函数的奇偶性(二)与对称性.尖子班

合集下载

函数的对称性与奇偶性

函数的对称性与奇偶性

函数的对称性与奇偶性对于函数而言,它的对称性和奇偶性是一种重要的性质,可以帮助我们更好地理解和分析函数的特点。

在数学中,对称性指的是函数在某种变换下保持不变的性质,而奇偶性则是函数在自身的对称轴上的性质。

本文将重点讨论函数的对称性和奇偶性。

1. 函数的对称性函数的对称性是指在某种变换下,函数的图像能够保持不变。

常见的函数对称性包括中心对称和轴对称。

1.1 中心对称性中心对称性是指函数的图像以某个点为对称中心,对称轴上的任意两点关于对称中心对称。

形式化地说,对于函数f(x),如果对于任意的x,有f(-x) = f(x),则函数f(x)具有中心对称性。

例如,函数f(x) = x^2是一个具有中心对称性的函数。

我们可以将其图像想象成一个抛物线,以原点为对称中心,任意一点关于原点的对称点的函数值是相等的。

1.2 轴对称性轴对称性是指函数的图像以某条直线为对称轴,对称轴上的任意两点关于对称轴对称。

形式化地说,对于函数f(x),如果对于任意的x,有f(-x) = f(x),则函数f(x)具有轴对称性。

举个例子,函数f(x) = sin(x)是一个具有轴对称性的函数。

我们可以将其图像想象成一条波浪线,其对称轴为x轴,任意一点关于x轴的对称点的函数值是相等的。

2. 函数的奇偶性函数的奇偶性是指函数在自身的对称轴上的性质。

奇函数和偶函数是两种常见的奇偶性。

2.1 奇函数奇函数是指函数在自身的原点上具有对称性,即对于任意的x,有f(-x) = -f(x)。

奇函数的图像关于原点对称。

举个例子,函数f(x) = x^3是一个奇函数。

我们可以观察到,任意一点关于原点的对称点的函数值是相等的,而且函数的图像关于原点对称。

2.2 偶函数偶函数是指函数在自身的对称轴上具有对称性,即对于任意的x,有f(-x) = f(x)。

偶函数的图像关于对称轴对称。

例如,函数f(x) = x^2是一个偶函数。

我们可以观察到,任意一点关于y轴的对称点的函数值是相等的,而且函数的图像关于y轴对称。

函数奇偶性对称性与周期性

函数奇偶性对称性与周期性

函数奇偶性、对称性与周期性一、几个重要的结论(一)函数)(x f y =图象本身的对称性(自身对称)1、)()(x a f x a f -=+ ⇔)(x f y =的图象关于直线a x =对称。

2、)()(x b f x a f -=+ ⇔)(x f y =的图象关于直线22)()(b a x b x a x +=-++=对称。

3、b x a f x a f 2)()(=-++ ⇔)(x f y =的图象关于点),(b a 对称。

4、c x b f x a f 2)()(=-++ ⇔)(x f y =的图象关于点),2(c b a +对称。

(二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解)1、函数)(x a f y +=与)(x a f y -=图象关于直线0=x 对称。

2、函数)(x f y =与)2(x a f y -=图象关于直线a x =对称3、函数)(x f y -=与)2(x a f y +=图象关于直线a x -=对称4、函数)(x a f y +=与)(x b f y -=图象关于直线0)()(=--+x b x a 对称 即直线2a b x -=对称 5、函数)(x f y =与)(x f y -=图象关于X 轴对称。

