平行四边形相关概念图

合集下载

平行四边形知识结构图1资料讲解

平行四边形知识结构图1资料讲解

平行四边形知识结构图1资料讲解一、知识结构图:二、平行四边形的性质边角对角线平行四边形对边平行且相等对角相等,邻角互补对角线互相平分矩形对边平行且相等四个角都是直角对角线相等且互相平分菱形对边平行,四边相等对角相等,邻角互补对角线互相垂直平分,每条对角线平分一组对角正方形对边平行,四边相等四个角都是直角对角线互相垂直平分且相等,每条对角线平分一组对角三、平行四边形的常用判定方法平行四边形1) 两组对边分别平行的四边形是平行四边形; 2) 两组对边分别相等的四边形;3) 一组对边平行且相等的;4)两组对角分别相等的四边形5) 对角线互相平分的四边形;矩形1)有一个角是直角的平行四边形是矩形; 2)有三个角是直角的四边形是矩形;3)对角线相等的平行四边形是矩形。

4)对角线平分且相等的四边形是矩形菱形1)有一组邻边相等的平行四边形是菱形; 2)四条边都相等的四边形是菱形;3)对角线互相垂直的平行四边形是菱形。

4)对角线平分且垂直的四边形是菱形正方形1)有一个角是直角且有一组邻边相等的平行四边形是正方形;2)有一组邻边相等的矩形是正方形;3)有一个角是直角的菱形是正方形。

1.三角形的中位线平行且等于第三边的一半2.直角三角形斜边上的中线等于斜边的一半3.菱形的面积公式:对角线乘积的一半练习题:1.不能判定四边形ABCD 为平行四边形的题设是()(A )AB 平行且等于CD 。

(B )∠A=∠C ,∠B=∠D 。

(C )AB=AD ,BC=CD 。

(D )AB=CD ,AD=BC 。

2.下面性质中菱形有而矩形没有的是()(A )邻角互补(B )内角和为360°(C )对角线相等(D )对角线互相垂直 3.正方形具有而菱形不一定具有的性质是()(A )四条边相等(B )对角线互相垂直平分(C )对角线平分一组对角(D )对角线相等4、顺次连结任意四边形四边中点所得的四边形一定是()A 、平行四边形 B 、矩形 C 、菱形 D 、正方形5.如图,□ABCD 中,∠C=108°,BE 平分∠ABC,则∠ABE 等于( ) A.18°B.36°C.72°D.108° 6.下列命题中,真命题是()A 、有两边相等的平行四边形是菱形B 、对角线垂直的四边形是菱形C 、四个角相等的菱形是正方形D 、两条对角线相等的四边形是矩形 7、□ABCD 中,∠A =50°,则∠B =__________,∠C =__________。

平行四边形知识结构图1

平行四边形知识结构图1

平行四边形全章复习课一、知识结构图:二、平行四边形的性质边角对角线平行四边形对边平行且相等对角相等,邻角互补对角线互相平分矩形对边平行且相等四个角都是直角对角线相等且互相平分菱形对边平行,四边相等对角相等,邻角互补对角线互相垂直平分,每条对角线平分一组对角正方形对边平行,四边相等四个角都是直角对角线互相垂直平分且相等,每条对角线平分一组对角三、平行四边形的常用判定方法平行四边形1) 两组对边分别平行的四边形是平行四边形; 2) 两组对边分别相等的四边形;3) 一组对边平行且相等的;4)两组对角分别相等的四边形 5) 对角线互相平分的四边形;矩形1)有一个角是直角的平行四边形是矩形; 2)有三个角是直角的四边形是矩形;3)对角线相等的平行四边形是矩形。

4)对角线平分且相等的四边形是矩形菱形1)有一组邻边相等的平行四边形是菱形; 2)四条边都相等的四边形是菱形;3)对角线互相垂直的平行四边形是菱形。

4)对角线平分且垂直的四边形是菱形正方形1)有一个角是直角且有一组邻边相等的平行四边形是正方形;2)有一组邻边相等的矩形是正方形; 3)有一个角是直角的菱形是正方形。

1.三角形的中位线平行且等于第三边的一半2.直角三角形斜边上的中线等于斜边的一半3.菱形的面积公式:对角线乘积的一半练习题:1.不能判定四边形ABCD 为平行四边形的题设是( ) (A )AB 平行且等于CD 。

