六上奥数(9)比的应用

合集下载

小学六年级奥数第15讲 比的应用(二)(含答案分析)

小学六年级奥数第15讲 比的应用(二)(含答案分析)

第15讲 比的应用(二)一、知识要点比是反映数量关系的一种常见形式,也是解数学题的一种重要工具,有了它,我们处理倍数关系、解答分数应用题就方便灵活得多。

在这一讲,我们讲探讨稍复杂的比是应用题。

二、精讲精练【例题1】甲、乙两个学生放学回家,甲要比乙多走51的路,而乙走的时间比甲少111,求甲、乙两人速度的比。

练习1:1、小明和小芳各走一段路。

小明走的路程比小芳多51,小芳用的时间比小明多81。

求小明和小芳速度的比。

2、甲走的路程比乙多31,乙用的时间比甲多41。

求甲、乙的速度比。

3、一个人步行每小时走5千米,如果骑自行车每1千米比步行少用8分钟。

这个人骑自行车的速度和步行速度的比是多少?【例题2】制造一个零件,甲需6分钟,乙需5分钟,丙需4.5分钟。

现在有1590个零件的制造任务分配给他们三个人,要求在相同的时间内完成,每人应该分配到多少个零件?练习2:1、加工一个零件,甲需3分钟,乙需3.5分钟,丙需4分钟。

现在有1825个零件需要甲、乙、丙三人加工。

如果规定用同样的时间完成任务,那么各应加工多少个?2、加工某种零件要三道工序,专做第一、二、三道工序的工人每小时分别能完成零件48个,32个,28个,现有118名工人,要使每天三道工序完成的零件个数相同,每道工序应安排多少工人?【例题3】两个服装厂一个月内生产服装的数量是6:5,两厂西服价格的比是11:10。

已知两厂这个月内总产值为6960万元。

两厂的产值各是多少万元?练习3:1、甲、乙两个长方形长的比是4:5,宽的比是3:2,面积的和是242平方厘米。

求甲、乙两个长方形的面积分别是多少平方厘米?2、苹果和梨的单价的比是6:5,王大妈买的苹果和梨的重量的比是2:3,共花去18元。

王大妈买苹果和梨各花了多少元?【例题4】A、B两种商品的价格比是7:3。

如果它们的价格分别上涨70元,它们的价格比就是7:4,这两种商品原来的价格各是多少元?练习4:用两种思路解答下列应用题:1、甲、乙两个建筑队原有水泥重量的比是4:3。

小学六年级奥数题-专题训练之比和比例应用题

小学六年级奥数题-专题训练之比和比例应用题

比和比例应用题
1、乘坐某路汽车成人票价3元,学生票价2元,军人票价1元,某天乘车的成年人、学生和军人的人数比是50:20:1,共收得票款26740元,这天乘车中成年人、学生和军人各有多少人?
2.甲乙两人走同一段路,甲要20分钟,乙要15分钟,现在甲、乙两人分别同时从相距840米的两地相向而行,相遇时,甲、乙各走了多少米?
4.]一种什锦糖是由酥糖、奶糖和水果糖按5:4:3的比例混合而成,酥糖、奶糖和水果糖的单价比是11:8:7,要合成这样的什锦糖120千克,什锦糖每千克32.4元,混合前的酥糖每千克是多少元?
5.、A、B、C是三个顺次咬合的齿轮。

当A转4圈时,B恰好转3圈;当B转4圈时,C恰好转5圈,问这三个齿轮的齿数的最小数分别是多少?
6、甲、乙、丙三个平行四边形的底之比是4:5:6,高之比是3:2:1,已知三个平行四边形的面积和是140平方分米,那么甲、乙、丙三个平行四边形的面积各是多少?
7、甲、乙、丙三个三角形的面积之比是8:9:10,高之比是2:3:4,对应的底之比是多少?
8、某校四、五年级参加数学竞赛的人数相等,四年级获奖人数与未获奖人数的比是1:4,五年级获奖人数与未获奖人数的比是2:7;两个年级中获奖与未获奖人数的比是多少?
9、盒子里共有红、白、黑三种颜色的彩球共68个,红球与白球个数的比是1:2,白球与黑球个数的比是3:4,红球有多少个?。

