七年级数学下册 与面积相关的概率—转盘游戏
新北师大版七年级数学下册第六章《概率初步》单元复习卷含答案解析(41)

一、选择题(共10题)1.如图,一个转盘被均匀分成8部分,随意转动转盘,则第一次转动转盘指针指到阴影部分的概率为( )A.18B.14C.38D.122.如图,转盘中四个扇形的面积都相等.小明随意转动转盘1次,指针指向的数字为偶数的概率为( )A.14B.12C.34D.563.有10张卡片,上面的编号为1到10,从中任意取1张,抽到的卡号为合数的可能性为( )A.110B.15C.310D.124.必然事件的概率是( )A.0B.0.5C.1.5D.15.下列说法中,正确的是( )A.不太可能发生的事就一定不发生B.一件事情要么发生,要么不发生,所以它发生的概率为0.5C.买一张彩票的中奖概率为1100000,那么买一张彩票中奖的可能性很小D.摸到红球的概率是25,那么摸球5次,一定有2次摸到红球6.下列叙述中正确的是A.“明天降雨的概率是80%”表示明天有80%的时间降雨B.“抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上C.“彩票中奖的概率是1%”表示买100张彩票一定会中奖D.“抛一枚正方体骰子,向上一面的点数为奇数的概率是0.5”表示如果大量重复抛这个骰子,那么平均每抛2次就有1次向上一面的点数为奇数7.某班学生中随机选取一名学生是男生的概率是25,则该班男、女生的人数比是( ) A.2:3B.2:5C.3:5D.3:28.一只不透明的袋子中装有除颜色外都相同的4个黑球、2个白球,从中任意摸出3个球,下列事件为必然事件的是( )A.至少有1个球是白球B.至少有1个球是黑球C.至少有2个球是白球D.至少有2个球是黑球9.从一定高度抛一个瓶盖100次,落地后盖面朝下的有55次,则下列说法中错误的是()A.盖面朝下的频数是55B.盖面朝下的频率是0.55C.盖面朝下的概率不一定是0.55D.同样的试验做200次,落地后盖面朝下的有110次10.下列成语或词语所反映的事件中,可能性最小的是( )A.瓜熟蒂落B.旭日东升C.守株待兔D.夕阳西下二、填空题(共7题)11.在一个不透明的袋子里装有9个白球和8个红球,这些球除颜色外,其余均相同,将袋中的球摇匀,从中任意取出一个球,摸到红球的可能性摸到白球的可能性(填“大于”、“小于”或“等于”).12.抛掷一枚质地均匀的正方体骰子,点数是偶数的概率是.13.如果m是从−2,−1,0,1四个数中任取的一个数,那么关于x的方程mx−3=2x−3+1的根为正数的概率为.14.若自然数n使得三个数的竖式加法运算“n+(n+1)+(n+2)”产生进位现象,则称n为“连加进位数”.例如,10不是“连加进位数”,因为10+11+12=33不产生进位现象;14是“连加进位数”,因为14+15+16=45产生进位现象.如果从10,11,12,⋯,19这10个自然数中任取一个数,那么取到“连加进位数”的概率是.15.必然事件的概率为.16.清明节妈妈买了5只鲜肉粽、3只豆沙粽和2只蛋黄肉粽,粽子除了内部馅料不同外其它均相同.小王从中随机拿出1只,正好拿到鲜肉粽的概率是.17.“抛掷一枚质地均匀的硬币,正面向上”是事件(从“必然”、“随机”、“不可能”中选一个).三、解答题(共8题)18.袋中装有大小相同的2个红球和2个绿球.(1) 先从袋中摸出1个球后放回,混合均匀后再摸出1个球.①求第一次摸到绿球,第二次摸到红球的概率;②求两次摸到的球中有1个绿球和1个红球的概率;(2) 先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.19.请说出下列事件发生的可能性大小:(1) 367人中必有两人的生日是同一天;(2) 袋中装有4个红球1个黄球,从中任意摸出一个球恰为黄球;(3) 掷一枚均匀的骰子(其六个面标有1,2,3,4,5,6,共6个数字),其朝上的数字大于3;(4) 10名同学站在屏幕后,其中男生7名,女生3名,从中任意挑一人恰是女生;(5) 没有电池的手电筒灯泡发光.20.在一张较大的白纸上面画满了间距为3cm的平行线,往这张纸上扔一枚半径为1cm的圆形小铁片,求铁片与直线不相交的概率.21.(1) 如图甲是书房地板的示意图,图中每一块地砖除了颜色外是完全相同的.现任意抛掷一个乒乓球,若乒乓球最后落在某一块地砖上算一次成功的抛掷,试求所有成功抛掷中,兵乓球抛掷后停留在黑色地砖上概率是多少;(2) 请在图乙中重新设计地砖的颜色,使乒乓球最后停留在黑色地砖上的概率为3.422.现有10张卡片,分别标有1,2,⋯,10,甲、乙两人合作完成一个游戏,规则是甲先随机抽取一张,然后乙猜这个数,如果猜对了,则乙胜;如果猜错了,则甲胜.