福建省宁德二中2014-2015学年高二上学期第二次月考数学试卷(理科) Word版含解析

合集下载

宁德市2014-2015学年度第一学期期末高二质量检测

宁德市2014-2015学年度第一学期期末高二质量检测

(4)为了测定在某种催化剂作用下的反应速率,某科学家在某温度下用气体传感器测时间(s) 0 1 2 3 4 5 c(NO)( mol•L-1) 1.00×10-3 4.50×10-4 2.50×10-4 1.50×10-4 1.00×10-4 1.00×10-4 c(CO)( mol•L-1) 3.60×10-3 3.05×10-3 2.85×10-3 2.75×10-3 C 2.70×10-3从表中数据分析可知:①c=mol•L-1;②前2s内的平均反应速率v(N2)=;③该温度下反应的平衡常数K=。

19.(14分)I.肼(N2H4)又称联氨,常温时是一种可燃性的液体,可用作火箭燃料。

(1)已知在25℃101kPa时,16gN2H4在氧气中完全燃烧生成氮气,放出312kJ的热量,则N2H4完全燃烧的热化学方程式是。

II.如下图所示,某研究性学习小组利用上述燃烧原理设计一个肼(N2H4)−─空气燃料电池(如图甲)并探究氯碱工业原理和粗铜的精炼原理,其中乙装置中X为阳离子交换膜。

根据要求回答相关问题:(2)甲装置中正极的电极反应式为。

(3)检验乙装置中石墨电极反应产物的方法是。

(4)如果电解后丙装置精铜质量增加3.2g,则理论上甲装置中肼消耗质量为g。

III.对金属制品进行抗腐蚀处理,可延长其使用寿命。

该研究性学习小组又以肼(N2H4)-空气燃料电池为电源对铝材表面进行如下处理:(5)流程⑤中以铝材为阳极,在H2SO4溶液中电解,最终可在铝材表面形成氧化膜,该电解的阳极电极反应式为__________________________________。

(6)取少量废电解液,加入NaHCO3溶液后产生气泡和白色沉淀,其反应的离子方程式是__________________________________________________________。