高斯小学奥数六年级上册含答案第22讲分数、百分数应用题综合提高

高斯小学奥数六年级上册含答案第22讲分数、百分数应用题综合提高

第二十二分数、百分数应用题综合提高、基础知识回顾:1. 比:(1 )比的概念:两个数相除叫做两个数的比•例如,5+6可记作5:6. “:”是比号,比号前面的数叫做比的前项,比号后面的数叫做比的后项,前项除以后项所得的商叫做比值.比的后项不能为0.(2)比的性质:比的前项和后项都乘以或除以一个不为零的数,比值不变.2. 比例基本性质:如果a:b c:d ,那么a d b c .3. 正比例关系和反比例关系:( 1 )正比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值 (也就是商) 一定,这两种量就叫做成正比例的量,它们的关系叫做成正比例关系,或者简写为“成正比” .( 2)反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们的关系叫做成反比例关系,或者简写为“成反比” .注意,正比例和反比例是两种“量”之间的关系.比如长度、面积、时间、价格、重量……这些都是生活中实际存在的“量”.而以前我们学习的比和比例则是针对具体的“数” 之间的关系. 两个量之间如果成正比例关系或成反比例关系,称为这两个量成比例 .、分数、百分数应用题相关的题目类型及解题方法:1. 比例互化:( 1 )部分占部分,部分占整体之间的转化;( 2)多组比化连比.2. 通过寻找不变量解题:常用不变量有:( 1 )总量(和)不变:给来给去的情况;( 2)差不变:同增、同减的情况;( 3)其中某一个量没有变化.3. 正反比例的概念和应用.4. 复合比.5. 方程法.6. 倒推法.7. 列表法.例1.甲、乙两个人分别有许多苹果,如果甲买了5个苹果,则此时甲、乙两人的苹果数之比是7:8 ;如果甲买了9个苹果,乙丢了4个苹果,此时甲乙两人的苹果数之比是3:2,那么两人原来分别有多少个苹果?「分析」本题可以利用“和不变”解题.练习1、小高、小思两个人分别有许多积分,如果小高又得了3分,则此时两人的积分之比是2:3 ;如果小高又得了8分,小思丢了5分,此时两人的积分之比是3:4,那么两人原来分别有多少积分?例2.甲乙两个班的同学人数相等,且各有一些同学参加了课外数学小组的活动.其中甲班参加的人数是乙班参加人数的 -.乙班未参加人数是甲班未参加人数的-.请问:甲5 5班未参加人数是乙班参加人数的几分之几?「分析」因为两班总人数相同可以采用设数法,设出这个总数后,就可以表示出所需的其它数量了.练习2、甲、乙两人有相同数目的水果,水果有梨和苹果两种,甲的梨和乙的苹果数目之比为4:3,甲的苹果和乙的梨数目之比为6:7,那么甲的苹果数和乙的苹果数之比是多少?例3.有三个最简真分数,其分子的比为3:2:4,分母的比为5:9:15 .将这三个分数相加,再28经过约分后为.那么三个分数的分母相加是多少?45「分析」可以采用设未知数的办法解答此题.练习3、有三个真分数(其中第一个是最简真分数),其分子的比为3:4:5,分母的比为4:9:18 •将这三个分数相加,再经过约分后为72 •那么三个分数的分母相加是多少?例4.某工厂有A, B, C, D , E五个车间,人数各不相等•由于工作需要,把B车间工人1 1 1的—调入A车间,C车间工人的-调入B车间,D车间工人的一调入C车间,E车间2 3 41工人的-调入D车间.现在五个车间都是30人.原来每个车间各有多少人?6「分析」本题可以采用“倒推法”.练习4、五指山上有甲,乙,丙,丁四队妖怪,妖怪数各不相等•为了均衡势力,把乙111队妖怪的1调入甲队,丙队的丄调入乙队,丁队的 -调入丙队•现在四支队伍都是483 5 7人•原来每个队伍各有多少妖怪?例5•小光、小明和小亮分一些苹果. 他们发现,苹果可以恰好按照4:3:2分配(按照小光、小明、小亮的顺序,下同),也可以恰好按照5:4:n分配(其中n为自然数),两种分配方法下,小光所分得的苹果数相差20个•那么苹果总数的最大值是多少?「分析」本题中哪些量是没有发生变化的呢?例6.甲、乙、丙三人玩赢卡片的游戏,他们手中一共有156张卡片•第一轮,甲赢了乙、1 1丙每人手中卡片的1;第二轮,乙赢了甲、丙每人上轮结束时手中卡片的1,最后一轮,5 1 4丙赢了甲、乙每人上轮结束时手中卡片的1,最后甲、乙手中的卡片数之比是2:3,那4么结束时丙手中有多少张卡片?