(1) 这个游戏对双方公平吗?为什么?(2) 现在还有两种游戏规则,你认为公平吗?①猜是奇数还是偶数;②猜是3的倍数还是不是3的倍数;(3) 如果你是乙,你为了获胜,你选择上面哪种猜法?23.如图,某商场为了吸引顾客,设立了一个可以自由转动的转盘,并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红、绿或黄色区域,顾客就可以分别获得100元、50元、30元的购物券(转盘被等分成20个扇形)某顾客购物110元.(1) 则他获得购物券的概率是.(2) 则他获得100元购物券的概率是.(3) 则他获得50元购物券的概率是.(4) 则他获得30元购物券的概率是.24.研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球试验,摸球试验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.活动结果:摸球试验活动一共做了50次,统计结果如表所示:推测计算:由上述的摸球实验可推算:(1) 盒中红球,黄球各占总球数的百分比分别是多少?(2) 盒中有红球多少个?25.元旦期间,某超市开展有奖促销活动,凡在超市购物的顾客均有转动圆盘的机会(如图),如果规定当圆盘停下来时指针指向8就中一等奖,指向2或6就中二等奖,指向1或3或5就中纪念奖,指向其余数字不中奖.(1) 转动转盘中奖的概率是多少?(2) 元旦期间有1000人参与这项活动,估计获得一等奖的人数是多少?答案一、选择题(共10题)1. 【答案】C【知识点】公式求概率2. 【答案】B【解析】该圆被平分为四等份,其中2份为偶数,2份为奇数,∴小明转动转盘1次,指针指向的数字为偶数的概率为:P偶数=24=12.【知识点】公式求概率3. 【答案】D【知识点】公式求概率4. 【答案】D【解析】必然事件的概率是1,不可能事件的概率为0,随机事件的概率介于0和1之间.【知识点】概率的概念及意义、必然事件5. 【答案】C【知识点】概率的概念及意义、事件的分类6. 【答案】D【知识点】概率的概念及意义7. 【答案】A【知识点】概率的概念及意义8. 【答案】B【解析】一只不透明的袋子中装有除颜色外都相同的4个黑球、2个白球,从中任意摸出3个球,至少有1个球是黑球.【知识点】事件的分类9. 【答案】D【解析】【分析】根据频数、频率及用频率估计概率解答即可.【解析】解:A、盖面朝下的频数是55,此选项正确;B、盖面朝下的频率是55100=0.55,此选项正确;C、盖面朝下的概率接近于0.55,但不一定是0.55,此选项正确;D、同样的试验做200次,落地后盖面朝下的在110次附近,不一定必须有110次,此选项错误;故选:D.【点评】本题考查了利用频率估计概率的知识,解答此题关键是用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.【知识点】概率的概念及意义10. 【答案】C【解析】A.瓜熟蒂落,是必然事件,发生的可能性为1,不符合题意;B.旭日东升,是必然事件,发生的可能性为1,不符合题意;D.守株待兔所反映的事件可能发生也可能不发生,是随机事件,符合题意;D.夕阳西下,是必然事件,发生的可能性为1,不符合题意.【知识点】事件的分类、概率的概念及意义二、填空题(共7题)11. 【答案】小于【解析】由题意得:摸到红球的可能性为89+8=817,摸到白球的可能性为99+8=917,∵817<917,∴摸到红球的可能性小于摸到白球的可能性.故答案为:小于.【知识点】公式求概率12. 【答案】12【知识点】公式求概率13. 【答案】12【解析】将方程两边都乘以x−3,得:m=2+x−3,解得x=m+1,∵方程的解为正数,∴m+1>0且m+1≠3,则m>−1且m≠2,所以在所列的4个数中,能使此方程的解为正数的有0,1这2个数,则关于x的方程mx−3=2x−3+1的根为正数的概率为24=12,故答案为:12.【知识点】公式求概率14. 【答案】0.7【解析】根据连加进位数的意义可以判断:13,14,15,16,17,18,19是连加进位数,∵共有10个数,∴取到“连加进位数”的概率是0.7.【知识点】公式求概率15. 【答案】1【知识点】必然事件、公式求概率16. 【答案】12【解析】∵共有5+3+2=10只粽子,其中鲜肉粽有5只,∴小王从中随机拿出1只,正好拿到鲜肉粽的概率是510=12.【知识点】公式求概率17. 【答案】随机【知识点】事件的分类三、解答题(共8题)18. 【答案】(1) ① 416=14;② 816=12.(2) 812=23.【知识点】公式求概率19. 