6、函数)(x f y =与)(x f y -=图象关于Y 轴对称。

7、函数)(x f y =与)(x f y --=图象关于原点对称(三)函数的周期性1、)()(x f T x f =+ ⇔)(x f y =的周期为T2、)()(b x b f a x f ++=+ )(b a < ⇔)(x f y =的周期为a b T -=3、)()(x f a x f -=+ ⇔)(x f y =的周期为a T 2=4、)(1)(x f a x f =+ ⇔)(x f y =的周期为a T 2= 5、)(1)(x f a x f -=+ ⇔)(x f y =的周期为a T 2= 6、)(1)(1)(x f x f a x f +-=+ ⇔)(x f y =的周期为a T 3=7、 1)(1)(+-=+x f a x f ⇔)(x f y =的周期为a T 3= 8、)(1)(1)(x f x f a x f -+=+ ⇔)(x f y =的周期为a T 4=9、)()()2(x f a x f a x f -+=+ ⇔)(x f y =的周期为a T 6=10、)(x f y =有两条对称轴a x =和b x =()b a < ⇔)(x f y = 周期)(2a b T -= 11、)(x f y =有两个对称中心)0,(a 和)0,(b ⇔)(x f y = 周期)(2a b T -= 12、)(x f y =有一条对称轴a x =和一个对称中心)0,(b ⇔)(x f y = 周期)(4a b T -=13、奇函数)(x f y =满足)()(x a f x a f -=+ ⇔)(x f y = 周期a T 4=。

函数奇偶性对称性周期性知识点总结文档

函数奇偶性对称性周期性知识点总结文档

函数奇偶性对称性周期性知识点总结文档函数的奇偶性、对称性和周期性是函数图像特征的重要方面。

在数学中,研究函数的这些特性可以帮助我们更好地理解函数的行为和性质。

本文将对函数的奇偶性、对称性和周期性进行总结。

一、函数的奇偶性奇偶性是指函数关于坐标原点或者其中一点的对称性。

如果函数f(x)满足f(x)=f(-x),则称函数为偶函数;如果函数f(x)满足f(x)=-f(-x),则称函数为奇函数。

1.偶函数的特点:(1)关于y轴对称,即函数的图像关于y轴对称;(2)具有对称性质,即对于任意x,有f(x)=f(-x);(3)如果函数f(x)在定义域内可导,则偶函数的导函数也是偶函数。

2.奇函数的特点:(1)关于原点对称,即函数的图像关于原点对称;(2)具有对称性质,即对于任意x,有f(x)=-f(-x);(3)如果函数f(x)在定义域内可导,则奇函数的导函数也是奇函数。