「分析」本题可以采用寻找“不变量”作为解题突破口.数学泰斗——阿基米德阿基米德(约前287年—前212年)是伟大的古希腊哲学家、数学家、物理学家、力学家,静力学和流体静力学的奠基人.他出生于西西里岛的叙拉古,从小就善于思考,喜欢辩论.早年游历过埃及,曾在亚历山大城学习.据说他住在亚历山大里亚时期发明了阿基米德式螺旋抽水机,今天在埃及仍旧使用着.第二次布匿战争时期,罗马大军围攻叙拉古,最后阿基米德不幸死在罗马士兵之手.他一生献身科学,忠于祖国,受到人们的尊敬和赞扬.阿基米德出生在古希腊西西里岛东南端的叙拉古城.在当时古希腊的辉煌文化已经逐渐衰退,经济、文化中心逐渐转移到埃及的亚历山大城;但是另一方面,意大利半岛上新兴的罗马帝国,也正不断的扩张势力;北非也有新的国家迦太基兴起.阿基米德就是生长在这种新旧势力交替的时代,而叙拉古城也就成为许多势力的角力场所.阿基米德的父亲是天文学家和数学家,所以阿基米德从小受家庭影响,十分喜爱数学.大概在他九岁时,父亲送他到埃及的亚历山大城念书.亚历山大城是当时世界的知识、文化中心,学者云集,举凡文学、数学、天文学、医学的研究都很发达,阿基米德在这里跟随许多著名的数学家学习,包括有名的几何学大师—欧几里得,在此奠定了他日后从事科学研究的基础.在数学方面,阿基米德确定了抛物线弓形、螺线、圆形的面积以及椭球体、抛物面体等各种复杂几何体的表面积和体积的计算方法.在推演这些公式的过程中,他创立了“穷竭法”,即我们今天所说的逐步近似求极限的方法,因而被公认为微积分计算的鼻祖.他用圆内接多边形与外切多边形边数增多、面积逐渐接近的方法,比较精确的求出了圆周率.面对古希腊繁冗的数字表示方式,阿基米德还首创了记大数的方法,突破了当时用希腊字母计数不能超过一万的局限,并用它解决了许多数学难题.浮力原理的发现关于浮力原理的发现,有这样一个故事:相传叙拉古赫农王让工匠替他做了一顶纯金的王冠.但是在做好后,国王疑心工匠,但这顶金冠确与当初交给金匠的纯金一样重.工匠到底有没有私吞黄金呢?既想检验真假,又不能破坏王冠,这个问题不仅难倒了国王,也使诸大臣们面面相觑.经一大臣建议,国王请来阿基米德检验.最初,阿基米德也是冥思苦想而却无计可施.一天,他在家洗澡,当他坐进澡盆里时,看到水往外溢,同时感到身体被轻轻托起.他突然悟到可以用测定固体在水中排水量的办法,来确定金冠的比重.他兴奋地跳出澡盆,连衣服都顾不得穿上就跑了出去,大声喊着“尤里卡!尤里卡!”(Eureka,意思是"我知道了” ).他经过了进一步的实验以后,便来到了王宫,他把王冠和同等重量的纯金放在盛满水的两个盆里,比较两盆溢出来的水,发现放王冠的盆里溢出来的水比另一盆多. 这就说明王冠的体积比相同重量的纯金的体积大,密度不相同,所以证明了王冠里掺进了其他金属.这次试验的意义远远大过查出金匠欺骗国王的事实,阿基米德从中发现了浮力定律(阿基米德原理):物体在液体中所获得的浮力,等于它所排出液体的重量.一直到现代,人们还在利用这个原理计算物体比重和测定船舶载重量等.给我一个支点,我可以撬动地球阿基米德对于机械的研究源自于他在亚历山大城求学时期.有一天阿基米德在久旱的尼罗河边散步,看到农民提水浇地相当费力,经过思考之后他发明了一种利用螺旋作用在水管里旋转而把水吸上来的工具,后世的人叫它做“阿基米德螺旋提水器” ,埃及一直到二千年后的现在,还有人使用这种器械.这个工具成了后来螺旋推进器的先祖.当时的欧洲,在工程和日常生活中,经常使用一些简单机械,譬如:螺丝、滑车、杠杆、齿轮等,阿基米德花了许多时间去研究,发现了“杠杆原理” 和“力矩” 的观念,对于经常使用工具制作机械的阿基米德而言,将理论运用到实际的生活上是轻而易举的.他自己曾说:“给我一个支点和一根足够长的杠杆,我就能撬动整个地球.” 后世的评价美国的E. T. 贝尔在《数学大师》上是这样评价阿基米德的:任何一张开列有史以来三个最伟大的数学家的名单之中,必定会包括阿基米德,而另外两们通常是牛顿和高斯.不过以他们的宏伟业绩和所处的时代背景来比较,或拿他们影响当代和后世的深邃久远来比较,还应首推阿基米德.作业1. 