藏的开采特点和开采过程中需要考虑的特殊⼯艺技术。
第⼀节凝析⽓藏的开发凝析⽓⽥在世界⽓⽥开发中占有特殊重要的地位,据不完全统计,地质储量超过1×1012m3的巨型⽓⽥中,凝析⽓⽥占68%,在储量超过1000×108m3的⼤型⽓⽥中则占56%。
早在20世纪30年代,美国已经开始采⽤间注⼲⽓保持压⼒的⽅法开发凝析⽓⽥,80年代⼜发展了注氮⽓技术。
前苏联主要采⽤衰竭式开发⽅式,也采⽤各种屏障注⽔⽅式开发凝析⽓顶油藏。
⽬前在北海地区,也有冲破“禁区”探索注⽔开发凝析⽓⽥的。
本节主要介绍凝析⽓藏的特点和分类,凝析⽓藏的开发特点,凝析⽓藏开发过程中的反凝析污染及解除⽅法。
⼀、凝析⽓藏的特点采出天然⽓和凝析油的⽓藏叫凝析⽓藏。
凝析油是汽油及相对密度⼤于汽油但⼩于0.786的其它馏分的混合物。
凝析⽓藏在原始状态下流体系统在储层中全部或绝⼤部分成⽓相存在(系统的临界温度低于储层温度)。
1、凝析⽓藏的⼀般特点凝析⽓藏的特点是,在地层条件下,天然⽓和凝析油呈单⼀的⽓相状态,并符合反凝析规律。
所以,凝析⽓藏既不同于油藏,也不同于⽓藏,可以将它们划为⼀种新的⼯业性油⽓储集类型。
凝析⽓藏与油藏的差别在于地层中液体和⽓体的相平衡状态,凝析⽓藏的油⽓⽐⽐较⾼,⽽且还不断上升(在衰竭式开发过程中)。
它与普通⽓藏的差别是,⽣产井的采出物中除了天然⽓还有液态凝析油。
当凝析⽓藏中有油环时,含凝析⽓部分的地层压⼒就相当于初凝压⼒;在地层压⼒明显超过初凝压⼒的⽓藏,就没有油环。
凝析气藏

预计泰国的凝析油需求将由2003 年的11.8 万桶/ 日增至2008 年的23.4 万桶/ 日和2013年的33.7 万桶/ 日。其中由凝析油分离 装置加工的将由2003 年的7.0 万桶/ 日增至2008 年的17.0 万桶/ 日和2013 年的24.0万桶/ 日,其余的将送往石化厂和炼厂。中国 的凝析油需求预计将由2003 年的5.9 万桶/ 日增至2008 年的 22.4 万桶/ 日和2013年的27.0 万桶/ 日。 预计在今后几年, 还会有一些供应凝析油的装置投产, 产量将 不断增加。凝析油与非炼厂来源的液化石油气和石脑油增加,将 使中东地区油品逐渐轻质化,使得液化石油气、石脑油和汽油占 油品的份额将继续增加, 至2007 年将超过50%以上; 同期, 燃料 油、沥青和润滑油等产品的份额将会下降, 而中馏分油则基本保 持不变。
从上世纪末开始, 中国石油天然气集团公司将“凝 析油气田开采新技术研究”列为“九五”重点科技攻 关项目, 随后科技部将其列为国家“ 十五”重点科技 攻关项目。据悉, 近10 年的研发已创新5 项关键技术, 其中一体化的高压集气、处理及注气系统设计技术、 高压循环注气技术、复杂地层条件钻井技术已达到国 际领先水平。我国利用这一项目的研究成果, 塔里木凝 析气田在国内首次实现高压循环注气开发, 取得很好的 效益。目前已开发牙哈、桑吉、柯克亚等凝析气藏11 个,形成3 个凝析气田群, 可年产凝析油118 万吨, 年产 天然气29 亿立方米。与美国、俄罗斯等循环注气项目 相比较, 牙哈凝析气田开发技术指标处于国际领先水平。
目前波斯湾地区已有大量凝析油分离装置能力投产, 预计 到2008 年将有更多能力开工。究其原因, 主要是因为: 首先, 该地区的许多国家积极推进天然气资源的开发, 而凝析油分 离有助于处理来自新建天然气加工装置的多余液体; 其次, 这 类装置投资较少, 并能快速建成; 第三, 将凝析油分离与现有 的炼厂整合, 立即提高轻、中馏分的产量而不需投资燃料油 裂化产能。波斯湾地区2004 年凝析油加工能力为123 万桶/ 日, 2008 年将增至176 万桶/ 日, 2011 年将增至300 万桶/ 日。 这将使苏伊士以东地区占世界凝析油加工能力的比例从2004 年的约60%增至2011 年的70%以上。亚太地区的凝析油分离 装置能力也将增加, 部分是因为分离装置可生产大量石化原 料和汽油。沙特和伊朗希望利用分离装置帮助满足快速增长 的国内运输燃料需求( 包括汽油和柴油) 。凝析油分离装置将 成为炼厂的一个很大的组成部分。