福建省宁德市2015届高中毕业班第二次质量检查数学(理)试题

福建省宁德市2015届高中毕业班第二次质量检查数学(理)试题

2015年宁德市普通高中毕业班第二次质量检查数学(理科)试卷本试卷分第I 卷(选择题)和第II 卷(非选择题),第II 卷第(21)题为选考题,其它题为必考题.满分150分,考试时间120分钟. 参考公式: 第I 卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若向量a (3,)m =,b (2,1)=-,//a b ,则实数m 的值为A .32-B .32C .2D .62.若集合{|21}x A x =>,集合{|lg 0}B x x =>,则“x A ∈”是“x B ∈”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.已知等比数列{}n a 的第5项是二项式41x x ⎛⎫+ ⎪⎝⎭展开式的常数项,则37a a ⋅=A . 6B . 18C .24D .364.若函数2()1f x ax bx =++是定义在[1,2]a a --则该函数的最大值为A .5B .4C .3D .2,,(n x x ++-5.阅读如图所示的程序框图,运行相应的程序. 若该程序运行后输出的结果不大于20,则输入 的整数i 的最大值为A .3B .4C .5D .6 6.已知某市两次数学测试的成绩1ξ和2ξ分别服从 正态分布11(90,86)N ξ和22(93,79)N ξ,则以下结论正确的是A .第一次测试的平均分比第二次测试的平均分要高,也比第二次成绩稳定B .第一次测试的平均分比第二次测试的平均分要高,但不如第二次成绩稳定C .第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定D .第二次测试的平均分比第一次测试的平均分要高,但不如第一次成绩稳定7.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,过点1F 作直线l x ⊥轴交双曲线C 的渐近线于点,A B .若以AB 为直径的圆恰过点2F ,则该双曲线的离心率为 ABC .2 D8.某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天. 甲说:我在1日和3日都有值班; 乙说:我在8日和9日都有值班;丙说:我们三人各自值班的日期之和相等.据此可判断丙必定值班的日期是 A . 2日和5日 B . 5日和6日 C . 6日和11日 D . 2日和11日 9.若关于x 的方程320()x x x a a --+=∈R 有三个实根1x ,2x ,3x ,且满足123x x x ≤≤,则1x 的最小值为A .2-B .1-C .13-D .010.如图所示为某几何体的正视图和侧视图,则该几何体体积的所有可能取值的集合是侧视图正视图A .12,33⎧⎫⎨⎬⎩⎭B .12,,336π⎧⎫⎨⎬⎩⎭ C .1233V V ⎧⎫≤≤⎨⎬⎩⎭ D .203V V ⎧⎫<≤⎨⎬⎩⎭第II 卷 (非选择题共100分)二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡相应位置. 11.复数1iiz +=(i 为虚数单位)在复平面上对应的点到原点的距离为__________. 12.设a 是抛掷一枚骰子得到的点数,则方程20x ax a ++=有两个不等实根的概率 为 .13.若关于x ,y 的不等式组 0,,10x y x kx y ≥⎧⎪≥⎨⎪-+≥⎩表示的平面区域是一个直角三角形,则k 的值为 .14.若在圆22:()4C x y a +-=上有且仅有两个点到原点O 的距离为1,则实数a 的取值范围是 . 15的ABC ∆中,3A π∠=.若点D 为BC 边上的一点,且满足2CD DB =,则当AD 取最小时,BD 的长为 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分13分)将射线1(0)7y x x =≥绕着原点逆时针旋转4π后所得的射线经过点(c o s s i n )A θθ,. (Ⅰ)求点A 的坐标; (Ⅱ)若向量(s i n 2,2c o s )x θ=m ,(3sin ,2cos2)x θ=n ,求函数()f x ⋅=m n ,[0,2x π∈]的值域.17.(本小题满分13分)某校为选拔参加“央视猜灯谜大赛”的队员,在校内组织猜灯谜竞赛.规定:第一阶段知识测试成绩不小于160分的学生进入第二阶段比赛.现有200名学生参加知识测试,并将所有测试成绩绘制成如下所示的频率分布直方图.(Ⅰ)估算这200名学生测试成绩的中位数,并求进入第二阶段比赛的学生人数; (Ⅱ)将进入第二阶段的学生分成若干队进行比赛.现甲、乙两队在比赛中均已获得120分,进入最后抢答阶段.抢答规则:抢到的队每次需猜3条谜语,猜对1条得20分,猜错1条扣20分.根据经验,甲队猜对每条谜语的概率均为34,乙队猜对前两条的概率均为45,猜对第3条的概率为12.若这两队抢到答题的机会均等,您做为场外观众想支持这两队中的优胜队,会把支持票投给哪队?18. (本小题满分13分)如图,在四棱柱1111ABCD A B C D -中,底面ABCD 是矩形,且22AD CD ==,12AA =,13A AD π∠=.若O 为AD 的中点,且1CD AO ⊥. (Ⅰ)求证:1AO ⊥平面ABCD ; (Ⅱ)线段BC 上是否存在一点P ,使得二面角1D A A P --为6π? 若存在,求出BP 的长;不存在,说明理由.19. (本小题满分13分)已知点(0,1)F ,直线1:1l y =-,直线21l l ⊥于P ,连结PF ,作线段PF 的垂直平分线交直线2l 于点H .设点H 的轨迹为曲线Γ.(Ⅰ)求曲线Γ的方程;(Ⅱ)过点P 作曲线Γ的两条切线,切点分别为,C D , (ⅰ)求证:直线CD 过定点;(ⅱ)若(1,1)P -,过点P 作动直线l 交曲线Γ于点,A B ,直线CD 交l 于点Q ,试探究20.(本小题满分14分)xyO已知函数2()e ()x f x x ax -=+在点(0,(0))f 处的切线斜率为2. (Ⅰ)求实数a 的值;(Ⅱ)设3()(e g x x x t t =---∈R )(),若()()g x f x ≥对[0,1]x ∈恒成立,求t 的取值范围;(Ⅲ)已知数列{}n a 满足11a =,11(1)n n a a n +=+,求证:当2,n n ≥∈N 时 11213()()()62e n a a a f f f n n n n -⎛⎫+++<⋅+ ⎪⎝⎭(e 为自然对数的底数,e 2.71828≈).21.本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分.作答时,先用2B 铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.(1)(本小题满分7分)选修4—2:矩阵与变换在平面直角坐标系中,矩阵M 对应的变换将平面上任意一点(,)P x y 变换为点(2,3)P x y x '+.(Ⅰ)求矩阵M 的逆矩阵1M -;(Ⅱ)求曲线410x y+-=在矩阵M的变换作用后得到的曲线C '的方程.(2)(本小题满分7分)选修4-4:坐标系与参数方程已知极坐标系的极点在直角坐标系的原点,极轴与x 轴的正半轴重合,直线l 的参数方程为x y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数), 圆C 的极坐标方程为222sin()1(0)4r r ρρθπ+++=>.(Ⅰ)求直线l 的普通方程和圆C 的直角坐标方程;(Ⅱ)若圆C 上的点到直线l 的最大距离为3,求r 的值.(3)(本小题满分7分)选修4—5:不等式选讲 已知函数()|5||3|f x x x =-+-. (Ⅰ)求函数()f x 的最小值m ;(Ⅱ)若正实数,a b 满足11a b +2212m a b+≥.2013年宁德市普通高中毕业班质量检查 数学(理科)试题参考答案及评分标准说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解法不同,可根据试题的主要考查内容比照评分标准指定相应的评分细则.二、对计算题,当考生的解答在某一部分解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分.一、选择题:本题考查基础知识和基本运算,每小题5分,满分50分.1.A 2.B 3.D 4.A 5.B 6.C 7.D 8.C 9.B 10.D 二、填空题:本题考查基础知识和基本运算,每小题4分,满分20分.1112.1313.1-或0 14.(3,1)(1,3)-- 15三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程和演算步骤. 16.本题考查三角函数、平面向量等基础知识,考查运算求解能力,考查函数与方程的思想、数形结合的思想,满分13分. 解: (Ⅰ)设射线1(0)7y x x =≥的倾斜角为α,则1tan 7α=,(0,)2απ∈.……………1分 ∴1147tan tan()143117θα+π=+==-⨯,……………………………………………4分 ∴由22sin cos 1,sin 4,cos 3θθθθ⎧=⎪⎨=⎪⎩+解得4sin ,53cos .5θθ⎧=⎪⎪⎨⎪=⎪⎩……………………………………………6分∴点A 的坐标为3455⎛⎫⎪⎝⎭,.…………………………………………………………7分(Ⅱ)()3sin sin 22cos 2cos2f x x x θθ⋅+⋅=……………………………………8分1212sin 2cos255x x =+).4x π=+…………………………………………………10分 由[0,2x π∈],可得2[,]444x ππ5π+∈,∴sin(2)[4x π+∈,………………………………………………………12分 ∴函数()f x的值域为12[5-.……………………………………………13分 17.本小题主要考查概率、概率与统计等基础知识,考查推理论证能力、数据处理能力、运算求解能力及应用意识,考查或然与必然的思想,满分13分. 解法一:(Ⅰ)设测试成绩的中位数为x ,由频率分布直方图得, (0.00150.019)20(140)0.0250.5x +⨯+-⨯=,解得:143.6x =.……………………………2分∴测试成绩中位数为143.6.进入第二阶段的学生人数为200×(0.003+0.0015)×20=18人.…………………4分 (Ⅱ)设最后抢答阶段甲、乙两队猜对灯谜的条数分别为ξ、η, 则3(3,)4B ξ,……………………………5分∴39344E ξ=⨯=.……………………………6分 ∴最后抢答阶段甲队得分的期望为99[(3)]203044--⨯=,………………………8分∵2111(0)5250P η⎛⎫==⨯= ⎪⎝⎭,2411119(1)25525250P η⎛⎫==⨯⨯⨯+⨯= ⎪⎝⎭,24141112(2)25255225P η⎛⎫==⨯+⨯⨯⨯= ⎪⎝⎭,24116(3)5250P η⎛⎫==⨯= ⎪⎝⎭,∴9121621012350255010E η=+⨯+⨯+⨯=, …………………………………………10分 ∴最后抢答阶段乙队得分的期望为2121[(3)]20241010--⨯=.……………………12分∴1203012024+>+,∴支持票投给甲队..