甲、乙、丙、丁四人合做一批零件,甲做的个数是另外3个人所做的总数的一半,乙做1 1的个数是另外3个人所做的总数的-,丙做的个数是另外3个人所做的总数的1,丁3 5做了390个•那么四个人共做了多少个零件?2. 甲、乙两个人分别有许多包子,如果甲买了4个包子,则此时甲乙两人的包子数之比是2:3;如果甲买了9个包子,乙吃了5个包子,此时甲乙两人的包子数之比是5:7,那么两人原来分别有多少个包子?3. 萱萱手上有语、数、英三种高思积分卡,分值的总和是590,英语积分卡的分值和是数5 3学的5,也是语文的3.萱萱手头的语文高思积分卡的分值是多少?8 44. 三班原计划抽20%的人参加大扫除,临时又有两人主动参加,使实际参加打扫除的人1数是余下人数的-,原计划抽出多少人大扫除?35. 甲乙两个班的同学人数相等,且各有一些同学参加了课外数学小组的活动. 其中甲班未5 参加的人数是乙班未参加人数的2倍.乙班参加人数是甲班参加人数的一.请问:甲4 班未参加人数是乙班参加人数的几分之几?第二十二分数、百分数应用题综合提高例7.答案:9、16详解:答案甲原有9个,乙原有16个.前后两种情况下甲乙两人的苹果总数不变,则可把前后苹果的总份数统一为 15份,那么两种情况下甲和乙的苹果数之比分别为 7:8、9:6,由题意可知一份对应了 2个苹果,所以甲原有2 7 5 9个苹果,乙原有16个苹果.例&答案:四分之三详解:设份数,按下面转化,可以得出最后甲乙均为 23分的总人数,所以,甲班未参加人数是乙班参加人数的四分之三.参 未 参 未甲 2 5 和同8 15 乙 51■*203例9.答案:203所以a 和b 的值分别为4和7•因此三个分数的分母相加是例10. 答案:A , B , C , D , E 五个车间分别有 11、38、33、32、36人详解:设A , B , C , D , E 五个车间分别有a 、b 、Godnd30=_e =_d+_e =_c+_d =_b+_c =_b+a,所以 A , B , c , D , E 五个车间分详解:设三个分数为3a 5b、担(其中a 与b 互质),则三个分数之和为9b 15b49a 45b28 45(5 9 15) 7 203 .c 、d 、e 个人,则别有11、38、33、32、36 人.例11. 答案:1980时45和36 4n 的差最小,即两种情况小光的苹果数所占总数的比例最接近, 所以苹果总数的最大值是1980.例12 . 答案:66:由上表最左列可知 的值只可以取,则结束时丙手中有 张卡片.详解:小光第一次占总数的36 4n 9(9 n)第二次占总数的45 9(9 n)通过枚举可知当练习1、答案:小高67分,小思105分简答:根据“和不变”,统一单位1解题即可.练习2、答案2:1简答:甲的梨:乙的苹果=4:3,甲的苹果:乙的梨=6:7,设甲共10份的水果,则乙也是10份的水果,发现单位1相同,不需进行比例计算,甲的苹果:乙的苹果=6:3=2:1 . 练习3、答案62简答:设三个分数为3a-、4a- 、5a(其中a与b互质),则三个分数之和为4b9b18b27a 16a 10a53a53所以a和b的值分别为1和2 .因此三个分数的分母相加36b36b72,练习4、答案:甲,乙,丙,丁四队各有29、57、50、56 个妖怪是(4 9 18) 262 . 简答:同例4,用倒推法.作业6. 答案:1560.7. 答案:甲有116个,乙有180个.简答:由已知条件发现,前后两种情况下包子的总量不变,所以可以把前后两个比的化 为相同份数来分析,即化为 24:36和25:35,由于乙在两种情况下相差5个包子,所以一 份对应5个包子,因此可求出甲原来有116个,乙原来有180个. & 答案:200.简答:以英语积分作为前后两个比的桥梁, 5和5可分别化为15和15,此时一共分为8 4 24 20了 59份,而总积分为590,所以一份对应10分,因此语文积分有 200分.9.答案:&简答:两人加入后,打扫卫生的人数占总人数的25%,即与原来相差总数的 5%,所以原来有2 4 8人. 10. 答案:五分之二.简答:直接例2的方式写出比例后,发现甲乙之和相等,不需统一单位1,直接可以看 出甲班未参加人数是乙班参加人数的五分之二. 简答:已知条件即告诉大家甲、乙、丙做的零件个数分别占总个数的完成的个数占总个数的 11111,所以总个数为390 -3 4 6 4 4 1560 .〕,则丁 6。