凝析气藏开发_简介

富气指脱了凝析油后富含C3-C4组分的C1混合物 。 ⑤ 甲醇前置段塞+干气处理凝析气井近井地带
二、开发特征
(2)凝析气藏开发中、后期多种保持压力开发技术
① 注气开发技术 有四种注气保持压力技术很有新意 a.凝析气藏开发中后期低于最大凝析压力下的注气开发
二、开发特征
▪ 8)再就提高气井产量和保持压力开发的两项关 键技术展开说明
(1)凝析气井增产技术 ① 注干气(C1为主)单井吞吐 a.地层压力低于最大凝析压力 b.主要的增产机理是把凝析油挤向地层深处,清扫
近井地带
二、开发特征
② CO2处理凝析气井近井地带 乌克兰季莫菲也夫凝析气田处理后产量提高了0.3-0.5
低含凝析油的凝析气藏: 5000 m3/m3<GOR<18000 m3/m3 45g/m3<CN<150g/m3
中等含凝析油的凝析气藏:2500 m3/m3<GOR<5000 m3/m3 150g/m3<CN<290g/m3
一、地质特征
4、凝析气藏的分类 高含凝析油凝析气藏: 1000 m3/m3<GOR<2500 m3/m3
谢谢!
技术 b.以储气库方式后期开发凝析气藏 c.后期注N2开发部分水淹的凝析气藏 d.气水交替注入开发凝析气藏
二、开发特征
② 注水开发技术 a. 屏障注水 b. 水气交替注入 c. 直接注水
三、反凝析
凝析气藏反凝析可以引起储层气相渗流特征严重劣化 凝析气藏-井底压力大于露点压力凝凝析气析 Nhomakorabea气
井
单相区
三、反凝析
▪ 3)要千方百计地提高中间烃(C2—C6)和凝析油(C7+) 的地面回收率 。
凝析气藏开采理论与技术

典型P-T相图
泡点线和露点线的连接点称为临界点,用C 表示,该点的压力、温度称为临界压力(Pc)和临 界温度(Tc)。
典型P-T相图
相包络线上最高的饱和压力点称为最大饱和压力(用
pmax 表 示 ) 。 如 果 pmax 位 于 临 界 点 的 左 方 , 称 为 最 大 脱 气 (泡点)压力;如果pmax位于临界点的右方,称为最大凝析 (露点)压力。
3、注气时机 开始实施注气保持压力的时间,
称为ห้องสมุดไป่ตู้气时机。
♦早期保持压力开采 ♦中晚期保持压力开采
(1)早期保持压力开采 ⊕地层压力与露点压力接近 ⊕凝析油含量高 ⊕储层连通性及物性
牙哈2~3凝析气藏凝析油、天然气日产量
(早期保持压力开采)
(2)中晚期保持压力开采
a. 原始地层压力大大高于露点压力,早期采用 衰竭式方法更经济实用。当地层压力降到接近露 点压力时,再采用注气保持压力开采方法。
(2)气藏面积小、储量小、开采规模有限,保持压 力开采无经济效益。
(3)凝析油含量低。 (4)地质条件差。 (5)边水比较活跃。 (6)对一些具有特高压力的凝析气藏,当前注气工 艺尚不能满足特高压注气要求而又急需开发的,只能采 用衰竭式方法开发,待气藏压力降到一定水平才有可能 保持压力开采。
二、保持压力开发方式
第二节 凝析气藏的开发方式
凝析气藏开发方式: 衰竭式开发 保持压力开发
一、衰竭式开发方式 降压开采
优点: 简单、低耗,对开发工程设计及储层
条件要求低,容易实施。 缺点:
凝析油采出程度低。
适用条件:
(1)原始地层压力大大高于凝析气藏初始露点压力, 可以充分利用天然能量,采用先衰竭开采一段时间,直 到地层中压力接近露点压力。