【答案】(1) 发生的可能性为1.(2) 发生的可能性为15.(3) 发生的可能性为12.(4) 发生的可能性为 310. (5) 发生的可能性为 0.【知识点】公式求概率、不可能事件20. 【答案】硬币是圆的,其中心是 O ,半径是 R =1,两平行线之间的距离的 D =3,要使得硬币与直线不相交,此时中心移动的距离是 d =3−2=1;而硬币中心可以移动的距离是 D =3=3,则 P =13.【知识点】公式求概率21. 【答案】(1) 由图可知共有方砖 8 块,黑色方砖为 4 块,乒乓球停留在黑色方砖上的概率是 12;(2) 黑色砖应有 6 块,画图略. 【知识点】公式求概率22. 【答案】(1) 这个游戏对甲、乙双方不公平,同时猜对的概率是 110,猜错的概率为 910,故游戏对甲、乙双方不公平.(2) ①猜是奇数还是偶数公平,②猜是 3 的倍数还是不是 3 的倍数不公平. (3) 猜不是 3 的倍数. 【知识点】公式求概率23. 【答案】(1) 12 (2) 110 (3)320(4) 14 【解析】(1) ∵ 根据题意可知,次顾客购物 110 元, ∴ 共有 1 次抽奖机会,∵ 共有 20 种等可能事件,其中满足获得购物券的可能共有 10 种, ∴P (获得购物券的概率)=1020=12.(2) ∵ 根据题意可知,此顾客购物 110 元,∴共有1次抽奖机会,∵共有20种等可能事件,其中满足其中获得100元购物券的可能有两种,∴P(获得100元购物券的概率)=220=110.(3) ∵根据题意可知,此顾客购物110元,∴共有1次抽奖机会,∵共有20种等可能事件,其中满足其中获得50元购物券的可能有3种,∴P(获得50元购物券的概率)=320.(4) ∵根据题意可知,此顾客购物110元,∴共有1次抽奖机会,∵共有20种等可能事件,其中满足其中获得30元购物券的可能有5种,∴P(获得30元购物券的概率)=520=14.【知识点】公式求概率24. 【答案】(1) 由题意可知,50次摸球试验活动中,出现红球20次,黄球30次,所以红球所占百分比为20÷50=40%,黄球所占百分比为30÷50=60%,故红球占40%,黄球占60%.(2) 由题意可知,50次摸球试验活动中,出现有记号的球4次,所以总球数为8÷450=100.所以红球数为100×40%=40.所以盒中红球有40个.【知识点】用频率估算概率25. 【答案】(1) 指针指向1,2,3,5,6,8都获奖,∴获奖概率P=68=34.(2) 获得一等奖的概率为18,1000×18=125(人),∴获得一等奖的人数可能是125人.【知识点】用样本估算总体、公式求概率。
七年级数学第七章 2-3节 转盘游戏;谁转出的四位数大北师大版知识精讲

初一数学第七章2-3节转盘游戏;谁转出的四位数大北师大版【本讲教育信息】一、教学内容:转盘游戏;谁转出的四位数大1、利用转盘游戏来研究可能事件的大小情况.2、通过对四位数随机组合来研究可能事件的大小情况.二、教学目标1、经历猜测、试验、分析试验结果、检验等活动,进一步体验不确定事件及事件发生的可能性有大有小.2、在试验中进一步体会不确定事件的特点及事件发生的可能性.三、知识要点分析1、转盘上不确定事件发生的可能性(这是重点)在转盘中,转到深色区域和白色区域的可能性都有.由于白色区域面积较大,所以转动转盘后,指针停止落在白色区域的可能性较大.注:这说明可以通过转盘上各部分的面积的大小来研究事件发生的可能性的大小,事件占的面积大,其发生的可能性就大,事件占的面积小,其发生的可能性就小.2、得到较大四位数的技巧(这是重难点)(1)比较7432_____2473(2)若有4个数字3,6,5,9,用它们组合成四位数,写出最大的和最小的数.结果:(1)>(2)最大的数为9653,最小的数为3569.通过上面两道题会发现,用同样的一组数字,排列的顺序不同,组合出的数的大小也不相同.那么,按什么顺序排可以使数最大?当然是大的数在大的数位上,小的数在小的数位上了.如:9在千位,这个数就是9000以上,若2在千位,则只能在2000到3000之间,自然比9000要小.所以“9”放在千位上更合适一些.有了上面的结论,下面的内容会简单许多.利用一个转盘转四位数,转出一个数字就要填在“个十百千”四个数位上,怎样填才能使四位数尽量大?此题与上面的结论有一个区别:上题是已经知道四个数字,可以从高到低填在“千、百、十、个”位上,而现在必须转出一个数就要填一个,并不知后面数字的大小.为了使数字尽量大,仍需遵照“大数填大数位,小数填小数位”的原则,尽量提高数的大小.如转到“9”,一定往最高位填,转到“0”,无需考虑,填在个位.若遇中间数,视情况而定.【典型例题】考点一:用转盘游戏来研究可能性事件的可能性例1. 