(完整)六年级奥数思维训练比例应用题

(完整)六年级奥数思维训练比例应用题

六年级奥数思维训练比例应用题
一、尝试练习
1.甲乙两人走同一段路, 甲要20分钟, 乙要15分钟, 现在甲、乙两人分别同时从相距840米的两地相向而行, 相遇时, 甲、乙各走了多少米?
2.盒子里共有红、白、黑三种颜色的彩球共68个, 红球与白球个数的比是1:2, 白球与黑球个数的比是3:4, 红球有多少个?
二、训练营地
1.甲、乙、丙三个平行四边形的底之比是4:5:6, 高之比是3:2:1, 已知三个平行四边形的面积和是140平方分米, 那么甲、乙、丙三个平行四边形的面积各是多少?
2.某校四、五年级参加数学竞赛的人数相等, 四年级获奖人数与未获奖人数的比是1:4, 五年级获奖人数与未获奖人数的比是2:7;两个年级中获奖与未获奖人数的比是多少?
3.光明小学有三个年级, 一年级学生占全校学生人数的25%, 二年级与三年级学生人数的比是3: 4, 已知一年级比三年级学生少40人, 一年级有学生多少人?
4.五年级举行数学竞赛, 一班占参加比赛总人数的1/3, 二班与三班参加比赛人数的比是11: 13, 二班比三班少8人, 则三班有多少人参加比赛?。