……………………………13分 解法二:(Ⅰ)同解法一. ……………………………4分(Ⅱ)设最后抢答阶段甲队获得的分数为ξ, 则ξ所有可能的取值为60-,20-,20,60.331(60)1464P ξ⎛⎫=-=-= ⎪⎝⎭, 213339(20)14464P C ξ⎛⎫=-=-= ⎪⎝⎭, 3233327(20)14464P C ξ⎛⎫⎛⎫==-=⎪⎪⎝⎭⎝⎭,3327(60)464P ξ⎛⎫=== ⎪⎝⎭. ∴19276020206030646464E ξ=-⨯-⨯+⨯+=.……………………………8分 设最后抢答阶段乙队获得的分数为η,则η所有可能的取值为60-,20-,20,60. ∵2111(60)5250P η⎛⎫=-=⨯= ⎪⎝⎭,2411119(20)25525250P η⎛⎫=-=⨯⨯⨯+⨯= ⎪⎝⎭,24141112(20)25255225P η⎛⎫==⨯+⨯⨯⨯= ⎪⎝⎭,24116(60)5250P η⎛⎫==⨯= ⎪⎝⎭,∴191216602020602450502550E η=-⨯-⨯+⨯+⨯=,……………………………12分 ∵1203012024+>+,∴支持票投给甲队.…………………………………………13分18.本小题主要考查直线与平面的位置关系,二面角的大小等基础知识,考查空间想象能力、推理论证能力和运算求解能力,考查函数与方程思想、化归与转化思想、数形结合思想,满分13分.(Ⅰ)证明:∵13A AD π∠=,且12AA =,1AO =,∴1A O =…………………………………………2分 ∴22211AO AD AA += ∴1AO AD ⊥.…………………………………………3分 又1CD AO ⊥,且CD AD D =,∴1AO ⊥平面ABCD .…………………………………………5分 (Ⅱ)解:过O 作//Ox AB ,以O 为原点,建立空间直角坐标系O xyz -(如图),则(0,1,0)A -,1A ,设(1,,0)([1,1])P m m ∈-,平面1A AP 的法向量为1n =(x ∵1AA =,(1,1,0)AP m =+,且1110,(1)0.AA y AP x m y ⋅⋅⎧=+=⎪⎨=++=⎪⎩n n 取1z =,得1n =1),m +.……………………………8分 又1AO ⊥平面ABCD ,且1AO ⊂平面11A ADD , ∴平面11A ADD ⊥平面ABCD .B a1a又CD AD ⊥,且平面11A ADD 平面ABCD AD =∴CD ⊥平面11A ADD . 不妨设平面11A ADD 的法向量为2n =(1,0,0).………………………10分由题意得12cos ,==n n ,……………………12分解得1m =或3m =-(舍去).∴当BP 的长为2时,二面角1D A A P --的值为6π.………………………13分 19.本题主要考查直线、抛物线、直线与抛物线的位置关系等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、化归与转化思想,考查考生分析问题和解决问题的能力,满分13分.解法一: (Ⅰ)由题意可知,HF HP =,∴点H 到点(0,1)F 的距离与到直线1:1l y =-的距离相等,……………………………2分 ∴点H 的轨迹是以点(0,1)F 为焦点, 直线1:1l y =-为准线的抛物线,………………3分 ∴点H 的轨迹方程为24x y =.…………………………………………4分(Ⅱ)(ⅰ)证明:设0(,1)P x -,切点(,),(,)C C D D C x y D x y . 由214y x =,得12y x '=. ∴直线01:1()2C PC y x x x +=-,…………………………………………5分 又PC 过点C ,214C C y x =, ∴2001111()222C C C C C y x x x x x x +=-=-, ∴01122C C C y y x x +=-,即01102C C x x y -+=.…………………………………………6分 同理01102D D x x y -+=, ∴直线CD 的方程为01102xx y -+=,…………………………………………7分∴直线CD 过定点(0,1).…………………………………………8分(ⅱ)由(Ⅱ)(ⅰ)得,直线CD 的方程为1102x y -+=. 设:1(1)l y k x +=-, 与方程1102x y -+=联立,求得4221Q k x k +=-.……………………………………9分 设(,),(,)A A B B A x y B x y ,联立1(1)y k x +=-与24x y =,得24440x kx k -++=,由根与系数的关系,得4,44A B A B x x k x x k +=⋅=+.…………………………………………10分∵1,1,1Q A B x x x ---同号, ∴11PQPQ PQ PA PB PA PB ⎛⎫+=+ ⎪ ⎪⎝⎭11111Q A B x x x ⎛⎫=-+⎪⎪--⎭ ()11111Q A B x x x ⎛⎫=-⋅+ ⎪--⎝⎭…………………………………………11分 ()()24212111A B A B x x k k x x +-+⎛⎫=-⋅ ⎪---⎝⎭ 5422215k k -=⋅=-, ∴PQPQ PA PB +为定值,定值为2.…………………………………………13分解法二: (Ⅰ)设(,)H x y ,由题意可知, HF HP =,1y =+, ………………………………2分∴化简得24x y =,∴点H 的轨迹方程为24x y =.…………………………………………4分(Ⅱ)(ⅰ)证明:设切点(,),(,)C C D D C x y D x y ,直线CD 的方程为y kx t =+.联立y kx t =+与24x y =得2440x kx t --=,由根与系数的关系,得4,4C D C D x x k x x t +=⋅=-.…………………………………………5分 由214y x =,得12y x '=. ∴直线1:()2C C C PC y y x x x -=-,又214C C y x =, 所以211:24C C PC y x x x =-. 同理211:24D D PD y x x x =-.…………………………………………6分 联立两直线方程,解得1y t =-=-,∴1t =,即直线CD 过定点(0,1).…………………………………………8分(ⅱ)由(Ⅱ)(ⅰ),解得11()22C D x x k =+=, ∴12k =, ∴直线CD 的方程为1102x y -+=. 以下同解法一.20.本题考查函数、导数等基础知识,考查推理论证能力和运算求解能力,考查函数与方程的思想、化归与转化的思想、数形结合的思想,考查运用数学知识分析和解决问题的能力,满分14分.解: (Ⅰ)22()e ()e (2)e (2)x x x f x x ax x a x ax x a ---'=-+++=-+--,…………………1分 由(0)()2f a '=--=,得2a =.…………………………………………3分(Ⅱ)2()e (2)x f x x x -=+.由()()g x f x ≥,得23()e (2)ex x x t x x ----≥+,[0,1]x ∈. 当0x =时,该不等式成立; …………………………………………4分当(0,1]x ∈,不等式3e (2)ex x t x --++≥+对(0,1]x ∈恒成立,即max 3e (2)e x t x x -⎡⎤≥++-⎢⎥⎣⎦.…………………………5分 设3()e (2)ex h x x x -=++-,(0,1]x ∈, ()e (2)e 1e (1)1x x x h x x x ---'=-+++=-++,()e (1)e e 0x x x h x x x ---''⎡⎤=--++=⋅>⎣⎦,∴()h x '在(0,1]单调递增,∴()(0)0h x h ''>=,∴()h x 在(0,1]单调递增, …………………………………………………………7分 ∴max 33()(1)11e eh x h ==+-=, ∴ 1.t ≥………………………………………………………………………………8分 (Ⅲ)∵11(1)n n a a n+=+, ∴11n n a n a n++=,又11a =, ∴2n ≥时,321121231121n n n a a a n a a n a a a n -=⋅⋅⋅⋅=⋅⋅⋅⋅=-,对1n =也成立, ∴n a n =.……………………………10分∵当[0,1]x ∈时,2()e (2)0x f x x -'=-->,∴()f x 在[0,1]上单调递增,且()(0)0f x f ≥=. 又∵1()i f n n ⋅(11,)i n i ≤≤-∈N 表示长为()i f n ,宽为1n的小矩形的面积, ∴11()()i n i ni f f x dx n n +⋅<⎰(11,)i n i ≤≤-∈N , ∴1112011121()()()()()()()n a a a n f f f f f f f x dx n n n n n n n n --⎡⎤⎡⎤+++=+++<⎢⎥⎢⎥⎣⎦⎣⎦⎰.…… 12分 又由(Ⅱ),取1t =,得23()()(1)e f x g x x x ≤=-++, ∴1132100011313()()(1)32e 62ef x dxg x dx x x ≤=-++=+⎰⎰, ∴112113()()()62en f f f n n n n -⎡⎤+++<+⎢⎥⎣⎦,∴11213()()()62e n a a a f f f n n n n -⎛⎫+++<⋅+ ⎪⎝⎭.…………………………………………14分 21.(1)本题主要考查矩阵与变换等基础知识,考查运算求解能力及化归与转化思想.满分7分.解:(Ⅰ)设点(),P x y 在矩阵M 对应的变换作用下所得的点为(,)P x y ''',则2,3,x x y y x '=+⎧⎨'=⎩即2130x x y y '⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪'⎝⎭⎝⎭⎝⎭, ∴2130M ⎛⎫= ⎪⎝⎭.…………………………………………1分 又det()3M =-,∴1103213M -⎛⎫- ⎪ ⎪= ⎪-- ⎪⎝⎭.…………………………………………3分 (Ⅱ)设点(),A x y 在矩阵M 对应的变换作用下所得的点为(,)A x y ''',则1103213x x x M y y y -⎛⎫- ⎪''⎛⎫⎛⎫⎛⎫ ⎪== ⎪ ⎪ ⎪'' ⎪⎝⎭⎝⎭⎝⎭-- ⎪⎝⎭, 即1,32,3x y y x y ⎧'=-⎪⎪⎨⎪''=--⎪⎩…………………………………………5分 ∴代入410x y +-=,得241033y x y '⎛⎫''----= ⎪⎝⎭, 即变换后的曲线方程为210x y ++=.…………………………7分(2)本题主要考查直线的参数方程及极坐标方程等基础知识,考查运算求解能力及化归与转化思想.满分7分.解:(Ⅰ)直线l 的直角坐标方程为x y +=,………………………………………2分圆C的直角坐标方程为222(((0)x y r r +++=>.………………………… 4分 (Ⅱ)∵圆心(C ,半径为r ,………………………………………5分圆心C到直线x y+=的距离为2d,………………………6分又∵圆C上的点到直线l的最大距离为3,即3d r+=,∴321r=-=.………………………………………7分(3)本题主要考查绝对值不等式和均值不等式等基础知识,考查运算求解能力,考查化归与转化思想.满分7分.解:(Ⅰ)∵()|5||3|532f x x x x x=-+-≥-+-=,…………………………………2分当且仅当[3,5]x∈时取最小值2,……………………3分2m∴=.…………………………………4分(Ⅱ)22222121()[1](13a b a++≥⨯+=,222123()2a b∴+⨯≥,∴22122a b+≥.…………………………………………7分。