13第十三章-凝析气井试井分析

(
)
凝析气井试井分析方法
复合气藏模型(压恢) 复合气藏模型(压恢)
q RT 1 C K∆t ψ (∆t) −ψ (0) = 2 KhM 2 ln Φ µc r C
m 1 2 i spb spb gi
凝析气井试井分析方法
两相拟压力方法
压 力 恢 复 试 井
4.2415×10−3 qt RT t p + ∆t ∆ψ2 pws =ψ2 p (P) −ψ2 p (P ) = lg i ws Kh ∆t
K= 4.2415×10−3 qt,mol RT mh
S' =1.151(
Ψ p (P 1) − Ψ p (P ) ws wf 2 2 m
单相气体拟压力方法
p
ρ ψsp = ∫p µ dP
r
ψ
µ
ψ
内 区
∂ψ ∂
外 区
ψ ψ
ψ ψ
1 ∂ ∂ sp Φ i cgi ∂ sp r = r ∂r ∂r K ∂t sp 2πhK =q m r r= rw (r →∞,t) = spi sp sp (r, t = 0) = spi
凝析气井试井分析方法
单相气体拟压力方法
两相表皮系数: 两相表皮系数:
pdew 2 p 2pkrg L kh S2 p = −3 ∫p µg zg − µg zg V +1dp 3.684×10 qt,mol RT
凝析气井试井分析方法
单相气体拟压力方法
单相气体拟压力方法
1 λ tp S + 0.80907 + + −1ln 2 Krg Krg rw w
凝析气藏的形成

2、双组分烃类物系相图
气液两相共存的最高温度 K1和最高压力B1,分别称为临 界凝析温度和临界凝析压力。
(105Pa)
液相
临界点K为泡点线(DB1曲
线)与露点线(BK1曲线)的 交点。已经不再是两相共存的 最高温度或压力。 K1为临界凝结温度(最高 临界温度),代表气液两相并 存的最高温度
粘度、表面张力等。
纯物质临界点也是气液两相共存的最高温、压点。 临界温度:临界点C的温度——纯物质能液化的最 高温度。即液体能维持液相的最高温度。当T﹥TC时,
无论再加多大压力,该物质也不液化。
临界压力:临界点C的压力——临界温度时纯物质 的气体液化所需的最低压力。
表: 若干物质的临界参数
物质名称 临界温度 临界压力 物质名称 临界温度 临界压力 (℃) (atm) (℃) (atm)
K点:临界点,该点的 T、 临界点 P即为临界温度和 临界温度 临界 压力。该 T以上,气体 压力 在任何P下都不能液化。
71.1℃的P-V曲线: (1)随P ↑,V丙烷 ↓ ; (2)过A点后,V丙烷 继续↓ ,但P保持不变;
(3)过B点后,即使 加极大压力,V也不变。 87.8℃的P-V曲线:
198.0 187.8 280.0 234.7 267.0 296.7 346.3 369.4 390.6
33.3 32.9 40.0 29.9 27.0 24.6 21.2 19.0 18.5
71.1℃时: 丙烷被压缩到A开始 液化;气体量↓,液体 量↑,V丙烷逐渐↓; 到B点时,气体全部 液化,因液体压缩性小, 故加极大P,V也不变。 从A到B:液相与气 相共存。 相共存 P没变,表明 在一定T下,液体有一 定的饱和蒸气压。T ↑, 液体饱和蒸气↑。
凝析气藏

复杂,开发难度更大,相应的投资大、成本高和技术要求 也高。
2我国主要气田类型的地质和开发特征 2.6.2开发特征 5.我国西部,多为带油环的凝析气藏或带凝析气 顶的油藏。
6.许多油气区凝析气田、气顶油田和干气气田往
往成片分布,发的问题。
7.判断油气藏类型还主要靠其相图。