下图是一个可以自由转动的转盘,转动转盘,指针停在哪种颜色的区域的可能性较大?【思路分析】此转盘有三种颜色,哪种颜色的区域面积大,指针落在哪个区域的可能性就较大.解:三种颜色中,红色区域面积较大,指针指在红色区域的可能性较大.方法与规律:解这类问题的关键是找出每种颜色在整个转盘中所占的面积的大小,面积大的,指针落在其上的可能性就大,反之,指针落在其上的可能性就小.例2. 设计一个转盘,使它停止转动时,指针落在白色区域的可能性最大.【思路分析】对于转盘活动,区域面积大,指针落在上面的可能性就大;反之亦然.要设计转盘使指针落在白色区域的可能性最大,只要使转盘上白色区域的面积最大即可.解:答案不惟一.颜色的种类、面积均可自由选择,只要使白色区域面积最大就行.如下列几种设计皆可:方法与规律:解决这类问题的关键是要想使指针落在那个颜色区域的可能性大,就使那个颜色的面积在转盘中占的比例大就可以。
七年级数学下册第六章频率初步3等可能事件的概率632等可能事件

七年级数学下册第六章频率初步3等可能事件的概率632等可能事件等可能事件的概率课题6.3.2等可能事件的概率教学目标重点难点教学用教学环1.了解与面积有关的一类事件发生概率的计算方法,并能进行简单计算了解与面积有关的一类事件发生概率的计算方法,并能进行简单计算能够运用与面积有关的概率解决实际问题多媒体、纸质转盘、彩笔节普通概率问题的计算方法:从箱子里往外摸球的实复习验。
一、情境导入学生甲与学生乙玩一种转盘游戏.如图是两个完全相同的转盘,每个转盘被分成面积相等的四个区域,分别用数字“1”“2”“3”“4”表示.固定指针,同时转新课导入动两个转盘,任其自由停止,若图①指针所指数字为奇数,则甲获胜;若图②指针所指数字为偶数,则乙获胜;若指针指向扇形的分界线,则重转一次.在该游戏中乙获胜的概率是多少?二、合作探究探究点一:与面积有关的概率如图,AB、CD是水平放置的轮盘(俯视图)上两条互相垂直的直径,一个小钢球在轮盘上自由滚动,该小钢球最终停在阴影区域的概率为()课程讲授1132A.B.C.D.4583解析:根据题意,AB、CD是水平放置的轮盘上两条互相垂直的直径,即圆面被等分成4个面积相等的部分.分析图示可得阴影部分面积之和为圆面积的,可知4该小钢球最终停在阴影区域的概率为.故选A.4方法总结:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件A,然后计算阴影区域的面积在总面积中占的比例,这个比例即事件A发生的概率.变式训练:见本课时练习“课堂达标训练”第1题11一儿童行走在如图所示的地板上,当他随意停下时,最终停在地板上阴影部分的概率是()1132A.B.C.D.3243解析:观察这个图可知阴影区域(3块)的面积占总面积(9块)的,故其概率为.故选A.33方法总结:当某一事件A发生的可能性大小与相关图形的面积大小有关时,概率的计算方法是事件A所有可能结果所组成的图形的面积与所有可能结果组成的总图形面积之比,即P(A)=事件A所占图形面积总图形面积.概率的求11法关键是要找准两点:(1)全部情况的总数;(2)符合条件的情况数目.二者的比值就是其发生的概率.变式训练:见本课时练习“课堂达标训练”第4题探究点二:与面积有关的概率的应用如图,把一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,自由转动转盘,停止后指针落在B区域的概率为________.。
初一数学-概率

1 8
2 1 8 4
P(获得50元购物券)
P(获得100元购物券)
3 8
设计一种正方体骰子,使它掷出后 满足下列所有条件: (1) 奇数点与偶数点朝上的概率相 同; (2) 大于 4的点朝上的个数与小于4 的点朝上的个数相同; (3) 任意掷出一次骰子,掷出“3 ” 的概率都是三分之一.
游戏对甲、乙双方 公平是指双方获胜 的可能性相同.
甲 获胜的可能性大 于0,小于二分之一.
乙 获胜的可能性大 于二分之一,小于1.
所以这个游戏对甲不公平.
摸到红球的可能性, 2 摸到红球的概率 也称为摸到红球 的概率.
1 号球 2 号球 3 号球
4 号球
摸 到红球可能出现的结果数
盒子里装有 1号球(红)、 2号球(红)、 3号球(红)、 4号球(白) 摸到红球的 可能性为多 少?
P(摸到红球)
3 4
摸 出一球所有可能出现的结果数
必然事件发生的概率为1,记作 P(必然事件)=1; 不可能事件发生的概率为0,记作 P(不可能事件)=0; 如果 A为不确定事件, 那么 0 < P(A)<1
古典概型实例: 1.摸球游戏 2.掷骰子 3.抽扑克牌等
任意掷一枚均匀的 骰子 , 朝上的数字是“6” 的概率是多少?