福建省宁德市第二中学2014-2015学年高二上学期期中考

福建省宁德市第二中学2014-2015学年高二上学期期中考

一、选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的序号填在答题纸上.)1.在△ABC 中,若030,6,90===B a C ,则b c -等于( ) A .1 B .1- C .32 D .32-2.在△ABC 中,::1:2:3A B C =, 则::a b c 等于( )A .1:2:3B .3:2:1C .:2D .23.边长为5,7,8的三角形的最大角与最小角的和是( ) A .090 B .0120 C .0135 D .01504.已知等差数列{}n a 的公差为2,若431,,a a a 成等比数列, 则2a =( ) A .4- B .6- C .8- D .10-5.在等差数列{}n a 中,2700...,200...10052515021=+++=+++a a a a a a , 则1a 为( ) A .22.5-B .21.5-C .20.5-D .20-6.下列各对不等式中同解的是( ) A .72<x 与 x x x +<+72 B .0)1(2>+x 与 01≠+xC .13>-x 与13>-xD .33)1(x x >+与xx 111<+ 7.设11a b >>>-,则下列不等式中恒成立的是 ( ) A .b a 11< B .ba 11> C .2a b > D .22a b > 8.如果实数,x y 满足221x y +=,则(1)(1)xy xy +-有 ( )A .最小值21和最大值1B .最大值1和最小值43C .最小值43而无最大值 D .最大值1而无最小值9.设集合等于则B A x x B x x A ,31|,21|⎭⎬⎫⎩⎨⎧>=⎭⎬⎫⎩⎨⎧<=( ) A .⎪⎭⎫⎝⎛2131, B .⎪⎭⎫ ⎝⎛∞+,21C .⎪⎭⎫ ⎝⎛∞+⎪⎭⎫ ⎝⎛-∞-,,3131D .⎪⎭⎫⎝⎛∞+⎪⎭⎫ ⎝⎛-∞-,,213110.一元二次不等式220ax bx ++>的解集是11(,)23-,则a b +的值是( )。

宁德市2014-2015学年度第二学期高二期末质量检测理科

宁德市2014-2015学年度第二学期高二期末质量检测理科

宁德市2014-2015学年度第二学期高二期末质量检测数学(理科)试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷1至2页,第II 卷3至5页。

考试时间120分钟,满分150分。

注意事项:1、答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名,考生要认真核对答题卡上粘贴的条形码的“准考证号,姓名”与考生本人准考证号、姓名是否一致。

2、第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应的题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,第II 卷用0.5毫米黑色签字笔在答题卡上书写作答,在试题卷上作答,答案无效。

3、考试结束,考生必须将试题卷和答题卡一并交回。

第I 卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有 且只有一个项是符合题目要求的.1. 已知复数2+z i =(i 为虚数单位),则复数z 在复平面上的对应点在( ).A . 第一象限B . 第二象限C . 第三象限D . 第四象限 2.用三段论推理:“对数函数y log (01)a x a a =>≠且在()0,+∞上是减函数,因为2y log x =是对数函数,所以2y log x =在()0,+∞上是减函数”,你认为这个推理( ).A .大前提错误B . 小前提错误C.推理形式错误D. 大前提和小前提都错误3.为了研究高中学生对乡村音乐的态度(喜欢和不喜欢两种态度)与性别的关系,运用2×2列联表进行独立性检验,经计算27.01K =,则认为“喜欢乡村音乐与性别有关系”有( )以上的把握. 20()P K k ≥ 0.1000.050 0.025 0.010 0.005 0.001 0k2.7063.841 5.024 6.635 7.879 10.828A .0.1%B .1%C .99%D .99.9%4. 由函数2y x =的图象与直线12x x ==、和x 轴所围成的封闭图形的面积是( )A .32B .2C .73D .35.A ,B ,C ,D ,E 五人并排站成一排,如果B 必须站在A 的右边(A ,B 可以不相邻),那么不同的排法共有( )A . 24种B . 60种C . 90种D .120种6.函数()y f x =的导函数()y f x '=的图象如图所示,下列说法正确的是( )A .函数()f x 在1x x =处取得极小值B .函数()f x 在3x x =处取得极大值C .函数()f x 的单调递减区间是23(,)x xD .函数()f x 无极大值( 第6题图) 7.某班有50名学生,一次考试后数学成绩2(110,)X N σ,若(100110)0.3P X ≤≤=,则估计该班学生数学成绩在120分以上的人数为( )A .10B .9C .8D .78.2nx x ⎛⎫+ ⎪⎝⎭的展开式的二项式系数之和为8,则展开式的常数项等于( ) A .4 B .6 C .8 D .10 9.若1!2!3!4!5!2014!2015!m =+++++++,则m 的个位数是( )A .1B .2C . 3D . 410. 从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则(B |A)P =( )A .18B .14C .25D .1211.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有( )种.A . 48B .60C .72D .961x xy '2x 3x x o。

福建省宁德市第二中学2014-2015学年高二上学期期中考试数学(理)试题(无答案)

福建省宁德市第二中学2014-2015学年高二上学期期中考试数学(理)试题(无答案)

一、选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的序号填在答题纸上.)1.在△ABC 中,若0030,6,90===B a C ,则b c -等于( ) A .1 B .1- C .32 D .32-2.在△ABC 中,::1:2:3A B C =, 则::a b c 等于( )A .1:2:3B .3:2:1C .1:2D .2:3.边长为5,7,8的三角形的最大角与最小角的和是( ) A .090 B .0120 C .0135 D .01504.已知等差数列{}n a 的公差为2,若431,,a a a 成等比数列, 则2a =( ) A .4- B .6- C .8- D .10-5.在等差数列{}n a 中,2700...,200...10052515021=+++=+++a a a a a a , 则1a 为( ) A .22.5-B .21.5-C .20.5-D .20-6.下列各对不等式中同解的是( ) A .72<x 与 x x x +<+72 B .0)1(2>+x 与 01≠+xC .13>-x 与13>-xD .33)1(x x >+与xx 111<+ 7.设11a b >>>-,则下列不等式中恒成立的是 ( ) A .b a 11< B .ba 11> C .2a b > D .22a b > 8.如果实数,x y 满足221x y +=,则(1)(1)xy xy +-有 ( )A .最小值21和最大值1 B .最大值1和最小值43C .最小值43而无最大值 D .最大值1而无最小值9.设集合等于则B A x x B x x A ,31|,21|⎭⎬⎫⎩⎨⎧>=⎭⎬⎫⎩⎨⎧<=( ) A .⎪⎭⎫ ⎝⎛2131, B .⎪⎭⎫ ⎝⎛∞+,21C .⎪⎭⎫ ⎝⎛∞+⎪⎭⎫ ⎝⎛-∞-,,3131D .⎪⎭⎫⎝⎛∞+⎪⎭⎫ ⎝⎛-∞-,,213110.一元二次不等式220ax bx ++>的解集是11(,)23-,则a b +的值是( )。