变化的热动力学条件(压力、温度和组成)变化,也会直 接影响到凝析油和其它烃类的地面回收率,必须采用上下 游一体化的配套开发与开采工艺技术,才能科学合理开发 凝析气藏。
2我国主要气田类型的地质和开发特征 2.6.2开发特征
3.凝析油气在储层中渗流是一种有质量交换、并发生相 态变化的物理化学渗流,这是目前渗流力学研究中的重点 和难点。 4.近些年来,我国又相继发现深层、近临界态的、高含 蜡的富含凝析油的凝析气藏,它们埋藏深、压力高、体系
(1)凝析气井增产技术 ① 注干气(C1为主)单井吞吐
a.地层压力低于最大凝析压力
b.主要的增产机理是把凝析油挤向地层深处,清 扫近井地带
2我国主要气田类型的地质和开发特征 2.6.2开发特征
② CO2处理凝析气井近井地带 乌克兰季莫菲也夫凝析气田处理后产量提高了0.3-0.5 倍。 ③ 液态溶剂处理凝析气井近井地带 ④ 采用富气处理凝析气井近井地带
2我国主要气田类型的地质和开发特征 2.6.1地质特征 3)凝析气井采出井流物组成分布特征 开采初期,凝析气井采出的原始井流物组成分 布一般具有以下规律:
甲烷(C1)含量约在75-90%左右; C2+含量在7-15%范 围。若C2+>10%,凝析气藏一般有油环; 气体干燥系数(C1/C2+C3 ,均为摩尔或体积含量比), 在10-20之间;
④ 凝析气井稳定和不稳定试井方法研究; ⑤ 凝析气井近井带凝析油饱和度分析和临界流动饱和 度的实验和理论研究; ⑥ 凝析气藏水平井开采技术研究; ⑦ 凝析油气一些工程参数的测定研究等。
凝析气藏gas condensate reservoir资料

1.2凝析气藏 的开发特征
2.国内外 研究现状
2.国内外研究现状
2.国内外 研究现状
凝析气田在世界气田开发中占有特殊重要的地 位,据不完全统计,地质储量超过1万亿方的巨型 气田中凝析气田占68%,储量超过1千亿方的大型气 田中则占56%,世上富含凝析气田的国家为前苏联、 美国和加拿大,他们有丰富的开发凝析气田的经验, 早在30年代,美国已经开始回注干气保持压力开发 凝析气田,80年代又发展注N2技术,前苏联主要采 用衰竭式开发方式,采用各种屏降注水方式开发凝 析气顶油藏。70年代已开始注气,目前在北海地区, 也有冲破‘禁区’探索注水开发凝析气田的。
凝析气藏是介于油藏和气藏之间的一种气藏。 虽然凝析气藏也产油(凝析油),但凝析油在地下 以气相存在。而常规油藏乃至轻质油藏在地下以油 相存在,虽然其中含有气,但这种伴生气在地下常 常溶解于油,称为单一油相。一般气藏(湿气藏、 干气藏)在开采过程中很少产凝析油。
1.2凝析气藏 的开发特征
1.衰竭式开发会产生反凝析损失。在凝析气藏开发过 程中,储层油气体系在地下和地面都会发生反凝析 现象,气井既产气又产凝析油。
Gas Condensate Reservoir
船舶与海洋工程
2013.4.2
EGR 生产特征 机理及展望 国内外 及开发机理 研究现状 定义及 开发特征
1.定义及 开发特征
1.1凝析气藏的定义 1.2凝析气藏的开发特征
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2我国主要气田类型的地质和开发特征 2.6.2开发特征
5)要拓展气液固(蜡、沥青质、元素硫和水合物等)相 态、注气过程的相态、近临界态相态、多孔介质相态、渗 流过程相态(相渗曲线、近井带饱和度分布、凝析油临界 流动饱和度等)和凝析气与地层水体系的相态研究,开发 出新的并能更好指导这类气藏开发的数值模拟软件及相应 的注气、采气工艺技术。 6)注气保持压力开发凝析气藏特别要发展以下八项配套 技术:注气开发气藏工程技术,注气开发多组分数值模拟 技术,注气开发钻井完井工艺技术,注气开发注、采工艺 技术,注气开发动态监测技术和注气开发地面工艺技术。