第四章
概率
第四章
概率
1 游戏公平吗 2 摸到红球的概率 3 停留在黑砖上的概率
1 游戏公平吗
人们通常用1(或100﹪)来 表示必然事件发生的可能性, 用 0 来表示不可能事件发生的 可能性 .
利 用数轴上0 —1 之 间 的部分可以直观 地 表示事件发生的 可 能性大小的范围.
请 将下列事件发生的 可 能性标在图中:
用树状图或表格求概率—转盘游戏课堂练习题

摸球
1
3
5
2
(1,2)
(3,2)
(5,2)
转盘
4
(1,4)
(3,4)
(5,4)
6
(1,6)
(3,6)
(5,6)
数学
(2)若得到的两数字之和是3的倍数,则小杰胜;若得到的两数字之和是7的倍数,则小玉胜.此游戏
公平吗?为什么?
解:(2)公平.理由如下:由(1)的表格可知,共有 9 种等可能出现的结果,其中“和为 3 的倍数”的有 3
解:(1)画树状图如图所示,
可能出现的结果共 6 种,它们出现的可能性相同.
数学
(2)求出两个数字之积为负数的概率.
解:(2)由(1)中图得两数之积为负数的情况共有 2 种,∴P(两数之积为负数)= = .
数学
5.(2021五莲模拟)用如图所示的两个转盘(分别进行四等分和三等分)设计一个“配紫色”的游
数学
第3课时
用树状图或表格求概率——转盘游戏
1.(2021莱阳模拟)同时转动如图所示的甲、乙两个转盘,则两个转盘所转出的两个数字都是2的
概率是( A
)
甲
A.
B.
C.
D.
乙
数学
2.(2020河南)如图所示的转盘,被分成面积相等的四个扇形,分别涂有红、黄、蓝、绿四种颜色.
固定指针,自由转动转盘两次,每次停止后,记下指针所指区域的颜色(指针指向区域分界线时,忽
略不计),则两次颜色相同的概率是
.
数学
3.(2020青岛)小颖和小亮都想去观看“垃圾分类”宣传演出,但只有一张入场券,于是他们设计
《转盘游戏》教学设计

《转盘游戏》教学设计心理学健康教育目标关键词:合作与分享挫折教育赏识教育教学内容:《转盘游戏》作为北师大版教材《数学》七年级上册第七章第二节,是初中新课程改革中的新增内容。
本节课的目的是让学生体会不确定事件发生的可能性的大小与所占区域面积之间有着密切关系,即在转盘中所占区域的面积越大,该随机事件发生的可能性就越大;同时复习基本统计量(如平均数)的意义和运算,以及有理数的加减运算,为以后学习概率打下基础。
学生分析:1.从认知特点看,这一年龄的学生思维敏锐,求知欲强,好问好表现,对动手操作有着浓厚兴趣,是形象思维向抽象思维逐步过渡的阶段,他们希望获得成功的体验;渴望充分展示和表现自己的才能从而得到他人的认可与关注。
2.从知识结构上看,通过上一节课的学习,学生已经初步体验了不确定事件和它的可能性,树立了一定的随机观念。
设计思想:本节课以突出学生的实践活动为主线而展开,利用一系列转盘游戏的实际操作活动,充分让学生动口、动手、动脑; 在“想—试—思”、“猜测—验证”的数学活动过程中,通过自主探索、动手操作、合作交流的学习方式,让学生自己去发现问题、解决问题、寻找规律,提高学生的观察、操作、推理、交流合作的能力。
教学目标:1.知识与技能:经历猜测、试验、分析试验结果等活动过程,体验不确定事件发生的可能性的大小与转盘中所占区域的关系。
2.过程与方法:通过学生参与一系列转盘游戏,发展学生大胆猜想,自主探究,合作交流和分析归纳的能力,使他们获得成功的体验,激发学生数学学习兴趣。
3.情感态度与价值观:以学生为主体,引导学生观察发现、大胆猜想、动手操作、自主探究、合作交流,使学生在合作学习中体验到:数学活动充满着探索和创造。
使学生获得成功的体验,增强自信心,提高学习数学的兴趣。
教学重难点:重点:充分让学生动手操作,自主探究,合作交流,体会不确定事件发生的可能性的大小与转盘中所占区域的关系。
难点:从转盘游戏中发现规律,并进行分析归纳;能应用规律来解决问题。
新北师大版七年级数学下册第六章《概率初步》单元复习卷含答案解析(35)

一、选择题(共10题)1.一个转盘,被分成两个扇形区域,其中红色区域与白色区域面积比为2:1,那么转动后指针停在白色区域的概率为( )A.14B.12C.23D.132.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为( )A.12B.15C.310D.7103.从√2,0,π,227,6这五个数中随机抽取一个数,抽到有理数的概率是( )A.15B.25C.35D.454.已知一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为13,则a等于( )A.1B.2C.3D.45.在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到不合格产品的概率是( )A.110B.15C.25D.456.