二、函数的对称性对称性是指函数图像关于其中一直线、其中一点或者其中一中心进行对称的性质。

1.关于y轴对称:如果函数f(x)满足f(x)=f(-x),则函数关于y轴对称。

这意味着函数的图像在y轴左右对称。

2.关于x轴对称:如果函数f(x)满足f(-x)=-f(x),则函数关于x轴对称。

这意味着函数的图像在x轴上下对称。

3.关于原点对称:如果函数f(x)满足f(-x)=-f(-x),则函数关于原点对称。

这意味着函数的图像在原点对称。

三、函数的周期性周期性是指函数在一定区间内以一些特定的周期重复出现的性质。

1.周期函数:如果函数f(x)在定义域的一些区间内满足f(x+T)=f(x),其中T为正数,则称函数为周期函数,T为函数的周期。

周期函数的图像在段区间内重复出现。

2.周期函数的性质:(1)在一个周期内,函数具有相同的性质和特点;(2)相邻两个周期之间的函数值关系相同;(3)周期函数的图像在一个周期内是相似的。

四、函数的判断在实际问题中,我们根据函数的表达式或者图像来判断函数的奇偶性、对称性和周期性。

函数奇偶性对称性周期性知识点总结

函数奇偶性对称性周期性知识点总结

函数奇偶性对称性周期性知识点总结函数的奇偶性、对称性和周期性是数学中经常研究的重要性质。

它们描述了函数的特征和性质,对于理解函数的行为和解决问题都具有重要意义。

下面将分别对这三个概念进行总结。

一、函数的奇偶性1.奇函数:如果对于函数f(x),对任意的x,都有f(-x)=-f(x),那么称该函数为奇函数。

即函数在原点关于y轴对称。

奇函数的特点:-奇函数的图像关于原点(0,0)对称。

-当函数的定义域包括0时,即使x等于0,函数值仍然等于0。

常见的奇函数有:- 正弦函数sin(x)。

-奇数次幂的多项式函数,如x^3、x^5等。

2.偶函数:如果对于函数f(x),对任意的x,都有f(-x)=f(x),那么称该函数为偶函数。

即函数在原点关于x轴对称。

偶函数的特点:-偶函数的图像关于x轴对称。

-当函数的定义域包括0时,对于任意的x,f(0)=f(-x)=f(x)。

常见的偶函数有:- 余弦函数cos(x)。

-偶数次幂的多项式函数,如x^2、x^4等。

3.奇偶性的判断方法:-对于已知函数,可以通过代数运算证明是否满足奇偶性的定义。

-函数图像的轴对称性可以直接判断奇偶性。

-对于周期函数,可以利用周期性的性质判断奇偶性。

二、函数的对称性1.关于y轴对称:如果对于函数f(x),对任意的x,都有f(-x)=f(x),那么称该函数关于y轴对称。

即函数的图像左右对称。

2.关于x轴对称:如果对于函数f(x),对任意的x,都有f(-x)=-f(x),那么称该函数关于x轴对称。

即函数的图像上下对称。

3.关于原点对称:如果对于函数f(x),对任意的x,都有f(-x)=-f(x),那么称该函数关于原点对称。

即函数的图像关于原点对称。

三、函数的周期性1.周期函数:如果存在一个正实数T,对于函数f(x),对于任意的x,都有f(x+T)=f(x),那么称该函数为周期函数,T为函数的周期。

周期函数的特点:-周期函数在一个周期内的函数值是相同的。

函数对称性、周期性和奇偶性规律总结

函数对称性、周期性和奇偶性规律总结

函数对称性、周期性和奇偶性关岭民中数学组(一)、同一函数的函数的奇偶性与对称性:(奇偶性是一种特殊的对称性)1、奇偶性:(1) 奇函数关于(0,0)对称,奇函数有关系式 f (x )+ f (-x )=0(2) 偶函数关于y(即x=0)轴对称,偶函数有关系式 f (-x )= f (x )2 、奇偶性的拓展 : 同一函数的对称性1)函数的轴对称:函数y = f (x )关于x =a 对称 f (a +x )= f (a -x )f (a + x ) = f (a - x ) 也可以写成 f ( x ) = f (2a - x ) 或 f (- x ) = f (2a + x )若写成: f (a + x ) = f (b - x ) , 则 函 数 y = f ( x ) 关于直线证明:设点(x 1, y 1) 在 y = f (x ) 上,通过f (x ) = f (2a - x ) 可知, y 1 = f (x 1)= f (2a- x 1) ,即点(2a - x 1, y 1)也在y = f (x )上,而点 (x 1, y 1)与点(2a - x 1, y 1)关于x=a 对称。

得证。

说明:关于x = a 对称要求横坐标之和为2a ,纵坐标相等。

∵(a +x 1,y 1)与(a -x 1,y 1) 关于x = a 对称,∴函数y = f (x )关于x =a 对称f ( a + x ) = f (a - x )∵(x 1,y 1)与(2a -x 1,y 1)关于x =a 对称,∴函数 y = f (x )关于x =a 对称f ( x ) = f (2a - x )∵ (- x 1, y 1)与(2a + x 1, y 1)关于x = a 对称,∴函数y = f (x )关于x =a 对称f (- x ) = f (2a + x )2)函数的点对称:函数 y = f (x )关于点(a ,b )对称 f (a +x )+ f (a -x ) =2b 上述关系也可以写成f (2a + x ) + f (- x ) = 2b 或 f (2a - x ) + f ( x ) = 2b若写成: f (a +x )+ f (b -x )=c ,函数y = f (x )关于点(a +b ,c ) 对称证明:设点(x 1, y 1)在y = f (x )上,即y 1 = f (x 1),通过f (2a -x )+f (x )=2b 可知, f (2a -x = (a + x ) + (b - x ) 2 a +b 2 对称x1)+ f(x1)=2b,所以f(2a-x1)=2b- f(x1)=2b- y1,所以点(2a-x1,2b-y1)也在y= f (x)上,而点(2a - x1,2b - y1)与(x1,y1)关于(a,b)对称得证。