2我国主要气田类型的地质和开发特征 2.6.1地质特征 4) 凝析气藏的分类 按气油比和天然气中的凝析油含量,国际上较多 的是按以下标准来划分不同类型的凝析气藏:
低含凝析油的凝析气藏: 5000 m3/m3<GOR<18000 m3/m3 45g/m3<CN<150g/m3
中等含凝析油的凝析气藏:2500 m3/m3<GOR<5000 m3/m3
变化的热动力学条件(压力、温度和组成)变化,也会直 接影响到凝析油和其它烃类的地面回收率,必须采用上下 游一体化的配套开发与开采工艺技术,才能科学合理开发 凝析气藏。
2我国主要气田类型的地质和开发特征 2.6.2开发特征
3.凝析油气在储层中渗流是一种有质量交换、并发生相 态变化的物理化学渗流,这是目前渗流力学研究中的重点 和难点。 4.近些年来,我国又相继发现深层、近临界态的、高含 蜡的富含凝析油的凝析气藏,它们埋藏深、压力高、体系
2我国主要气田类型的地质和开发特征 2.6.1地质特征
3) 凝析气井采出井流物组成分布特征
凝析油的凝固点一般<11℃ ; 凝析油的初馏点一般<80℃,而且小于200℃ 的馏分含量>45%; 含蜡量一般<1.0%; 胶质沥青质含量一般<8%;
2我国主要气田类型的地质和开发特征 2.6.1地质特征
3)凝析气井采出井流物组成分布特征
气油比:俄罗斯统计一般在1000-18000m3/m3之间,美 国是在17600m3/m3左右。都认为气油比有个临界值,介
于600-800 m3/m3之间,气油比小于此值,只能形成油藏;
凝析油含量:俄罗斯认为,对应于气油比高限的凝析 油含量约为39.6-45g/m3 ,美国是在凝析油含量为40.945g/m3左右;对应于气油比低限的凝析油含量可达6001000 g/m3。
2我国主要气田类型的地质和开发特征 2.6.2开发特征
7)衰竭式开发凝析气藏除发展上述有类同的技
术外,还特别要注意介决以下问题:
① 油气取样方法和工具的改进,以及油气相态实 验分析技术的拓展; ② 近井带凝析油析出和对气井产能影响机理及防 治方法研究; ③ 凝析气井的产能和动态分析研究;
2我国主要气田类型的地质和开发特征 2.6.2开发特征
b.以储气库方式后期开发凝析气藏
c.后期注N2开发部分水淹的凝析气藏 d.气水交替注入开发凝析气藏
2我国主要气田类型的地质和开发特征 2.6.2开发特征 ② 注水开发技术
a. 屏障注水
b. 水气交替注入
c. 直接注水
2我国主要气田类型的地质和开发特征 2.6.1地质特征
3)凝析气井采出井流物组成分布特征
气体的湿度(C2+/C1 ,均为摩尔或体积含量比),在 6-15之间;
分离器气体的相对密度(相对于空气,空气密度=1),
γg=0.6-0.7;
油罐油(或称稳定凝析油)的相对密度(相对于水,
水密度γo =1),在0.7260-0.8120之间; 地面凝析油的粘度μo<3mPa· s;
1)准确取样和凝析气PVT相态分析评价是凝析气藏开 发的基础,必须不失时机地在凝析气井投入开采时就要 取得合格的样品,必须相应地发展一套先进适用的油气 取样和实验分析技术。
2我国主要气田类型的地质和开发特征 2.6.2开发特征
2)对于高含凝析油的凝析气藏(含量超过600g/m3 以 上),要考虑保持压力开发和注入工作介质(烃类富气、 干气、N2、CO2以及特定条件下的气水交替和注水等)优 选的技术经济可行性论证。
2我国主要气田类型的地质和开发特征 2.6.1地质特征 3)凝析气井采出井流物组成分布特征 开采初期,凝析气井采出的原始井流物组成分 布一般具有以下规律:
甲烷(C1)含量约在75-90%左右; C2+含量在7-15%范 围。若C2+>10%,凝析气藏一般有油环; 气体干燥系数(C1/C2+C3 ,均为摩尔或体积含量比), 在10-20之间;
150g/m3<CN<290g/m3
2我国主要气田类型的地质和开发特征 4)凝析气藏的分类
高含凝析油凝析气藏: 1000 m3/m3<GOR<2500 m3/m3
290g/m3<CN<675g/m3 特高含凝析油的凝析气藏: 600 m3/m3<GOR<1000 m3/m3
675g/m3<CN<1035g/m3
2我国主要气田类型的地质和开发特征 2.6.2开发特征 8.到2004年底,中国石油已探明凝析气地质储 量3825×108m3,占总储量13.1%。凝析油地质储
量1.15×108t。共18个大中型凝析气田投入开发,
牙哈、柯克亚和大港大张沱实行或实行过注气开
发。
2我国主要气田类型的地质和开发特征 2.6.2开发特征 9.针对凝析气藏地质、开发特点,在凝析气藏开 发上应特别注意:
世界上还有含量超过1035 g/m3 ,如美国加州卡 尔—卡尔纳(Cal Canal)凝析气田的凝析油含量达 1590cm3/m3。 我国则按凝析油含量给出了细分类标准(参见SY /T6168-1995《气藏分类》)。
2我国主要气田类型的地质和开发特征
2.6 凝析气藏(田)
2.6.2开发特征
1.衰竭式开发会产生反凝析损失。在凝析气藏开发过程中, 储层油气体系在地下和地面都会发生反凝析现象,气井既 产气又产凝析油。 2.凝析油气体系相态变化与其组分、组成和压力、温度之 间的关系密切相关,引起凝析气井井流物组分组成及相态
2我国主要气田类型的地质和开发特征
2.6 凝析气藏(田)
2.6.1地质特征 1) 埋藏深、高压、高温
大多数凝析气藏的的埋藏深度大于1500米,压力 范围在21~42MPa之间,温度在93~204℃之间。 2)超临界态气态烃含量占优势 凝析气藏地层烃类流体组分中90%(体积百分 比或摩尔百分比)以上为甲烷、乙烷和丙烷。在高 温、高压下,处于超临界状态的甲烷、乙烷和丙烷 等气态烃组分对一定数量的液态烃产生萃取抽提, 使之溶解在气体中,从而形成凝析气藏。
(1)凝析气井增产技术 ① 注干气(C1为主)单井吞吐
a.地层压力低于最大凝析压力
b.主要的增产机理是把凝析油挤向地层深处,清 扫近井地带
2我国主要气田类型的地质和开发特征 2.6.2开发特征
② CO2处理凝析气井近井地带 乌克兰季莫菲也夫凝析气田处理后产量提高了0.3-0.5 倍。 ③ 液态溶剂处理凝析气井近井地带 ④ 采用富气处理凝析气井近井地带
复杂,开发难度更大,相应的投资大、成本高和技术要求 也高。
2我国主要气田类型的地质和开发特征 2.6.2开发特征 5.我国西部,多为带油环的凝析气藏或带凝析气 顶的油藏。
6.许多油气区凝析气田、气顶油田和干气气田往
往成片分布,伴生气、气顶气和气层气同时存在,
有个成组优化开发的问题。
7.判断油气藏类型还主要靠其相图。
④ 凝析气井稳定和不稳定试井方法研究; ⑤ 凝析气井近井带凝析油饱和度分析和临界流动饱和 度的实验和理论研究; ⑥ 凝析气藏水平井开采技术研究; ⑦ 凝析油气一些工程参数的测定研究等。
2我国主要气田类型的地质和开发特征 2.6.2开发特征 8)再就提高气井产量和保持压力开发的两项关 键技术展开物 。
⑤ 甲醇前置段塞+干气处理凝析气井近井地带
2我国主要气田类型的地质和开发特征 2.6.2开发特征 (2)凝析气藏开发中、后期多种保持压力开发技术
① 注气开发技术 有四种注气保持压力技术很有新意 a.凝析气藏开发中后期低于最大凝析压力下的注气开发 技术