下列事件中是必然事件是A.明天太阳从西边升起B.篮球队员在罚球线投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面向上7.一个不透明的口袋中有4个完全相同的小球,分别将它们标上1,2,3,4,随机摸出标号为3的小球的概率是( )A.12B.13C.14D.348.在一个不透明的口袋里装有2个白球,3个黑球和3个红球,它们除颜色外其余都相同,现随机从袋里摸出1个球,则摸出白球的概率是( )A.12B.38C.13D.149.三根长度分别为:3cm,7cm,4cm的木棒能围成三角形的事件是( )A.必然事件B.不可能事件C.不确定事件D.以上说法都不对10.在单词happy中随机选择一个字母,选到字母为p的概率是( )A.15B.25C.35D.45二、填空题(共7题)11.如果一个自然数右边的数字比左边的数字大,那么我们把它叫做“上升数”(如34,569,1269等都是上升数),现在任取一个两位数,是“上升数”的概率是.12.一个不透明袋子中装有3个红球,2个白球,1个蓝球,从中任意摸一球,则摸到(颜色)球的可能性最大.13.某林业部门统计某种幼树在一定条件下的移植成活率,结果如表所示:移植总数(n)400750150035007000900014000成活数(m)369662133532036335807312628成活的频率(mn )0.9230.8830.8900.9150.9050.8970.902根据表中数据,估计这种幼树移植成活率的概率为.(精确到0.1)14.分别写有数字13,√2,−1,0,π的五张大小和质地均相同的卡片,从中任意抽取一张,抽到有理数的概率的是.15.有背面完全相同的9张卡片,正面分别写有1∼9这九个数字,将它们洗匀后背面朝上放置,任意抽出一张,记卡片上的数字为a,则数字a使不等式组{x+12≥3,x<a有解的概率为.16.有4根细木棒,长度分别为2cm,3cm,4cm,5cm,从中任选3根,恰好能搭成一个三角的概率是.17.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.三、解答题(共8题)18.随机抛掷一颗用均匀材料做的骰子.(1) 抛掷一次,朝上的一面出现的点数是素数的可能性是多少?(2) 抛掷两次,将第一次朝上的一面的点数作为十位数字,第二次朝上的点数作为个位数字,组成的两位数是素数的可能性是多少?(3) 抛掷三次,依次把第一、第二、第三次朝上的点数作为三位数的百位、十位、个位数,组成的三位数是5的倍数的可能性是多少?19.全班同学用10张牌做摸牌试验,每摸出一张牌记录花色后放回,洗牌均匀后再摸,试验结果如(1)10张牌,红桃最多;下表所示.下面推论错误的是:次数黑桃红桃梅花方块20039796121(2)如果用这10张牌做两人游戏,规则是:甲摸到红桃算赢,乙摸到黑桃、梅花算赢,这样的游戏规则很公平;(3)根据试验的数据,估计10张牌中2张黑桃,4张红桃,3张梅花,1张方块.20.重庆市巴蜀常春藤学校七年级组建了女子篮球社团,通过测量同学的身高(单位:cm),并绘制了如下两幅不完整的统计图,请结合图中提供的信息,解答下列问题.(1) 填空:样本容量为,a=.(2) 把频数分布直方图补充完整.(3) 随机抽取1名学生,估计这名学生身高高于170cm的概率.21.如图,一个水平放置的正方形ABCD的中心O有一根能自由转动的指针.现自由转动指针,停止时记下指针所指的三角形(若指针恰好与对角线重合,则重新转动),第二次自由转动指针,停止时再次记下指针所指的三角形.求两次指针所指的三角形恰好相对的概率.22.从52张(无大小王)扑克牌中任取1张,求:(1) 抽到方块K的可能性大小;(2) 抽到K的可能性大小;(3) 抽到方块的可能性大小.23.某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1) 求转动一次转盘获得购物券的概率;(2) 某顾客在此商场购物220元,通过转转盘获得购物券和直接获得购物券,你认为哪种方式对顾客更合算?谈谈你的理由.24.甲口袋中放有3个红球和5个白球,乙口袋中放有7个红球和9个白球,所有球除颜色外都相同.充分搅匀两个口袋,分别从两个口袋中任意摸出一个球,设从甲中摸出红球的概率是P 甲(红),从乙中摸出红球的概率是P乙(红).(1) 求P甲(红)与P乙(红)的值,并比较它们的大小.(2) 将甲、乙两个口袋的球都倒入丙口袋,充分搅匀后,设从丙中任意摸出一球是红球的概率为P 丙(红).小明认为:P丙(红)=P甲(红)+P乙(红).他的想法正确吗?请说明理由.25.