函数的对称性与奇偶性

函数的对称性与奇偶性

函数的对称性与奇偶性函数是一种数学工具,用于描述两个变量之间的关系。

函数的对称性与奇偶性是函数的重要性质之一,它们可以帮助我们简化函数的分析和计算。

下面将介绍函数的对称性与奇偶性的概念和特点,并通过实例来说明其应用。

1. 对称性的定义和性质函数的对称性是指函数在某种变换下保持不变的性质。

常见的对称性包括轴对称(即关于某一条轴的对称性)和中心对称(即关于某一中心点的对称性)。

1.1 轴对称性对于轴对称函数,其图像相对于某一条轴对称,也就是说,图像在镜像之后仍然保持不变。

轴对称函数可以表示为f(x) = f(-x)。

常见的轴对称函数有偶函数和周期为2π的周期函数。

1.2 中心对称性对于中心对称函数,其图像相对于某一中心点对称,也就是说,图像在中心点旋转180°之后仍然保持不变。

中心对称函数可以表示为f(x) = -f(-x)。

常见的中心对称函数有奇函数。

2. 奇偶性的定义和性质函数的奇偶性是指函数在代入负数或正数时的表现特点。

奇函数与轴对称性相关,而偶函数与中心对称性相关。

2.1 奇函数奇函数满足f(-x) = -f(x),也就是说,当自变量取反时,函数值也取反。

奇函数的图像关于原点对称,具有轴对称性。

奇函数的常见特点是在原点处取值为零,而且在自变量为正负相等的情况下函数值相等。

2.2 偶函数偶函数满足f(-x) = f(x),也就是说,当自变量取反时,函数值不变。

偶函数的图像关于y轴对称,具有中心对称性。

偶函数的常见特点是在y轴处取值为零,而且在自变量为相反数的情况下函数值相等。

3. 对称性和奇偶性的应用对称性和奇偶性是函数分析中常用的工具之一,它们可以帮助我们简化函数的计算和图像的绘制。

3.1 推导函数的性质通过对函数的奇偶性进行分析,我们可以推导出函数的其他性质。

例如,偶函数的奇次幂项的系数为零,奇函数的偶次幂项的系数为零。

这些推导可以帮助我们更快地分析函数的特点。

3.2 简化函数的计算对于奇函数,当我们需要计算积分、求解方程等操作时,可以从负数到正数的范围内进行计算,然后将结果乘以2即可。

函数的对称性与奇偶性的判断方法

函数的对称性与奇偶性的判断方法在数学中,对称性和奇偶性是研究函数性质的重要概念。

判断函数的对称性与奇偶性有助于我们深入理解函数的特点和行为。

本文将介绍几种常见的方法来判断函数的对称性与奇偶性。

一、函数的对称性1. 关于y轴对称如果函数在y轴两侧的取值相同,即f(x) = f(-x)。

这意味着函数图像关于y轴对称。

为了判断该对称性,我们可以通过将x替换为-x,然后观察方程两边是否相等。

2. 关于x轴对称如果函数在x轴上和下两侧的取值相同,即f(x) = -f(-x)。

这表示函数图像关于x轴对称。

同样,我们可以通过将x替换为-x来验证该对称性。

3. 关于原点对称如果函数在原点两侧的取值相同,即f(x) = -f(-x),这说明函数图像关于原点对称。

同样地,我们可以通过将x替换为-x来检验该对称性。

二、函数的奇偶性1. 关于y轴对称的奇函数如果函数关于y轴对称,并且满足f(-x) = -f(x),则函数是奇函数。

换句话说,当x取相反数时,函数的函数值也取相反数。

2. 关于y轴对称的偶函数如果函数关于y轴对称,并且满足f(-x) = f(x),则函数是偶函数。

这表示当x取相反数时,函数的函数值保持不变。

3. 奇偶函数的性质奇函数和偶函数有一些特殊的性质。

对于奇函数,它的反函数也是奇函数;对于偶函数,它的反函数也是偶函数。

此外,奇函数和奇函数的乘积是偶函数,偶函数和偶函数的乘积是偶函数,奇函数和偶函数的乘积是奇函数。

三、判断方法示例下面通过几个简单的例子来说明判断函数对称性和奇偶性的方法。

例1:判断函数f(x) = 2x^4 - 3x^2是否关于y轴对称和奇偶性。