福建省宁德二中高二数学上学期第二次月考试卷 理(含解析)

福建省宁德二中高二数学上学期第二次月考试卷 理(含解析)

福建省宁德二中2014-2015学年高二上学期第二次月考数学试卷(理科)一、选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的序号填在答题纸上.)1.(5分)下列语句中是命题的是()A.周期函数的和是周期函数吗B.sin45°=1C.x2+2x﹣1>0 D.梯形是不是平面图形呢2.(5分)在命题“若抛物线y=ax2+bx+c的开口向下,则集合{x|ax2+bx+c<0}≠∅”的逆命题,否命题,逆否命题的真假结论是()A.都真B.都假C.否命题真D.逆否命题真3.(5分)有下述说法:①a>b>0是a2>b2的充要条件.②a>b>0是的充要条件.③a>b>0是a3>b3的充要条件.则其中正确的说法有()A.0个B.1个C.2个D.3个4.(5分)下列说法中正确的是()A.一个命题的逆命题为真,则它的逆否命题一定为真B.“a>b”与“a+c>b+c”不等价C.“a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0,则a2+b2≠0”D.一个命题的否命题为真,则它的逆命题一定为真5.(5分)若A:a∈R,|a|<1,B:x的二次方程x2+(a+1)x+a﹣2=0的一个根大于零,另一根小于零,则A是B的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.(5分)已知椭圆上的点P到椭圆一个焦点的距离为7,则P到另一焦点的距离为()A.2 B.3 C.5 D.77.(5分)若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为()A.B.C.或D.以上都不对8.(5分)动点P到点M(1,0)及点N(3,0)的距离之差为2,则点P的轨迹是()A.双曲线B.双曲线的一支C.两条射线D.一条射线9.(5分)抛物线y2=10x的焦点到准线的距离是()A.B.5 C.D.1010.(5分)若抛物线y2=8x上一点P到其焦点的距离为9,则点P的坐标为()A.(7,±)B.(14,±)C.(7,±2)D.(7,2)二、填空题:(本大题共5小题,每小题4分,共20分.)11.(4分)命题:“若a•b不为零,则a,b都不为零”的逆否命题是.12.(4分)用“充分、必要、充要”填空:(1)p∨q为真命题是p∧q为真命题的条件;(2)¬p为假命题是p∨q为真命题的条件.13.(4分)若椭圆x2+my2=1的离心率为,则它的长半轴长为.14.(4分)若曲线表示双曲线,则k的取值范围是.15.(4分)抛物线y2=6x的准线方程为.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤16.对于下述命题p,写出“¬p”形式的命题,并判断“p”与“¬p”的真假:(1)p:91∈(A∩B)(其中全集U=N*,A=x|x是质数,B=x|x是正奇数).(2)p:有一个素数是偶数;.(3)p:任意正整数都是质数或合数;(4)p:三角形有且仅有一个外接圆.17.若a2+b2=c2,求证:a,b,c不可能都是奇数.18.k为何值时,直线y=kx+2和椭圆2x2+3y2=6有两个公共点?有一个公共点?没有公共点?19.在抛物线y=4x2上求一点,使这点到直线y=4x﹣5的距离最短.20.双曲线与椭圆有共同的焦点F1(0,﹣5),F2(0,5),点P(3,4)是双曲线的渐近线与椭圆的一个交点,求渐近线与椭圆的方程.21.k代表实数,讨论方程kx2+2y2﹣8=0所表示的曲线.福建省宁德二中2014-2015学年高二上学期第二次月考数学试卷(理科)参考答案与试题解析一、选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的序号填在答题纸上.)1.(5分)下列语句中是命题的是()A.周期函数的和是周期函数吗B.sin45°=1C.x2+2x﹣1>0 D.梯形是不是平面图形呢考点:四种命题.专题:阅读型.分析:分析是否是命题,需要分别分析各选项事是否是用语言、符号或式子表达的,可以判断真假的陈述句.解答:解:A,不是,因为它是一个疑问句,不能判断其真假,故不构成命题;B,是,因为能够判断真假,故是命题;C,不是,因为不能判断其真假,故不构成命题;D,不是,不能判定真假且不是陈述句,故不构成命题;故选B.点评:本题考查了命题的定义:一般的,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.2.(5分)在命题“若抛物线y=ax2+bx+c的开口向下,则集合{x|ax2+bx+c<0}≠∅”的逆命题,否命题,逆否命题的真假结论是()A.都真B.都假C.否命题真D.逆否命题真考点:四种命题的真假关系.专题:计算题.分析:题考查的是原命题、逆命题、否命题、逆否命题四种命题的真假问题.在解答时,首先要判断准原命题和逆命题的真假,然后由原命题与逆否命题和逆命题跟与否命题都互为逆否命题,且互为逆否命题的命题真假性相同,从而可得解答.解答:解:对于原命题“若抛物线y=ax2+bx+c的开口向下,则{x|ax2+bx+c<0}≠φ.”可知a<0,∴{x|ax2+bx+c<0}≠φ”一定成立,故原命题是真命题;又因为逆命题为“{x|ax2+bx+c<0}≠φ,则抛物线y=ax2+bx+c的开口向下”当a=1,b=﹣2,c=﹣3时,显然{x|ax2+bx+c<0}={x|﹣1<x<3}≠φ,但是抛物线y=ax2+bx+c 的开口向上,所以逆命题不成立是假命题.又由原命题与逆否命题和逆命题跟与否命题都互为逆否命题,且互为逆否命题的命题真假性相同.所以原命题与逆否命题都是真命题,逆命题与否命题都是假命题.故选D.点评:此题考查的是原命题、逆命题、否命题、逆否命题四种命题的真假问题.在考查的过程当中与解方程相联系,深入考查了条件与结论之间的互推关系.此题值得同学们体会和反思.属基础题.3.(5分)有下述说法:①a>b>0是a2>b2的充要条件.②a>b>0是的充要条件.③a>b>0是a3>b3的充要条件.则其中正确的说法有()A.0个B.1个C.2个D.3个考点:必要条件、充分条件与充要条件的判断.专题:阅读型.分析:依次分析命题,a>b>0⇒a2>b2,反之则不成立,故①错误;a>b>0⇒,反之则不成立,故②错误;a>b>0⇒a3>b3,反之由不成立,故③错误;综合可得答案.解答:解:a>b>0⇒a2>b2,反之则不成立,故①错误;a>b>0⇒,反之则不成立,故②错误;a>b>0⇒a3>b3,反之由不成立,故③错误.故选A.点评:本题考查必要条件、充分条件、充要条件的判断,解题时要认真审题,仔细解答,注意避免不必要错误的发生.4.(5分)下列说法中正确的是()A.一个命题的逆命题为真,则它的逆否命题一定为真B.“a>b”与“a+c>b+c”不等价C.“a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0,则a2+b2≠0”D.一个命题的否命题为真,则它的逆命题一定为真考点:命题的真假判断与应用.专题:推理和证明.分析:由四种命题的等价关系可判断A,D;利用等价命题的定义,可判断B;写出原命题的逆否命题,可判断C;解答:解:一个命题的逆命题为真,则它的否命题一定为真,一个命题为真,则它的逆否命题一定为真,但一个命题的逆命题为真,则它的逆否命题不一定为真,故A错误,D正确;“a>b”⇔“a+c>b+c”,故B错误;“a2+b2=0,则a,b全为0”的逆否命题是“若a,b不全为0,则a2+b2≠0”,故C错误;故选:D点评:本题考查的知识点是四种命题,等价命题,熟练掌握四种命题的等价关系和定义是解答的关键.5.(5分)若A:a∈R,|a|<1,B:x的二次方程x2+(a+1)x+a﹣2=0的一个根大于零,另一根小于零,则A是B的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:计算题.分析:先求得命题A,B为真时,参数的范围,再利用四种条件的定义,即可得结论.解答:解:A:a∈R,|a|<1,可得﹣1<a<1;B:x的二次方程x2+(a+1)x+a﹣2=0的一个根大于零,另一根小于零,所以f(0)=a﹣2<0,所以a<2;当﹣1<a<1时,a﹣2<0,∴A是B的充分条件,当a<2时,不能得出﹣1<a<1,比如a=1.5,∴A不是B的必要条件;所以A是B的充分不必要条件故选:A.点评:本题以命题为载体,考查四种条件,考查方程根的研究,利用四种条件的定义进行判断是关键.6.(5分)已知椭圆上的点P到椭圆一个焦点的距离为7,则P到另一焦点的距离为()A.2 B.3 C.5 D.7考点:椭圆的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:由椭圆方程找出a的值,根据椭圆的定义可知椭圆上的点到两焦点的距离之和为常数2a,把a的值代入即可求出常数的值得到P到两焦点的距离之和,由P到一个焦点的距离为7,求出P到另一焦点的距离即可.解答:解:由椭圆,得a=5,则2a=10,且点P到椭圆一焦点的距离为7,由定义得点P到另一焦点的距离为2a﹣3=10﹣7=3.故选B点评:此题考查学生掌握椭圆的定义及简单的性质,是一道中档题.7.(5分)若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为()A.B.C.或D.以上都不对考点:椭圆的标准方程.专题:计算题.分析:设出椭圆的长半轴与短半轴分别为a和b,根据长轴与短轴的和为18列出关于a 与b的方程记作①,由焦距等于6求出c的值,根据椭圆的基本性质a2﹣b2=c2,把c的值代入即可得到关于a与b的另一关系式记作②,将①②联立即可求出a和b的值,然后利用a 与b的值写出椭圆的方程即可.解答:解:设椭圆的长半轴与短半轴分别为a和b,则2(a+b)=18,即a+b=9①,由焦距为6,得到c=3,则a2﹣b2=c2=9②,由①得到a=9﹣b③,把③代入②得:(9﹣b)2﹣b2=9,化简得:81﹣18b=9,解得b=4,把b=4代入①,解得a=5,所以椭圆的方程为:+=1或+=1.故选C.