(B )∠A=∠C ,∠B=∠D 。

(C )AB=AD ,BC=CD 。

(D )AB=CD ,AD=BC 。

2.下面性质中菱形有而矩形没有的是( )(A )邻角互补(B )内角和为360°(C )对角线相等 (D )对角线互相垂直 3.正方形具有而菱形不一定具有的性质是( ) (A )四条边相等 (B )对角线互相垂直平分 (C )对角线平分一组对角 (D )对角线相等4、顺次连结任意四边形四边中点所得的四边形一定是( ) A 、平行四边形 B 、矩形 C 、菱形 D 、正方形5.如图,□ABCD 中,∠C=108°,BE 平分∠ABC,则∠ABE 等于( ) A.18° B.36° C.72° D.108° 6.下列命题中,真命题是( )A 、有两边相等的平行四边形是菱形B 、对角线垂直的四边形是菱形C 、四个角相等的菱形是正方形D 、两条对角线相等的四边形是矩形 7、□ABCD 中,∠A =50°,则∠B =__________,∠C =__________。

初中数学八年级下册第十八章《平行四边形》简介

初中数学八年级下册第十八章《平行四边形》简介

初中数学八年级下册第十八章《平行四边形》简介平行四边形是特殊的四边形。

本章我们在平行线、三角形和四边形的基础上进一步研究平行四边形;并通过平行四边形角、边的特殊化,研究矩形、菱形和正方形等特殊的平行四边形,认识这些概念之间的联系与区别,明确它们的内涵与外延;探索并证明平行四边形、矩形、菱形、正方形的有关性质定理和判定定理,进一步明确命题及其逆命题的关系,不断发展学生的合情推理和演绎推理能力。

本章教学时间约需14课时,具体分配如下(仅供参考):18.1 平行四边形6课时18.2 特殊的平行四边形6课时数学活动小结2课时一、教科书内容和本章学习目标(一)本章知识结构框图(二)教科书内容平行四边形是常见的几何图形,既有丰富的性质,又在现实生活中具有广泛的应用,尤其是矩形、菱形、正方形等特殊平行四边形的性质更加丰富、应用更加广泛。

学生在第一学段已经学习过平行四边形,本学段七年级下册“三角形”一章中研究了多边形及其内角和等内容,包括四边形及其内角和;八年级上册“全等三角形”一章又研究了三角形全等的判定及全等三角形的性质。

这些内容是学习本章的重要基础。

本章引言直接进入特殊的四边形——平行四边形:两组对边分别平行的四边形的学习,在平行四边形的基础上,学习矩形、菱形、正方形这些特殊平行四边形。

“18.1 平行四边形”主要研究平行四边形的概念、性质定理和判定定理;在平行四边形概念和性质的基础上,介绍两条平行线间距离的概念;作为性质定理和判定定理的一个应用,探究并证明三角形中位线定理。

“18.2 特殊的平行四边形”首先研究特殊的平行四边形:矩形和菱形,它们分别是有一个角是直角,或有一组邻边相等的特殊的平行四边形。

18.2.1和18.2.2分别研究矩形和菱形的概念、性质定理和判定定理,在矩形和菱形的基础上,再研究它们的特殊情况:同时具有两个特殊条件的平行四边形:正方形,它是有一个角是直角的特殊菱形,或者是有一组邻边相等的特殊矩形。

四边形知识结构图(汇总)

四边形知识结构图(汇总)

四边形知识框架图
(平行四边形、矩形、菱形、正方形)
附:平行四边形、矩形、菱形、正方形形里的对角线
(1)两条对角线互相平分的四边形是平行四边形;(2)两条对角线互相平分且相等的四边形是矩形;
(3)两条对角线互相平分且垂直的四边形是菱形;
(4)两条对角线互相平分、垂直且相等的四边形是正方形;(5)两条对角线相等的平行四边形是矩形;(6)两条对角线垂直的平行四边形是菱形;(7)两条对角线垂直且相等的平行四边形是正方形;(8)两条对角线垂直的矩形是正方形;
(9)两条对角线相等的菱形是正方形。

3.4 平行四边形(1)陈以志

3.4 平行四边形(1)陈以志

例题1
如图,□ABCD中,∠B=50°,求这个四边形 的其它内角的度数;并说明理由。
例题2
如图,A/B/∥AB,B/C/∥BC,C/A/∥CA。图中有几个 平行四边形?将它们表示出来,并说明理由。
C
/
A
B C A
/
/
B
思考1:AB与B/C、∠ABC与∠B/相等吗?为什么? 你还能得到哪些结论?
思考1:点A、B、C不在一条直线上,以A、B、C为 顶点画平行四边形,你可以画几个?请画出来。
平行四边形对角相等; 平行四边形对角线互相 平分;
点A与点C、点B与点D分别互换了 位置,
旋转后的图形与原来的图形重合。
这样,AB=DC ,AD=BC;
∠ABC=∠CDA,∠BCD=∠DAB;
OA=OC,OB=OD.
平行四边形的性质
主要方面
性质
两组对边互相平 行且相等
对称性 中心 对称 图形