由于f(x)是一个多项式函数,它的所有指数都是非负整数,因此它是一个偶函数。

将x替换为-x,我们可以验证f(-x) = f(x)。

所以该函数关于y轴对称。

例2:判断函数f(x) = sin(x)是否关于x轴对称和奇偶性。

由于f(x)是正弦函数,它的值在不同的x值处取正负值,因此它是一个奇函数。

函数的对称性与奇偶性

函数的对称性与奇偶性函数的对称性和奇偶性是数学中重要的概念,用来描述函数在某种变换下的性质。

本文将介绍函数的对称性和奇偶性的概念和性质,并举例说明它们在数学和实际问题中的应用。

一、函数的对称性函数的对称性是指函数图像在某个变换下具有不变性。

常见的对称性有关于x轴对称、y轴对称和原点对称。

下面分别介绍这三种对称性:1. 关于x轴对称当一个函数的图像在x轴上下对称时,我们称之为关于x轴对称。

具体来说,如果对于函数中的任意一个点(x,y),该函数还包含另一个点(x,-y),那么这个函数就是关于x轴对称的。

例如,函数y = x^2就是关于x轴对称的。

当x取任意值时,对应的y值都是相等的,即对于任意一个点(x,y),图像上还存在一个对称的点(x,-y)。

2. 关于y轴对称当一个函数的图像在y轴左右对称时,我们称之为关于y轴对称。

具体来说,如果对于函数中的任意一个点(x,y),该函数还包含另一个点(-x,y),那么这个函数就是关于y轴对称的。

例如,函数y = sin(x)就是关于y轴对称的。

对于任意一个点(x,y),图像上还存在一个对称的点(-x,y)。

3. 关于原点对称当一个函数的图像在原点对称时,我们称之为关于原点对称。

具体来说,如果对于函数中的任意一个点(x,y),该函数还包含另一个点(-x,-y),那么这个函数就是关于原点对称的。

例如,函数y = x^3就是关于原点对称的。

对于任意一个点(x,y),图像上还存在一个对称的点(-x,-y)。

二、函数的奇偶性函数的奇偶性是指函数在x轴上对称和y轴对称的性质。

具体来说,如果函数在关于y轴的对称下,即对于任意的x值,函数中的点(x,y)和(-x,y)相等,那么这个函数就是偶函数。

而如果函数在关于原点的对称下,即对于任意的x值,函数中的点(x,y)和(-x,-y)相等,那么这个函数就是奇函数。

例如,函数y = x^2是一个偶函数,因为对于任意的x,y = x^2和y = (-x)^2是相等的。

函数的奇偶性、对称性与周期性总结,史上最全

函数的奇偶性、对称性与周期性常用结论,史上最全函数是高中数学的重点与难点,在高考数学中占分比重巨大。

高考中对函数的考查灵活,相关的结论众多,有奇偶性,对称性,还有周期性,这些结论及变形能否掌握,都影响着学生的最终成绩。

本篇将函数的奇偶性、对称性与周期性常用的结论进行总结,希望对同学们有帮助。

需要WORD 电子文档的同学,可以入群领取。

1.奇偶函数:设[][][]b a a b x b a x x f y ,,,),( --∈∈=或奇偶函数的定义域关于原点对称。

①若为奇函数;则称)(),()(x f y x f x f =-=-()()()0,1()f x f x f x f x +-==-- ②若为偶函数则称)()()(x f y x f x f ==-。

()()-()0,1()f x f x f x f x -==- 2.周期函数的定义:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期。

分段函数的周期:设)(x f y =是周期函数,在任意一个周期内的图像为C:),(x f y =[]a b T b a x -=∈,,。

把)()(a b K KT x x f y -==轴平移沿个单位即按向量)()0,(x f y kT a ==平移,即得在其他周期的图像:[]b kT a kT x kT x f y ++∈-=,),(。