一副52张的扑克牌(无大、小王),从中任意取出一张,共有52种等可能的结果.(1) 说出抽到K的所有等可能的结果;(2) 求抽到梅花K的可能性大小;(3) 求抽到K的可能性大小;(4) 求抽到红桃的可能性大小.答案一、选择题(共10题) 1. 【答案】D【知识点】公式求概率2. 【答案】C【解析】 ∵ 一共 10 个球,其中 3 个黄球, ∴ 从袋中任意摸出 1 个球是黄球的概率是 310.【知识点】公式求概率3. 【答案】C【解析】 ∵ 在 √2,0,π,227,6 中,只有 0,227 和 6 是有理数, ∴ 抽到有理数的概率是 35.【知识点】公式求概率、有理数4. 【答案】A【解析】根据题意得:22+3+a=13,解得:a =1,经检验,a =1 是原分式方程的解, ∴a =1. 故选:A .【知识点】公式求概率5. 【答案】B【知识点】公式求概率6. 【答案】C【解析】A 是不可能事件,B 、D 是随机事件. 【知识点】事件的分类7. 【答案】C【解析】 ∵ 一个不透明的口袋中有 4 个完全相同的小球,它们分别标号为 1,2,3,4, ∴ 随机摸取一个小球,直接写出“摸出的小球标号是 3”的概率为:14. 【知识点】公式求概率8. 【答案】D【解析】∵口袋里装有2个白球,3个黑球和3个红球,∴口袋里共有8个球,∴摸出白球的概率是28=14.【知识点】公式求概率9. 【答案】B【知识点】事件的分类10. 【答案】B【知识点】公式求概率二、填空题(共7题)11. 【答案】25【解析】两位数共有90个.10−19这10个数中,“上升数”有12,13,14,15,16,17,18,19一共8个;20−29这10个数中,“上升数”有23,24,25,26,27,28,29一共7个;30−39这10个数中,“上升数”有34,35,36,37,38,39一共6个;40−49这10个数中,“上升数”有45,46,47,48,49一共5个;50−59这10个数中,“上升数”有56,57,58,59一共4个;60−69这10个数中,“上升数”有67,68,69一共3个;70−79这10个数中,“上升数”有78,79一共2个;80−89这10个数中,“上升数”有89一共1个;90−99这10个数中,“上升数”有0个;∴在两位数中共有1+2+3+4+5+6+7+8=36,∴任取一个两位数,是“上升数”的概率=3690=25.【知识点】公式求概率12. 【答案】红【解析】从中任意摸一球,摸到红球的概率=33+2+1=12,摸到白球的概率=26=13,摸到蓝球的概率=16,∴ 从中任意摸一球,则摸到红球的可能性最大. 【知识点】公式求概率13. 【答案】 0.9【知识点】用频率估算概率14. 【答案】 35【解析】从中任意抽取一张,抽到有理数的概率 =35.故答案为 35.【知识点】公式求概率15. 【答案】 49【解析】x+12≥3,解得 x ≥5,∵ 要使不等式组有解, ∴a >5,∴ 符合题意的只有 6,7,8,9 共 4 个数字, 故数字 a 使不等式组有解的概率为 49. 【知识点】公式求概率16. 【答案】 34【解析】根据题意,从 4 根细木棒中任取 3 根,有 2,3,4;3,4,5;2,3,5;2,4,5,共 4 种取法,而能搭成一个三角形的有 2,3,4;3,4,5;2,4,5,3 种. 故其概率为:34.【知识点】公式求概率17. 【答案】513【知识点】公式求概率三、解答题(共8题) 18. 【答案】(1) 12.(2) 29.(3) 16.【知识点】公式求概率19. 【答案】黑桃的张数是39×10200=1.95≈2(张),红桃的张数是79×10200=3.95≈4(张),梅花的张数是61×10200=3.05≈3(张),方块的张数是21×10200=1.05≈1(张);甲赢的概率是410,乙赢的概率是2+310=510,∴游戏规则不公平.(2)是错误的.【知识点】公式求概率20. 【答案】(1) 100人;108∘(2) 由(1)知:B的人数为30,所以(3) 由分布图可知:身高高于170的人数为5人,所以P(身高高于170cm)=5100=120.【解析】(1) 由扇形统计图可知:A占54∘,则54∘360∘=320,由直方图可知:A人数为15人,C人数为35人,D为15人,E为5人,所以总人数=15320=100人,所以B人数:100−15−35−15−5=30人,所以占比:30100=310,所以a=310×360∘=108∘.【知识点】公式求概率、扇形统计图、频数分布直方图21. 【答案】14.【知识点】公式求概率22. 【答案】(1) 152(2) 113(3) 14【知识点】公式求概率23. 【答案】(1) ∵转盘被均匀分为20份,转动一次转盘获得购物券的有10种情况,∴P(转动一次转盘获得购物券)=1020=12.