角 对角线
因为△ABC与△CDA关于 点O成中心对称 所以∠DAC=∠BCA 所以AD∥BC
平行四边形概念:
两组对边分别平行的 四边形叫平行四边形。
D
两组对边分别平行的四边形 叫平行四边形。
平行四边形记法:
平行四边形ABCD记作“□ABCD”。 平行四边形读法:
□ABCD读作“平行四边形ABCD”。
平行四边形的对称性:
这四幅图片中有你熟悉的图形吗?
第1课时
如图,BO是△ABC的边AC上的中线,画出 △ABC关于点O 对称的图形。
作法: (1)延长BO到点D, △ABC与△CDA关于点O成中心对称。
D
使OD=OB; (2)连接AD;
(3)连接CD;

四边形知识图谱

四边形知识图谱

四边形知识图谱(一)四边形由一般到特殊的演变示意图(二)特殊四边形平行四边形矩形菱形正方形 等腰梯形定 义 有两组对边分别平行的四边形是平行四边形。

有一个角是直角的平行四边形是矩形。

有一组邻边相等的平行四边形是菱形。

有一组邻边相等且有一个角是直角的平行四边形。

两腰相等的梯形是等腰梯形。

性 质1对边平行且相等。

2对角相等,邻角互补。

3对角线互相平分 1四个角都是直角。

2对角线相等。

1四条边都相等。

2两条对角线互相垂直,并且每一条对角线平分一组对角。

具有平行四边形、矩形、菱形的所有特征。

1两腰相等两底平行 2同一底上的两角相等 3两条对角线相等 判 定1定义: 2判定定理:(1)两组对边分别相等的四边形是平行四边形。

(2)两组对角分别相等的四边形是平行四边形。

(不能直接用) (3)一组对边平行且相等的四边形是平行四边形。

(4)对角线互相平分的四边形是平行四边形。

1定义: 2判定定理: (1)对角线相等的平行四边形是矩形。

(2)有三个角是直角的四边形是矩形。

1定义: 2判定定理: (1)一组邻边相等的平行四边形是菱形。

(2)对角线互相垂直的四边形是菱形。

(1)先证明是矩形再证明一组邻边相等。

(2)先证明是菱形再证一个角是直角。

1定义:先判断是梯形在证明两腰相等。

2同一底上的两个角相等的梯形是等腰梯形。

3对角线相等的梯形是等腰梯形。

对称性轴对称图形轴对称图形 轴对称图形 轴对称图形。

初中数学重点梳理:平行四边形

初中数学重点梳理:平行四边形

平行四边形知识定位平行四边形在初中几何或者竞赛中占据非常大的地位,平行四边形是平面几何中最重要的图形,它的有关知识是今后我们学习特殊四边形、多边形乃至立体几何的重要基础。