点评:此题考查学生掌握椭圆的基本性质,会根据椭圆的长半轴与短半轴写出椭圆的标准方程,是一道综合题.学生做题时应注意焦点在x轴和y轴上两种情况.8.(5分)动点P到点M(1,0)及点N(3,0)的距离之差为2,则点P的轨迹是()A.双曲线B.双曲线的一支C.两条射线D.一条射线考点:轨迹方程.专题:常规题型.分析:根据双曲线的定义:动点到两定点的距离的差的绝对值为小于两定点距离的常数时为双曲线;距离当等于两定点距离时为两条射线;距离当大于两定点的距离时无轨迹.解答:解:|PM|﹣|PN|=2=|MN|,点P的轨迹为一条射线故选D.点评:本题考查双曲线的定义中的条件:小于两定点间的距离时为双曲线.9.(5分)抛物线y2=10x的焦点到准线的距离是()A.B.5 C.D.10考点:抛物线的简单性质.专题:计算题.分析:根据抛物线的标准方程,可求得p,再根据抛物线焦点到准线的距离是p,进而得到答案.解答:解:2p=10,p=5,而焦点到准线的距离是p.故抛物线y2=10x的焦点到准线的距离是5故选B点评:本题主要考查了抛物线的性质.属基础题.10.(5分)若抛物线y2=8x上一点P到其焦点的距离为9,则点P的坐标为()A.(7,±)B.(14,±)C.(7,±2)D.(7,2)考点:抛物线的简单性质.专题:计算题.分析:根据抛物线y2=8x可知p=4,准线方程为x=﹣2,进而根据抛物线的定义可知点P 到其焦点的距离等于点P到其准线x=﹣2的距离,求得P点的横坐标,代入抛物线方程即可求得纵坐标.解答:解:根据抛物线y2=8x,知p=4根据抛物线的定义可知点P到其焦点的距离等于点P到其准线x=﹣2的距离,得x p=7,把x代入抛物线方程解得y=±2故选C.点评:本题主要考查了抛物线的性质.属基础题.二、填空题:(本大题共5小题,每小题4分,共20分.)11.(4分)命题:“若a•b不为零,则a,b都不为零”的逆否命题是若a,b至少有一个为零,则a•b为零.考点:四种命题间的逆否关系.专题:计算题.分析:根据逆否命题的定义,命题若p则q的逆否命题为:若¬q,则¬p,根据命题:“若a•b不为零,则a,b都不为零”,写出¬q与¬p,进而可以得到原命题的逆否命题.解答:解:命题:“若a•b不为零,则a,b都不为零”中,p:a•b不为零,q:a,b都不为零则¬p:a•b为零,¬q:a,b至少有一个为零则命题:“若a•b不为零,则a,b都不为零”的逆否命题是:若a,b至少有一个为零,则a•b为零故答案:若a,b至少有一个为零,则a•b为零点评:本题考查的知识点是逆否命题的定义,已知原命题,写出它的其他三种命题,首先把原命题改写成“若p,则q”的形式,然后找出其条件p和结论q,再根据四种命题的定义写出其他命题.逆命题:“若q,则p”;否命题:“若¬p,则¬q”;逆否命题:“若¬q,则¬p”12.(4分)用“充分、必要、充要”填空:(1)p∨q为真命题是p∧q为真命题的必要不充分条件;(2)¬p为假命题是p∨q为真命题的充分不必要条件.考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:(1)根据p∨q,p∧q的真假情况与p,q真假的关系及充分条件,必要条件的概念即可完成该问;(2)根据¬p,p∨q的真假情况与p,q真假的关系及充分条件,必要条件的概念即可完成该问.解答:解:(1)由p∨q为真命题,则:p,q中至少有一个为真命题;而p∧q为真命题,则:p,q都为真命题;∴由p∨q为真命题不一定得到p∧q为真命题,∴p∨q为真命题不是p∧q为真命题的充分条件;而由p∧q为真命题,能得到p∨q为真命题,∴p∨q为真命题是p∧q为真命题的必要条件;∴p∨q为真命题是p∧q为真命题的必要不充分条件;(2)¬p为假命题时,p为真命题,所以p∨q为真命题,∴¬p为假命题是p∨q为真命题的充分条件;由p∨q为真命题,得到p,q中至少有一个为真命题,所以p可能是假命题,所以¬p是真命题,即得不到¬p是假命题,∴¬p为假命题不是p∨q为真命题的必要条件;∴¬p为假命题是p∨q为真命题的充分不必要条件.故答案为:必要不充分,充分不必要.点评:考查p∨q,p∧q,¬p的真假情况与p,q真假的关系以及充分条件,必要条件,必要不充分条件,充分不必要条件的概念.13.(4分)若椭圆x2+my2=1的离心率为,则它的长半轴长为1或2.考点:椭圆的简单性质.专题:计算题.分析:首先将方程转化成标准方程,进而能够得出a2、b2,然后求出m,从而得出长半轴长.解答:解:椭圆x2+my2=1即,当椭圆焦点在y轴上时,∴a2= b2=1由c2=a2﹣b2得,c2=∵=1﹣m=得m=∴a=2即长半轴长为2当椭圆焦点在x轴上时,b2= a2=1∴a=1即长半轴长为1故答案为1或2.点评:本题考查了椭圆的标准方程和简单性质,此题要注意椭圆在x轴和y轴两种情况,属于基础题.14.(4分)若曲线表示双曲线,则k的取值范围是(﹣∞,﹣4)∪(1,+∞).考点:双曲线的定义.专题:计算题.分析:根据双曲线的性质知,(4+k)(1﹣k)<0,进而求得k的范围.解答:解:要使方程为双曲线方程需(4+k)(1﹣k)<0,即(k﹣1)(k+4)>0,解得k>1或k<﹣4故答案为(﹣∞,﹣4)∪(1,+∞)点评:本题主要考查了双曲线的定义和标准方程.属基础题.15.(4分)抛物线y2=6x的准线方程为x=﹣.考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:直接利用抛物线的性质,写出准线方程即可.解答:解:抛物线y2=6x的准线方程为:x=﹣.故答案为:x=﹣.点评:本题考查抛物线的基本性质,直线方程的求法,是基础题.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤16.对于下述命题p,写出“¬p”形式的命题,并判断“p”与“¬p”的真假:(1)p:91∈(A∩B)(其中全集U=N*,A=x|x是质数,B=x|x是正奇数).(2)p:有一个素数是偶数;.(3)p:任意正整数都是质数或合数;(4)p:三角形有且仅有一个外接圆.考点:素数及其判别;命题的否定.专题:阅读型.分析:首先要分清楚否命题与命题的否定形式的区别,否命题是一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,而命题的否定形式只是对结论否定即可.一个命题与它的否定形式是完全对立的.两者之间有且只有一个成立.而否命题和原命题的真假没有关系.解答:解:(1)¬p:91∉A,或91∉B;p真,¬p假;(2)¬p:每一个素数都不是偶数;p真,¬p假;(3)¬p:存在一个正整数不是质数且不是合数;p假,¬p真;(4)¬p:存在一个三角形有两个以上的外接圆或没有外接圆,p真,¬p假.点评:此题主要考查命题的否定形式与否命题的区别,要把两者之间的概念弄清楚,以免混淆,在判断真假的时候要弄清楚它与原命题的关系.以便更好的解题.17.若a2+b2=c2,求证:a,b,c不可能都是奇数.考点:反证法的应用.专题:计算题.分析:假设a,b,c都是奇数,则a2,b2,c2都是奇数,得a2+b2为偶数,而c2为奇数,即a2+b2≠c2,这与a2+b2=c2 相矛盾.解答:证明:假设a,b,c都是奇数,则a2,b2,c2都是奇数,得a2+b2为偶数,而c2为奇数,即a2+b2≠c2,这与a2+b2=c2 相矛盾,所以假设不成立,故原命题成立.点评:本题主要考查用反证法证明数学命题,推出矛盾,是解题的关键和难点.18.k为何值时,直线y=kx+2和椭圆2x2+3y2=6有两个公共点?有一个公共点?没有公共点?考点:椭圆的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:直线y=kx+2代入椭圆2x2+3y2=6,消去y,可得(2+3k2)x2+12kx+6=0,利用△>0、△=0、△<0,可得结论.解答:解:直线y=kx+2代入椭圆2x2+3y2=6,消去y,可得(2+3k2)x2+12kx+6=0,∴△=144k2﹣24(2+3k2)=72k2﹣48,①直线y=kx+2和椭圆2x2+3y2=6有两个交点,∴72k2﹣48>0,∴k>或k<﹣;②②直线y=kx+2和椭圆2x2+3y2=6有一个交点,∴72k2﹣48=0,∴k=±;③直线y=kx+2和椭圆2x2+3y2=6没有公共点,∴72k2﹣48<0,∴﹣<k<.点评:本题考查直线和椭圆的位置关系,直线和椭圆的交点个数的判断方法,求出△=72k2﹣48,是解题的关键.19.在抛物线y=4x2上求一点,使这点到直线y=4x﹣5的距离最短.考点:点到直线的距离公式.专题:计算题.分析:根据抛物线的方程设出点P的坐标,然后利用点到直线的距离公式表示出点P到直线y=4x﹣5的距离d,利用二次函数求最值的方法得到所求点P的坐标即可.解答:解:设点P(t,4t2),点P到直线y=4x﹣5的距离为d,则,当时,d取得最小值,此时为所求的点.点评:此题考查学生灵活运用点到直线的距离公式化简求值,掌握二次函数求最值的方法,是一道中档题.20.双曲线与椭圆有共同的焦点F1(0,﹣5),F2(0,5),点P(3,4)是双曲线的渐近线与椭圆的一个交点,求渐近线与椭圆的方程.考点:双曲线的简单性质;椭圆的标准方程.专题:计算题;圆锥曲线的定义、性质与方程.分析:先利用双曲线与椭圆有共同的焦点F1(0,﹣5),F2(0,5),设出对应的双曲线和椭圆方程,再利用点P(3,4)适合双曲线的渐近线和椭圆方程,就可求出椭圆的方程.解答:解:由共同的焦点F1(0,﹣5),F2(0,5),双曲线的过点P(3,4)的渐近线为y=x.可设椭圆方程为,点P(3,4)在椭圆上,,∴a2=40,∴椭圆方程为.点评:本题考查双曲线与椭圆的标准方程的求法.在求双曲线与椭圆的标准方程时,一定要先分析焦点所在位置,再设方程,避免出错.21.k代表实数,讨论方程kx2+2y2﹣8=0所表示的曲线.考点:曲线与方程.专题:分类讨论.分析:本题要确定曲线的类型,关键是讨论k的取值范围,解答:解:当k<0时,曲线为焦点在y轴的双曲线;当k=0时,曲线为两条平行于轴的直线y=2或y=﹣2;当0<k<2时,曲线为焦点在x轴的椭圆;当k=2时,曲线为一个圆;当k>2时,曲线为焦点在y轴的椭圆.点评:本题考查了几种基本的曲线方程与曲线的对应关系,从方程区分曲线也是必需的要掌握的.。