小学奥数比的应用 (2)

小学奥数比的应用 (2)

甲、乙两名学生放学回家,甲要比乙多走51的路,而乙走的时间比甲走的时间少111。

求甲,乙两人速度的比。

讲解题:1.小明和小芳各走一段路。

小明走的路程比小芳走的路程多51,小芳用的时间比小明用的时间多81,求小明和小芳的速度比。

2.甲走的路程比乙走的路程多31,乙用的时间比甲用的时间多41,求甲、乙的速度比。

3.一个人步行速度是5千米/时,如果骑自行车每行驶1千米比步行少用8分钟。

这个人骑自行车的速度和步行速度的比是多少?加工一个零件,甲需要6分钟,乙需要5分钟,丙需要4.5分钟。

现在有1590个相同零件的加工任务要分配给他们三个人,要求在相同时间内完成,每人应分得多少个零件?讲解题:1.某农场把61600平方米耕地划分为粮田、棉田与其他作物区,粮田与棉田的面积比是7:2,棉田与其他作物面积的比是6:1。

每种作物的面积各是多少平方米?2.光明小学将五年级的140名学生分成三个小组进行植树活动。

已知第一小组和第二小组学生的比是2:3,第二小组和第三小组学生的比是4:5。

这三个小组各有多少名学生?黄山小学六年级的同学分三组参加植树活动。

第一组与第二组学生数量的比是5:4,第二组与第三组学生数量的比是3:2。

已知第一组的学生数量比二、三两组学生数量的总和少15名。

六年级参加植树活动的一共有多少名学生?讲解题:1.嘉名小学参加科技组与作文组的学生数量的比是9:10,参加作文组与数学组的学生数量的比是5:7。

已知数学组与科技组共有69名学生。

数学组比作文组多多少名学生?2.两块一样重的合金,一块合金中铜与锌的质量比是2:5,另一块合金中铜与锌的质量比是1:3。

现将两块合金合成一块,求新合金中铜与锌的质量比。

甲、乙两校原有图书的数量比是7:5,如果甲校给乙校650本,甲、乙两校图书的数量比就是3:4。

原来甲校有图书多少本?讲解题:1.小明读一本书,已读部分和未读部分的比是1:5。

如果再读30页,则已读部分和未读部分的比是3:5。

小学六年级奥数-比的应用(二 )