(2) ∵P(红色)=120,P(黄色)=320,P(绿色)=620=310,∴200×120+100×320+50×310=40(元)∵40元>30元,∴选择转转盘对顾客更合算.【知识点】公式求概率24. 【答案】(1) P甲(红)=33+5=38,P 乙(红)=77+9=716,∵38=616<716,∴P甲(红)<P乙(红).(2) 不正确.P 丙(红)=3+73+5+7+9=1024=512,∵P甲(红)+P乙(红)=38+716=3948=1316,∴512≠1316,∴小明想法不正确.【知识点】公式求概率25. 【答案】(1) 红桃K,黑桃K,梅花K,方块K共4种;(2) 152(3) 113(4) 14【知识点】公式求概率11。
七年级数学下册第六章频率初步3等可能事件的概率6.3.2等可能事件的概率教案

等可能事件的概率
导入
二、合作探究
探究点一:与面积有关的概率
CD是水平放置的轮盘(俯视图)上两条互相垂直的直径,一个小钢球在轮盘上自由滚动,该小钢球最终停在阴影区
)
CD是水平放置的轮盘上两条互相垂直方法总结:首先根据题意将代数关系用面积表示出来,一般
一儿童行走在如图所示的地板上,当他随意停下时,最终停
( )
这个图可知阴影区域
所有可能结果所组成的
解析:∵一个圆形转盘按1∶2∶3∶4∴圆形转盘被等分成10份,故答案为15
. 变式训练:见本课时练习“课堂达标训练”第.与面积有关的等可能事件的概率P .与面积有关的概率的应用
在日常生活中发现问题,并进行合理的整合归纳。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.
如图,转盘中6个小扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,指针指向
红色区域的概率为___.
2.
如图为一水平放置的转盘(转盘固定不动),使劲转动其指针,并让它自由停下,下面叙述
正确的是( )
A. 指针停在B区比停在A区的机会大 B.
指针停在三个区的机会一样大
C. 指针停在哪个区与转盘半径大小有关 D.
指针停在哪个区可以随心所欲
3.
用力转动如图所示的转盘甲和转盘乙的指针,如果想让指针停在阴影区域,选取哪个转盘
成功的机会比较大?( )
A. 转盘甲 B. 转盘乙 C. 两个一样大 D. 无法确定
4.
如图,转盘被等分成六个扇形,并在上面依次写上数字1,2,3,4,5,6.
(1)若自由转动转盘,当它停止转动时,指针指向奇数区的概率是多少?
(2)请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向的区域的概率为.
5.
某商场进行有奖促销活动.活动规则:购买500元商品就可以获得一次转转盘的机会(转盘
被分为5个扇形区域,分别是特等奖、一等奖、二等奖、三等奖、纪念奖),转动转盘停止后,
指针指在哪个获奖区域就可以获得该区域相应等级奖品一件(奖品设置如图所示).商场工作
人员在制作转盘时,将获奖区域扇形圆心角分配如下表:
奖次 特等奖 一等奖 二等奖 三等奖 纪念奖
圆心角 1° 10° 30° 90° 229°
(1)转动一次转盘,获得圆珠笔的概率是多少?
(2)如果不用转盘,请设计一种等效活动方案
(要求写清替代工具和活动规则).
6.
下面是两个可以自由转动的转盘,转动转盘,分别计算转盘停止后,指针落在红色区域
的概率
.
答案:
1.
2. A
3. C
4.解:(1)自由转动转盘,当它停止转动时,指针指向数字的结果总共有6
种,指针指向奇
数区的结果有3种,所以指针指向奇数区的概率是.
(2)当自由转动的转盘停止时,指针指向的区域不大于4.(答案不唯一,符合要求即可)
试题解析:(1)指针指向奇数区的概率是.
(2)当自由转动的转盘停止时,指针指向的区域不大于4.(答案不唯一,符合要求即可)
考点:概率公式.
5. 解:(1)获得圆珠笔的概率为:=;
(2)可采用“抓阄”或“抽签”
等方法替代.
在一个不透明的箱子里放进360个除标号不同外,其他均一样的乒乓球,其中一个标
“特”、10个标“1”、30个标“2”、90个标“3”
、其余不标数字,摸出标有哪个奖次的乒乓球,
则获相应等级的奖品.
点睛:本题是一道生活中常见的问题.考查了学生概率的计算、设计替代实验的技能.替代
实验的设计方案很多,但要抓住问题的实质,即各奖项发生的概率要保持不变.用到的知识
点为:概率=相应的面积与总面积之比.
6. 解:由图可以看出,在第一个转盘内,红色区域的圆心角是90
°,因此可以算得指针落在
红色区域的概率是;在第二个转盘内,红色区域的圆心角是135°,因此可以算得指
针落在红色区域的概率是 .