2014-2015年福建省宁德市高三上学期数学期末试卷(理科)与解析

2014-2015年福建省宁德市高三上学期数学期末试卷(理科)与解析

15. (4 分)如图,△A0B1A1,△A1B2A2,…,△An﹣1BnAn 均为等腰直角三角形,
第 3 页(共 27 页)
其直角顶点 B1,B2,…,Bn(n∈N*)在曲线 y= (x>0)上,A0 与坐标原点
* O 重合, A ( 在 x 轴正半轴上. 设 Bn 的纵坐标为 yn, 则 y1+y2+…+yn= i i∈N )

三、解答题:本大题共 5 小题,满分 66 分.解答须写出文字说明、证明过程和 演算步骤. 16. (13 分)某渔池年初放养一批鱼苗,为了解这批鱼苗的生长、健康状况,一 个月后,从该渔池中随机捞出 n 条鱼称其重量(单位:克) ,并将所得数据进 行分组,得到如右频率分布表. 分组 (80,90] (90,100] (100,110] (110,120] (120,130] (130,140] (140,150] 合计 频数 3 7 x 20 35 20 5 n 频率 0.03 0.07 0.10 y 0.35 0.20 0.05 1.00
2) . (Ⅰ)取线段 AC 的中点 Q,问:是否存在点 P,使得 PQ∥平面 AEB?若存在, 求出 PD 的长;不存在,说明理由; (Ⅱ)当 EP= ED 时,求平面 AEB 和平面 APC 所成的锐二面角的余弦值. 19. (13 分)某供货商拟从码头 A 发货至其对岸 l 的两个商场 B,C 处,通常货 物先由 A 处船运至 BC 之间的中转站 D,再利用车辆转运.如图,码头 A 与两 商场 B,C 的距离相等,两商场间的距离为 20 千米,且∠BAC= 物从码头 A 至 D 处的运费为 100 元/千米,这批货到 D 后需分别发车 2 辆、4 辆转运至 B、C 处,每辆汽车运费为 25 元/千米.设∠ADB=α,该批货总运费为 S 元. (Ⅰ)写出 S 关于 α 的函数关系式,并指出 α 的取值范围; (Ⅱ)当 α 为何值时,总运费 S 最小?并求出 S 的最小值. .若一批货

福建省四地六校2014-2015学年高二上学期第二次联考数学(理)

福建省四地六校2014-2015学年高二上学期第二次联考数学(理)

“华安、连城、永安、漳平一中、龙海二中、泉港一中”六校联考2014— 2015 学年上学期第二次月考高二数学(理)试题本试卷分第 I卷(选择题)、第 II 卷(非选择题)。

本试卷共8 页,满分150 分,考试时间120 分钟第 I卷(选择题共50分)一、选择题(本大题共10 小题,每题 5 分,满分 50分. 在每题给出的四个选项中,只有一项切合要求的. )1、命题“对x0, x2x0 ”的否认形式是()A.x00, x02x00B.x00, x02x00C.x00, x02x00D.x00, x02x002、设点 P(x, y) ,则“ x= 2且 y=- 1”是“点 P 在直线 l :x+ y- 1= 0 上”的 () A.充足而不用要条件B.必需而不充足条件C.充足必需条件D.既不充足也不用要条件3、以下说法错误的是 ()A.假如命题“P ”与命题“p或q”都是真命题,那么命题q 必定是真命题B.命题“若 a= 0,则 ab=0”的否命题是:“若a≠0,则 ab≠0”C.若命题 p:2- 3<0,x ∈ R,x + 2x00则 P :对x∈R,x2+2x-3≥0D.“ sin1θ=”是“ θ= 30°”的充足不用要条件24、右图给出的是计算1111的值的一个程序246100框图,此中判断框内应填入的条件是()A. i< = 100B. i>100C. i>50D. i< = 505、有四个游戏盘,假如撒一粒黄豆落在暗影部分,则可中奖.小明希望中奖,他应入选择的游戏盘为() .A. B. C. D.6、若双曲 点 (6,3 ) 且 近 方程是 y1 )x , 条双曲 的方程是(3A . x 2 y 2 1B. x 2 y 21C. x 2 y 21D. x 2y 21369981918 37、已知正方形ABCD 的 点 A, B 的焦点, 点C ,D 在 上, 此 的离心率( )A .21B. 2 C .2 1 D. 2 221x8、已知会合 A ={x ∈ R| 2<2 < 8} ,B = {x ∈R| - 1< x < m + 1} ,若 x ∈ B 建立的一个充足不用要的条件是 x ∈ A , 数 m 的取 范 是 ()A .m ≥2B .m ≤2C. m > 2D.- 2< m < 29、 x 2y 2 1 上的点到直 x2 y2 0 的最大距离是() 164A . 3B . 11C .2 2D . 1010、x 2 y 2P , ⋯, P , 的右焦点F. 数列{ |P F| }1上有 n 个不一样的点 : P ,431 2 nn是公差 大于 1的等差数列 , n 的最大 是()100A . 201B . 200C . 199D . 198第 II 卷(非 )二、填空 :(本大 共5 小 ,每小 4 分, 分 20 分)11、 若数据 x 1 ,x 2,x 3,⋯, x n 的均匀数 x , 3x 1+5,3x 2 +5,⋯, 3x n +5 的平均数.12、已知 的 是短 的2 倍, 的离心率等于13、 激 学生学 趣,老 上 在黑板上写出三个会合:A { x |[] x10} ,B { x | x 2x3x 4 0},C{ x | log 1 x 1} ;而后 甲、乙、丙三位同学到 台上,2并将“”中的数告 了他 ,要求他 各用一句 来描绘,以便同学 能确立 数,以下是甲、乙、丙三位同学的描绘,甲:此数 小于6 的正整数;乙: A 是 B 建立的充足不用要条件;丙:A 是 C 建立的必需不充足条件. 若三位同学 的都 , “”中的数.14、已知 F 是双曲x 2y 2 1的左焦点, A(1,4), P 是双曲 右支上的 点,PFPA412的最小15、离心率 黄金比5 -1的 称 “ 美 ” .x 2 y 2 1(a b 0) 是 美2a 2b 2圆,F、A 分别是它的左焦点和右极点, B 是它的短轴的一个端点,则ABF 等于.三、解答题:(本大题共有 6 小题,满分80 分 . 解答须写出文字说明、证明过程和演算步骤)16.(本小题13 分)某学校100 名学生期中考试语文成绩的频次散布直方图如图 4 所示,此中成绩分组区间是:50,60,60,70, 70,80, 80,90, 90,100.(1) 求图中 a 的值;(2) 依据频次散布直方图,预计这100 名学生语文成绩的众数、中位数(保存两位小数);(3)若这 100 名学生语文成绩某些分数段的人数x 与数学成绩相应分数段的人数y 之比以下表所示,求数学成绩在50,90 以外的人数.分数段50,6060,7070,8080,90x : y1: 12: 13:44: 517.(此题 13 分)已知动点 M 到点 P( 1,3) 的距离和到直线 y5的距离相等,求动点M 的2 88轨迹方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