[][]⎩⎨⎧++∈-∈=b kT a,kT x )(b a, x)()(kT x f x f x f函数周期性的几个重要结论2、()()f x a f x b +=+ ⇔)(x f y =的周期为a b T -=3、)()(x f a x f -=+ ⇔)(x f y =的周期为a T 2=4、)(1)(x f a x f =+⇔)(x f y =的周期为a T 2= 5、)(1)(x f a x f -=+⇔)(x f y =的周期为a T 2=6、)(1)(1)(x f x f a x f +-=+ ⇔)(x f y =的周期为a T 3=7、 1)(1)(+-=+x f a x f ⇔)(x f y =的周期为a T 2= 8、)(1)(1)(x f x f a x f -+=+ ⇔)(x f y =的周期为a T 4=9、)()()2(x f a x f a x f -+=+ ⇔)(x f y =的周期为a T 6= 10、若.2, )2()(,0p T p px f px f p =-=>则推论:偶函数)(x f y =满足)()(x a f x a f -=+⇔)(x f y = 周期a T 2=推论:奇函数)(x f y =满足)()(x a f x a f -=+⇔)(x f y = 周期a T 4=函数的对称性:(1)中心对称即点对称:①点对称;关于点与),()2,2(),(b a y b x a B y x A -- ②对称;关于与点),(),(),(b a y b x a B y b x a A ++--③成中心对称;关于点与函数),()2(2)(b a x a f y b x f y -=-= ④成中心对称;关于点与函数),()()(b a x a f y b x a f y b +=+-=- ⑤成中心对称。

函数的对称性与奇偶性的判断

函数的对称性与奇偶性的判断函数是数学中的一个重要概念,描述了一种输入和输出之间的关系。

在研究函数的性质时,对称性和奇偶性是两个常见的概念。

本文将就函数的对称性和奇偶性进行详细的介绍和判断方法。

一、对称性的概念和判断方法对称性是指函数在定义域内关于某个中心对称轴对称的性质。

对称轴可以是x轴、y轴或者其他直线。

常见的对称性有偶对称和奇对称两种。

1. 偶对称性:若对于函数的定义域内的任意x,都有f(x) = f(-x),即函数在关于y轴对称的情况下,称为偶对称函数。

判断函数是否具有偶对称性,可以通过以下步骤:(1) 将函数中所有的x换成-x;(2) 然后化简这个新的表达式;(3) 若化简后的表达式与原函数完全相同,则函数具有偶对称性。

例如,对于函数f(x) = x^2,将x替换成-x得到f(-x) = (-x)^2 = x^2。

与原函数表达式相同,因此该函数具有偶对称性。

2. 奇对称性:若对于函数的定义域内的任意x,都有f(x) = -f(-x),即函数在关于原点对称的情况下,称为奇对称函数。

判断函数是否具有奇对称性,可以通过以下步骤:(1) 将函数中所有的x换成-x;(2) 然后将新表达式中的符号取相反数;(3) 若化简后的表达式与原函数完全相反,则函数具有奇对称性。

例如,对于函数f(x) = x^3,将x替换成-x得到f(-x) = (-x)^3 = -x^3。

化简后的表达式与原函数的相反数相同,因此该函数具有奇对称性。

二、奇偶性的概念和判断方法奇偶性是指函数在定义域内的某个位置对应的函数值的正负关系。

奇函数指函数在原点对应的函数值为0以及对任意非零x,f(-x) = -f(x)。

偶函数指函数在原点对应的函数值为0以及对任意x,f(-x) = f(x)。

判断函数的奇偶性,可以通过以下步骤:1. 判断函数在原点的函数值是否为0,若为0,则函数具有奇偶性,否则需继续下一步判断。

2. 将函数中所有的x换成-x,然后比较新表达式与原函数的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

42 第4讲·教师版本讲分成三个板块:一、函数的奇偶性(二);二、函数的对称性;三、函数的周期性;其中板块
一只有一道例题,引出板块二——函数的一般对称性;
板块三只有目标班出现.本讲尖子班建议课时2小时,目标班建议课时3小时.
考点1:函数的奇偶性
<教师备案> 本板块复习一下上一讲的函数的奇偶性,
从图象平移的角度与奇偶函数的本质角度理解一般的奇偶性,并由此引出一般的对称性.
如(1)f x 是偶函数,
从图象平移角度来说:意味着函数
()f x 的图象向右平移一个单位后,有对称轴0x ,故
函数()f x 的图象有对称轴1x .从偶函数本质角度来说,偶函数意味着自变量取相反数时,函数值相等,
(1)f x 的自变量为x ,故意味着
(1)(1)f x f x .这说明:(1)(1)f x f x 与()f x 关于1x
对称是等价的命题.满分晋级
4.1函数奇偶性(二)
第4讲函数的奇偶性㈡
与对称性
函数12级
函数的单调性
与奇偶性(一)函数13级
函数的奇偶性(二)
与对称性
函数14级
指数函数与相关
复合函数。

相关文档
最新文档