小学六年级奥数-比的应用(二 )
小学奥数 举一反三
(六年级)
第15讲 比的应用(二) 一、知识要点 比是反映数量关系的一种常见形式,也是解数学题的一种 重要工具,有了它,我们处理倍数关系、解答分数应用题 就方便灵活得多。在这一讲,我们讲探讨稍复杂的比的应 用题。
二、精讲精练 【例题1】甲、乙两个学生放学回家,甲要比乙多走1/5的 路,而乙走的时间比甲少1/11,求甲、乙两人速度的比。 【思路导航】因为 速度=路程÷时间,所以,甲、乙速度 的比=甲路程/甲时间:乙路程/乙时间
二、精讲精练
解法二:由于两种商品的价格不变,选两种商品的价格差做单位 “1“进行解答。
(1)原来A商品的几个是价格差的几倍
(2)后来A商品的价格是价格差的几倍
7÷(7-3)=7/4
7÷(7-4)=7/3
(3)A、B两种商品的价格差是
(4)原来A商品的价格是 (5) 原来B商品的价格是
70÷(7/3-7/4)=120(元)
练习2: 1.加工一个零件,甲需3分钟,乙需3.5分钟,丙需4分钟。现在有 1825个零件需要甲、乙、丙三人加工。如果规定用同样的时间完成任 务,那么各应加工多少个? 2.甲、乙、丙三人在同一时间里共制造940个零件。甲制造一个零件 需5分钟,比乙制造一个零件所用的时间多25%,丙制造一个零件所用 的时间比甲少2/5。甲、乙、丙各制造了多少个零件? 3.加工某种零件要三道工序,专做第一、二、三道工序的工人每小时 分别能完成零件48个,32个,28个,现有118名工人,要使每天三道 工序完成的零件个数相同,每道工序应安排多少工人?
2.甲书架上的书是乙书架上的4/7,两书架上各增加154本后,甲书架 上的书是乙书架上的,甲、乙两书架上原来各有多少本书?
3.兄弟两人,每年收入的比是4:3,每年支出的比是18:13。从年 初到年底,他们都结余720元。他们每年的收入各是多少元?

六年级奥数比的应用答案

六年级奥数比的应用答案

第十四周 比的应用(一)例题1。

甲数是乙数的23,乙数是丙数的错误!,甲、乙、丙三数的比是( ):( ):( )。

【思路导航】甲、乙两数的比 2:3乙、丙两数的比 4:5甲、乙、丙三数的比 8:12:15答:甲、乙、丙三数的比是 8:12:15.练习11、 甲数是乙数的错误!,乙数是丙数的错误!,甲、乙、丙三数的比是( ):( ):( )。

2、 甲数是乙数的错误!,甲数是丙数的错误!,甲、乙、丙三数的比是( ):( ):( ).3、 甲数是丙数的37,乙数是丙数的2错误!,甲、乙、丙三数的比是( ):( ):( )。

例题2。

光明小学将五年级的140名学生,分成三个小组进行植树活动,已知第一小组和第二小组人数的比是2:3,第二小组和第三小组人数的比是4:5。

这三个小组各有多少人?【思路导航】先求出三个小组人数的连比,再按求出的连比进行分配.①一、二两组人数的比 2:3二、三两组人数的比 4:5一、二、三组人数的比 8:12:15②总份数:8+12+15=35③第一组:140×835=32(人) ④第二组:140×错误!=48(人)⑤第三组:140×错误!=60(人)答:第一小组有32人,第二小组有48人,第三小组有60人。

练习21、 某农场把61600公亩耕地划归为粮田与棉田,它们之间的比是7:2,棉田与其他作物面积的比6:1。

每种作物各是多少公亩?2、 黄山小学六年级的同学分三组参加植树.第一组与第二组的人数的比是5:4,第二组与第三组人数的比是3:2。

已知第一组的人数比二、三组人数的总和少15人.六年级参加植树的共有多少人?3、 科技组与作文组人数的比是9:10,作文组与数学组人数的比是5:7.已知数学组与科技组共有69人。

数学组比作文组多多少人?例题3。

甲、乙两校原有图书本数的比是7:5,如果甲校给乙校650本,甲、乙两校图书本数的比就是3:4。

原来甲校有图书多少本?【思路导航】由甲、乙两校原有图书本数的比是7:5可知,原来甲校图书的本数是两校图书总数的错误!,由于甲校给了乙校650本,这时甲校的图书占两校图书总数的错误!,甲校给乙校的650本图书,相当于两校图书总数的错误!-错误!=错误!。

六年级奥数专项复习 比例应用题

六年级奥数专项复习  比例应用题

六年级奥数专项复习:比例应用题1、老赵、老钱、老孙三人凑钱买来一张彩票,没想到竟中了奖,领来奖金后,他们三人按照3:5:4的比例来分,结果老钱比老赵多分到了2000元,那么老孙分到了( )元。