福建省宁德二中2014-2015学年高二上学期第二次月考数学试卷(理科)一、选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的序号填在答题纸上.)1.(5分)下列语句中是命题的是()A.周期函数的和是周期函数吗B.s in45°=1C.x2+2x﹣1>0 D.梯形是不是平面图形呢2.(5分)在命题“若抛物线y=ax2+bx+c的开口向下,则集合{x|ax2+bx+c<0}≠∅”的逆命题,否命题,逆否命题的真假结论是()A.都真B.都假C.否命题真D.逆否命题真3.(5分)有下述说法:①a>b>0是a2>b2的充要条件.②a>b>0是的充要条件.③a>b>0是a3>b3的充要条件.则其中正确的说法有()A.0个B.1个C.2个D.3个4.(5分)下列说法中正确的是()A.一个命题的逆命题为真,则它的逆否命题一定为真B.“a>b”与“a+c>b+c”不等价C.“a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0,则a2+b2≠0”D.一个命题的否命题为真,则它的逆命题一定为真5.(5分)若A:a∈R,|a|<1,B:x的二次方程x2+(a+1)x+a﹣2=0的一个根大于零,另一根小于零,则A是B的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.(5分)已知椭圆上的点P到椭圆一个焦点的距离为7,则P到另一焦点的距离为()A.2B.3C.5D.77.(5分)若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为()A.B.C.或D.以上都不对8.(5分)动点P到点M(1,0)及点N(3,0)的距离之差为2,则点P的轨迹是()A.双曲线B.双曲线的一支C.两条射线D.一条射线9.(5分)抛物线y2=10x的焦点到准线的距离是()A.B.5C.D.1010.(5分)若抛物线y2=8x上一点P到其焦点的距离为9,则点P的坐标为()A.(7,±)B.(14,±)C.(7,±2)D.(7,2)二、填空题:(本大题共5小题,每小题4分,共20分.)11.(4分)命题:“若a•b不为零,则a,b都不为零”的逆否命题是.12.(4分)用“充分、必要、充要”填空:(1)p∨q为真命题是p∧q为真命题的条件;(2)¬p为假命题是p∨q为真命题的条件.13.(4分)若椭圆x2+my2=1的离心率为,则它的长半轴长为.14.(4分)若曲线表示双曲线,则k的取值范围是.15.(4分)抛物线y2=6x的准线方程为.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤16.对于下述命题p,写出“¬p”形式的命题,并判断“p”与“¬p”的真假:(1)p:91∈(A∩B)(其中全集U=N*,A=x|x是质数,B=x|x是正奇数).(2)p:有一个素数是偶数;.(3)p:任意正整数都是质数或合数;(4)p:三角形有且仅有一个外接圆.17.若a2+b2=c2,求证:a,b,c不可能都是奇数.18.k为何值时,直线y=kx+2和椭圆2x2+3y2=6有两个公共点?有一个公共点?没有公共点?19.在抛物线y=4x2上求一点,使这点到直线y=4x﹣5的距离最短.20.双曲线与椭圆有共同的焦点F1(0,﹣5),F2(0,5),点P(3,4)是双曲线的渐近线与椭圆的一个交点,求渐近线与椭圆的方程.21.k代表实数,讨论方程kx2+2y2﹣8=0所表示的曲线.福建省宁德二中2014-2015学年高二上学期第二次月考数学试卷(理科)参考答案与试题解析一、选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的序号填在答题纸上.)1.(5分)下列语句中是命题的是()A.周期函数的和是周期函数吗B.s in45°=1C.x2+2x﹣1>0 D.梯形是不是平面图形呢考点:四种命题.专题:阅读型.分析:分析是否是命题,需要分别分析各选项事是否是用语言、符号或式子表达的,可以判断真假的陈述句.解答:解:A,不是,因为它是一个疑问句,不能判断其真假,故不构成命题;B,是,因为能够判断真假,故是命题;C,不是,因为不能判断其真假,故不构成命题;D,不是,不能判定真假且不是陈述句,故不构成命题;故选B.点评:本题考查了命题的定义:一般的,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.2.(5分)在命题“若抛物线y=ax2+bx+c的开口向下,则集合{x|ax2+bx+c<0}≠∅”的逆命题,否命题,逆否命题的真假结论是()A.都真B.都假C.否命题真D.逆否命题真考点:四种命题的真假关系.专题:计算题.分析:题考查的是原命题、逆命题、否命题、逆否命题四种命题的真假问题.在解答时,首先要判断准原命题和逆命题的真假,然后由原命题与逆否命题和逆命题跟与否命题都互为逆否命题,且互为逆否命题的命题真假性相同,从而可得解答.解答:解:对于原命题“若抛物线y=ax2+bx+c的开口向下,则{x|ax2+bx+c<0}≠φ.”可知a<0,∴{x|ax2+bx+c<0}≠φ”一定成立,故原命题是真命题;又因为逆命题为“{x|ax2+bx+c<0}≠φ,则抛物线y=ax2+bx+c的开口向下”当a=1,b=﹣2,c=﹣3时,显然{x|ax2+bx+c<0}={x|﹣1<x<3}≠φ,但是抛物线y=ax2+bx+c 的开口向上,所以逆命题不成立是假命题.又由原命题与逆否命题和逆命题跟与否命题都互为逆否命题,且互为逆否命题的命题真假性相同.所以原命题与逆否命题都是真命题,逆命题与否命题都是假命题.故选D.点评:此题考查的是原命题、逆命题、否命题、逆否命题四种命题的真假问题.在考查的过程当中与解方程相联系,深入考查了条件与结论之间的互推关系.此题值得同学们体会和反思.属基础题.3.(5分)有下述说法:①a>b>0是a2>b2的充要条件.②a>b>0是的充要条件.③a>b>0是a3>b3的充要条件.则其中正确的说法有()A.0个B.1个C.2个D. 3个考点:必要条件、充分条件与充要条件的判断.专题:阅读型.分析:依次分析命题,a>b>0⇒a2>b2,反之则不成立,故①错误;a>b>0⇒,反之则不成立,故②错误;a>b>0⇒a3>b3,反之由不成立,故③错误;综合可得答案.解答:解:a>b>0⇒a2>b2,反之则不成立,故①错误;a>b>0⇒,反之则不成立,故②错误;a>b>0⇒a3>b3,反之由不成立,故③错误.故选A.点评:本题考查必要条件、充分条件、充要条件的判断,解题时要认真审题,仔细解答,注意避免不必要错误的发生.4.(5分)下列说法中正确的是()A.一个命题的逆命题为真,则它的逆否命题一定为真B.“a>b”与“a+c>b+c”不等价C.“a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0,则a2+b2≠0”D.一个命题的否命题为真,则它的逆命题一定为真考点:命题的真假判断与应用.专题:推理和证明.分析:由四种命题的等价关系可判断A,D;利用等价命题的定义,可判断B;写出原命题的逆否命题,可判断C;解答:解:一个命题的逆命题为真,则它的否命题一定为真,一个命题为真,则它的逆否命题一定为真,但一个命题的逆命题为真,则它的逆否命题不一定为真,故A错误,D正确;“a>b”⇔“a+c>b+c”,故B错误;“a2+b2=0,则a,b全为0”的逆否命题是“若a,b不全为0,则a2+b2≠0”,故C错误;故选:D点评:本题考查的知识点是四种命题,等价命题,熟练掌握四种命题的等价关系和定义是解答的关键.5.(5分)若A:a∈R,|a|<1,B:x的二次方程x2+(a+1)x+a﹣2=0的一个根大于零,另一根小于零,则A是B的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:计算题.分析:先求得命题A,B为真时,参数的范围,再利用四种条件的定义,即可得结论.解答:解:A:a∈R,|a|<1,可得﹣1<a<1;B:x的二次方程x2+(a+1)x+a﹣2=0的一个根大于零,另一根小于零,所以f(0)=a﹣2<0,所以a<2;当﹣1<a<1时,a﹣2<0,∴A是B的充分条件,当a<2时,不能得出﹣1<a<1,比如a=1.5,∴A不是B的必要条件;所以A是B的充分不必要条件故选:A.点评:本题以命题为载体,考查四种条件,考查方程根的研究,利用四种条件的定义进行判断是关键.6.(5分)已知椭圆上的点P到椭圆一个焦点的距离为7,则P到另一焦点的距离为()A.2B.3C.5D.7考点:椭圆的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:由椭圆方程找出a的值,根据椭圆的定义可知椭圆上的点到两焦点的距离之和为常数2a,把a的值代入即可求出常数的值得到P到两焦点的距离之和,由P到一个焦点的距离为7,求出P到另一焦点的距离即可.解答:解:由椭圆,得a=5,则2a=10,且点P到椭圆一焦点的距离为7,由定义得点P到另一焦点的距离为2a﹣3=10﹣7=3.故选B点评:此题考查学生掌握椭圆的定义及简单的性质,是一道中档题.7.(5分)若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为()A.B.C.或D.以上都不对考点:椭圆的标准方程.专题:计算题.分析:设出椭圆的长半轴与短半轴分别为a和b,根据长轴与短轴的和为18列出关于a 与b的方程记作①,由焦距等于6求出c的值,根据椭圆的基本性质a2﹣b2=c2,把c的值代入即可得到关于a与b的另一关系式记作②,将①②联立即可求出a和b的值,然后利用a与b的值写出椭圆的方程即可.解答:解:设椭圆的长半轴与短半轴分别为a和b,则2(a+b)=18,即a+b=9①,由焦距为6,得到c=3,则a2﹣b2=c2=9②,由①得到a=9﹣b③,把③代入②得:(9﹣b)2﹣b2=9,化简得:81﹣18b=9,解得b=4,把b=4代入①,解得a=5,所以椭圆的方程为:+=1或+=1.故选C.点评:此题考查学生掌握椭圆的基本性质,会根据椭圆的长半轴与短半轴写出椭圆的标准方程,是一道综合题.学生做题时应注意焦点在x轴和y轴上两种情况.8.(5分)动点P到点M(1,0)及点N(3,0)的距离之差为2,则点P的轨迹是()A.双曲线B.双曲线的一支C.两条射线D.一条射线考点:轨迹方程.专题:常规题型.分析:根据双曲线的定义:动点到两定点的距离的差的绝对值为小于两定点距离的常数时为双曲线;距离当等于两定点距离时为两条射线;距离当大于两定点的距离时无轨迹.解答:解:|PM|﹣|PN|=2=|MN|,点P的轨迹为一条射线故选D.点评:本题考查双曲线的定义中的条件:小于两定点间的距离时为双曲线.9.(5分)抛物线y2=10x的焦点到准线的距离是()A.B.5C.D.10考点:抛物线的简单性质.专题:计算题.分析:根据抛物线的标准方程,可求得p,再根据抛物线焦点到准线的距离是p,进而得到答案.解答:解:2p=10,p=5,而焦点到准线的距离是p.故抛物线y2=10x的焦点到准线的距离是5故选B点评:本题主要考查了抛物线的性质.属基础题.10.(5分)若抛物线y2=8x上一点P到其焦点的距离为9,则点P的坐标为()A.(7,±)B.(14,±)C.(7,±2)D.(7,2)考点:抛物线的简单性质.专题:计算题.分析:根据抛物线y2=8x可知p=4,准线方程为x=﹣2,进而根据抛物线的定义可知点P 到其焦点的距离等于点P到其准线x=﹣2的距离,求得P点的横坐标,代入抛物线方程即可求得纵坐标.解答:解:根据抛物线y2=8x,知p=4根据抛物线的定义可知点P到其焦点的距离等于点P到其准线x=﹣2的距离,得x p=7,把x代入抛物线方程解得y=±2故选C.点评:本题主要考查了抛物线的性质.属基础题.二、填空题:(本大题共5小题,每小题4分,共20分.)11.(4分)命题:“若a•b不为零,则a,b都不为零”的逆否命题是若a,b至少有一个为零,则a•b为零.考点:四种命题间的逆否关系.专题:计算题.分析:根据逆否命题的定义,命题若p则q的逆否命题为:若¬q,则¬p,根据命题:“若a•b不为零,则a,b都不为零”,写出¬q与¬p,进而可以得到原命题的逆否命题.解答:解:命题:“若a•b不为零,则a,b都不为零”中,p:a•b不为零,q:a,b都不为零则¬p:a•b为零,¬q:a,b至少有一个为零则命题:“若a•b不为零,则a,b都不为零”的逆否命题是:若a,b至少有一个为零,则a•b 为零故答案:若a,b至少有一个为零,则a•b为零点评:本题考查的知识点是逆否命题的定义,已知原命题,写出它的其他三种命题,首先把原命题改写成“若p,则q”的形式,然后找出其条件p和结论q,再根据四种命题的定义写出其他命题.逆命题:“若q,则p”;否命题:“若¬p,则¬q”;逆否命题:“若¬q,则¬p”12.(4分)用“充分、必要、充要”填空:(1)p∨q为真命题是p∧q为真命题的必要不充分条件;(2)¬p为假命题是p∨q为真命题的充分不必要条件.考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:(1)根据p∨q,p∧q的真假情况与p,q真假的关系及充分条件,必要条件的概念即可完成该问;(2)根据¬p,p∨q的真假情况与p,q真假的关系及充分条件,必要条件的概念即可完成该问.解答:解:(1)由p∨q为真命题,则:p,q中至少有一个为真命题;而p∧q为真命题,则:p,q都为真命题;∴由p∨q为真命题不一定得到p∧q为真命题,∴p∨q为真命题不是p∧q为真命题的充分条件;而由p∧q为真命题,能得到p∨q为真命题,∴p∨q为真命题是p∧q为真命题的必要条件;∴p∨q为真命题是p∧q为真命题的必要不充分条件;(2)¬p为假命题时,p为真命题,所以p∨q为真命题,∴¬p为假命题是p∨q为真命题的充分条件;由p∨q为真命题,得到p,q中至少有一个为真命题,所以p可能是假命题,所以¬p是真命题,即得不到¬p是假命题,∴¬p为假命题不是p∨q为真命题的必要条件;∴¬p为假命题是p∨q为真命题的充分不必要条件.故答案为:必要不充分,充分不必要.点评:考查p∨q,p∧q,¬p的真假情况与p,q真假的关系以及充分条件,必要条件,必要不充分条件,充分不必要条件的概念.13.(4分)若椭圆x2+my2=1的离心率为,则它的长半轴长为1或2.考点:椭圆的简单性质.专题:计算题.分析:首先将方程转化成标准方程,进而能够得出a2、b2,然后求出m,从而得出长半轴长.解答:解:椭圆x2+my2=1即,当椭圆焦点在y轴上时,∴a2=b2=1由c2=a2﹣b2得,c2=∵=1﹣m=得m=∴a=2即长半轴长为2当椭圆焦点在x轴上时,b2=a2=1∴a=1即长半轴长为1故答案为1或2.点评:本题考查了椭圆的标准方程和简单性质,此题要注意椭圆在x轴和y轴两种情况,属于基础题.14.(4分)若曲线表示双曲线,则k的取值范围是(﹣∞,﹣4)∪(1,+∞).考点:双曲线的定义.专题:计算题.分析:根据双曲线的性质知,(4+k)(1﹣k)<0,进而求得k的范围.解答:解:要使方程为双曲线方程需(4+k)(1﹣k)<0,即(k﹣1)(k+4)>0,解得k>1或k<﹣4故答案为(﹣∞,﹣4)∪(1,+∞)点评:本题主要考查了双曲线的定义和标准方程.属基础题.15.(4分)抛物线y2=6x的准线方程为x=﹣.考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:直接利用抛物线的性质,写出准线方程即可.解答:解:抛物线y2=6x的准线方程为:x=﹣.故答案为:x=﹣.点评:本题考查抛物线的基本性质,直线方程的求法,是基础题.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤16.对于下述命题p,写出“¬p”形式的命题,并判断“p”与“¬p”的真假:(1)p:91∈(A∩B)(其中全集U=N*,A=x|x是质数,B=x|x是正奇数).(2)p:有一个素数是偶数;.(3)p:任意正整数都是质数或合数;(4)p:三角形有且仅有一个外接圆.考点:素数及其判别;命题的否定.专题:阅读型.分析:首先要分清楚否命题与命题的否定形式的区别,否命题是一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,而命题的否定形式只是对结论否定即可.一个命题与它的否定形式是完全对立的.两者之间有且只有一个成立.而否命题和原命题的真假没有关系.解答:解:(1)¬p:91∉A,或91∉B;p真,¬p假;(2)¬p:每一个素数都不是偶数;p真,¬p假;(3)¬p:存在一个正整数不是质数且不是合数;p假,¬p真;(4)¬p:存在一个三角形有两个以上的外接圆或没有外接圆,p真,¬p假.点评:此题主要考查命题的否定形式与否命题的区别,要把两者之间的概念弄清楚,以免混淆,在判断真假的时候要弄清楚它与原命题的关系.以便更好的解题.17.若a2+b2=c2,求证:a,b,c不可能都是奇数.考点:反证法的应用.专题:计算题.分析:假设a,b,c都是奇数,则a2,b2,c2都是奇数,得a2+b2为偶数,而c2为奇数,即a2+b2≠c2,这与a2+b2=c2 相矛盾.解答:证明:假设a,b,c都是奇数,则a2,b2,c2都是奇数,得a2+b2为偶数,而c2为奇数,即a2+b2≠c2,这与a2+b2=c2 相矛盾,所以假设不成立,故原命题成立.点评:本题主要考查用反证法证明数学命题,推出矛盾,是解题的关键和难点.18.k为何值时,直线y=kx+2和椭圆2x2+3y2=6有两个公共点?有一个公共点?没有公共点?考点:椭圆的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:直线y=kx+2代入椭圆2x2+3y2=6,消去y,可得(2+3k2)x2+12kx+6=0,利用△>0、△=0、△<0,可得结论.解答:解:直线y=kx+2代入椭圆2x2+3y2=6,消去y,可得(2+3k2)x2+12kx+6=0,∴△=144k2﹣24(2+3k2)=72k2﹣48,①直线y=kx+2和椭圆2x2+3y2=6有两个交点,∴72k2﹣48>0,∴k>或k<﹣;②直线y=kx+2和椭圆2x2+3y2=6有一个交点,∴72k2﹣48=0,∴k=±;③直线y=kx+2和椭圆2x2+3y2=6没有公共点,∴72k2﹣48<0,∴﹣<k<.点评:本题考查直线和椭圆的位置关系,直线和椭圆的交点个数的判断方法,求出△=72k2﹣48,是解题的关键.19.在抛物线y=4x2上求一点,使这点到直线y=4x﹣5的距离最短.考点:点到直线的距离公式.专题:计算题.分析:根据抛物线的方程设出点P的坐标,然后利用点到直线的距离公式表示出点P到直线y=4x﹣5的距离d,利用二次函数求最值的方法得到所求点P的坐标即可.解答:解:设点P(t,4t2),点P到直线y=4x﹣5的距离为d,则,当时,d取得最小值,此时为所求的点.点评:此题考查学生灵活运用点到直线的距离公式化简求值,掌握二次函数求最值的方法,是一道中档题.20.双曲线与椭圆有共同的焦点F1(0,﹣5),F2(0,5),点P(3,4)是双曲线的渐近线与椭圆的一个交点,求渐近线与椭圆的方程.考点:双曲线的简单性质;椭圆的标准方程.专题:计算题;圆锥曲线的定义、性质与方程.分析:先利用双曲线与椭圆有共同的焦点F1(0,﹣5),F2(0,5),设出对应的双曲线和椭圆方程,再利用点P(3,4)适合双曲线的渐近线和椭圆方程,就可求出椭圆的方程.解答:解:由共同的焦点F1(0,﹣5),F2(0,5),双曲线的过点P(3,4)的渐近线为y=x.可设椭圆方程为,点P(3,4)在椭圆上,,∴a2=40,∴椭圆方程为.点评:本题考查双曲线与椭圆的标准方程的求法.在求双曲线与椭圆的标准方程时,一定要先分析焦点所在位置,再设方程,避免出错.21.k代表实数,讨论方程kx2+2y2﹣8=0所表示的曲线.考点:曲线与方程.专题:分类讨论.分析:本题要确定曲线的类型,关键是讨论k的取值范围,解答:解:当k<0时,曲线为焦点在y轴的双曲线;当k=0时,曲线为两条平行于轴的直线y=2或y=﹣2;当0<k<2时,曲线为焦点在x轴的椭圆;当k=2时,曲线为一个圆;当k>2时,曲线为焦点在y轴的椭圆.点评:本题考查了几种基本的曲线方程与曲线的对应关系,从方程区分曲线也是必需的要掌握的.。

相关文档
最新文档