2、中国古代的黑火药配制中的硝酸钾、硫磺、木炭的比例为15:2:3,今有木炭50千克,要配制黑火药1000千克,还需要木炭( )千克。

3、根据美学的观点及经验法则,一副彩色的作品其红、黄、蓝三原色之配色比例为5:3:8时,其色彩强度达到平衡,可使作品看起来比较柔和,不会有某种颜色特别突兀的感觉,我们都知道,橘色是由红色加黄色而成;紫色是有红色加蓝色而成;绿色是由黄色加蓝色而成。

请问一次法则,橘、紫、绿这三种中间色之配色比例为( )时,其色彩强度可达到平衡。

4、有三批货物共值152万元,第一,第二,第三批货物按重量比为2:4:3,按单价比为6:5:2,这三批货物分别价值( 、 、 )万元。

5、一个容器内注满了水,将大、中、小三个铁球这样操作:第一次次,沉入小球;第二次,取出小球,沉入中球:第三次,取出中球,沉入大球。

已知第一次溢出的水量是第二次的3倍,第三次溢出的水量是第一次的2倍,那么大、中、小三种球的体积比为( )。

6、今年儿子的年龄是父亲年龄的四分之一,15年后,儿子的年龄是父亲年龄的十一分之五。

今年儿子( )岁。

7、某校若干名学生参加某电视邀请赛,其中男生人数与女生人数的比为8:5.后来又有20名女生报名赛,这时女生人数占参赛总人数的十一分之五,现在参赛的学生共有( )人。

8、甲、乙两校参加数学竞赛的人数之比是7:8,获奖人数之比是2:3,两校各有320人未获奖,那么两校参赛的学生共有( )。

9、某学校六年级原来有三个班,现在要将三班的同学分插到一班和二班,如果将三班的学生的一半分到一班,另一半分到二班,则两班的人数之比为7:8;如果将三班的学生的八分之五分到一班,另外的分到二班,则新的两班人数相等,那么原来一班、二班和三班的人数之比为( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级上数学能力训练(9) — 比的应用
班级: 姓名: 学号: 成绩: 在有些应用题中既有分数又有比,这时候就需要先转化,我们今天将学习这种类型的问题。

例1:有甲、乙两个粮食仓库,原来甲仓库存粮的吨数是乙仓库的7
5,如果从乙粮库调6吨粮食到甲粮库,甲粮库存粮的吨数与乙粮库存粮的比是4:5.原来甲、乙粮库各存粮多少吨?
练习1:一工程队原有的人数是二程队的7
3.现在从二工程队派30人到一工程队,那么,一工程队与二工程队的人数比是2:3。

两个工程队原来各有多少人?
例2:有甲、乙两个粮食仓库,原来甲仓库存粮的吨数与乙仓库 的比是4:5.如果从甲仓库调7
2到乙仓库,乙粮库存粮的吨数比甲粮库存粮的吨数多46吨。

原来甲、乙粮库各存粮多少吨?
练习2:甲、乙两个车间的人数比是8:5,甲车间调
4
1到乙车间后,甲车间人数比乙车间少24人,原来甲车间比乙车间多多少人?
巩固练习
1、甲仓库的水泥袋数是乙仓库的5
3。

现在从乙仓库搬10袋去甲仓库,那么甲仓库与乙仓库的比是7:9。

甲、乙仓库原来共有多少袋?
2、珍珍读一本故事书,已读的和未读的页数比是1:4.如果再读115页,已读的和未读的页数比是7:5.这本书共多少页?
3、左、右两个书架上书的册数比是5:4,如果都搬走5
1,左面的书架比右面书架的书多44册。

两个书架原来各有书多少册?
4、甲、乙两包糖的重量比是4:1,如果从甲包中取出10克放入乙包后,甲包糖是乙包糖5
7,那么,两包糖重量的总和是多少克?。

相关文档
最新文档