平行四边形的证明性质以及应用,必须熟练掌握。

本节我们通过一些实例的求解,旨在介绍数学竞赛中平行四边形相关问题的常见题型及其求解方法本讲将通过例题来说明这些方法的运用。

知识梳理一.正确理解定义(1)定义:两组对边分别平行的四边形是平行四边形.平行四边形的定义揭示了图形的最本质的属性,它既是平行四边形的一条性质,又是一个判定方法.(2)表示方法:用“”表示平行四边形,例如:平行四边形ABCD记作 ABCD,读作“平行四边形ABCD”.2.熟练掌握性质平行四边形的有关性质和判定都是从边、角、对角线三个方面的特征进行简述的.(1)角:平行四边形的邻角互补,对角相等;(2)边:平行四边形两组对边分别平行且相等;(3)对角线:平行四边形的对角线互相平分;(4)面积:①S==⨯底高ah;②平行四边形的对角线将四边形分成4个面积相等的三角形.3.平行四边形的判别方法①定义:两组对边分别平行的四边形是平行四边形②方法1:两组对角分别相等的四边形是平行四边形③方法2:两组对边分别相等的四边形是平行四边形④方法3:对角线互相平分的四边形是平行四边形⑤方法4:一组平行且相等的四边形是平行四边形二.几种特殊四边形的有关概念(1)矩形:有一个角是直角的平行四边形是矩形,它是研究矩形的基础,它既可以看作是矩形的性质,也可以看作是矩形的判定方法,对于这个定义,要注意把握:①平行四边形;②一个角是直角,两者缺一不可.(2)菱形:有一组邻边相等的平行四边形是菱形,它是研究菱形的基础,它既可以看作是菱形的性质,也可以看作是菱形的判定方法,对于这个定义,要注意把握:①平行四边形;②一组邻边相等,两者缺一不可.(3)正方形:有一组邻边相等且有一个直角的平行四边形叫做正方形,它是最特殊的平行四边形,它既是平行四边形,还是菱形,也是矩形,它兼有这三者的特征,是一种非常完美的图形.(4)梯形:一组对边平行而另一组对边不平行的四边形叫做梯形,对于这个定义,要注意把握:①一组对边平行;②一组对边不平行,同时要注意和平行四边形定义的区别,还要注意腰、底、高等概念以及梯形的分类等问题.(5)等腰梯形:是一种特殊的梯形,它是两腰相等的梯形,特殊梯形还有直角梯形.2.几种特殊四边形的有关性质(1)矩形:①边:对边平行且相等;②角:对角相等、邻角互补;③对角线:对角线互相平分且相等;④对称性:轴对称图形(对边中点连线所在直线,2条).(2)菱形:①边:四条边都相等;②角:对角相等、邻角互补;③对角线:对角线互相垂直平分且每条对角线平分每组对角;④对称性:轴对称图形(对角线所在直线,2条).(3)正方形:①边:四条边都相等;②角:四角相等;③对角线:对角线互相垂直平分且相等,对角线与边的夹角为450;④对称性:轴对称图形(4条).(4)等腰梯形:①边:上下底平行但不相等,两腰相等;②角:同一底边上的两个角相等;对角互补③对角线:对角线相等;④对称性:轴对称图形(上下底中点所在直线).3.几种特殊四边形的判定方法(1)矩形的判定:满足下列条件之一的四边形是矩形①有一个角是直角的平行四边形;②对角线相等的平行四边形;③四个角都相等(2)菱形的判定:满足下列条件之一的四边形是矩形①有一组邻边相等的平行四边形;②对角线互相垂直的平行四边形;③四条边都相等.(3)正方形的判定:满足下列条件之一的四边形是正方形.①有一组邻边相等且有一个直角的平行四边形②有一组邻边相等的矩形;③对角线互相垂直的矩形.④有一个角是直角的菱形⑤对角线相等的菱形;(4)等腰梯形的判定:满足下列条件之一的梯形是等腰梯形①同一底两个底角相等的梯形;②对角线相等的梯形.4.几种特殊四边形的常用说理方法与解题思路分析(1)识别矩形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任意一个角为直角.②先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的对角线相等.③说明四边形ABCD的三个角是直角.(2)识别菱形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任一组邻边相等.②先说明四边形ABCD为平行四边形,再说明对角线互相垂直.③ 说明四边形ABCD 的四条相等. (3)识别正方形的常用方法① 先说明四边形ABCD 为平行四边形,再说明平行四边形ABCD 的一个角为直角且有一组邻边相等.② 先说明四边形ABCD 为平行四边形,再说明对角线互相垂直且相等. ③ 先说明四边形ABCD 为矩形,再说明矩形的一组邻边相等.④ 先说明四边形ABCD 为菱形,再说明菱形ABCD 的一个角为直角. (4)识别等腰梯形的常用方法① 先说明四边形ABCD 为梯形,再说明两腰相等.② 先说明四边形ABCD 为梯形,再说明同一底上的两个内角相等. ③ 先说明四边形ABCD 为梯形,再说明对角线相等. 5.几种特殊四边形的面积问题① 设矩形ABCD 的两邻边长分别为a,b ,则S 矩形=ab .② 设菱形ABCD 的一边长为a ,高为h ,则S 菱形=ah ;若菱形的两对角线的长分别为a,b ,则S 菱形=12ab . ③ 设正方形ABCD 的一边长为a ,则S 正方形=2a ;若正方形的对角线的长为a ,则S 正方形=212a . ④ 设梯形ABCD 的上底为a ,下底为b ,高为h ,则S 梯形=1()2a b h .例题精讲【试题来源】 【题目】如图所示.在ABCD 中,AE ⊥BC ,CF ⊥AD ,DN=BM .求证:EF 与MN 互相平分.【答案】如下解析【解析】 证明:因为ABCD 是平行四边形,所以ADBC ,ABCD ,∠B=∠D .又AE ⊥BC ,CF ⊥AD ,所以AECF 是矩形,从而AE=CF.所以Rt△ABE≌Rt△CDF(HL,或AAS),BE=DF.又由已知BM=DN,所以△BEM≌△DFN(SAS),ME=NF.①又因为AF=CE,AM=CN,∠MAF=∠NCE,所以△MAF≌△NCE(SAS),所以 MF=NF.②由①②,四边形ENFM是平行四边形,从而对角线EF与MN互相平分.【知识点】平行四边形【适用场合】当堂例题【难度系数】3【试题来源】【题目】如图2-33所示.Rt△ABC中,∠BAC=90°,AD⊥BC于D,BG平分∠ABC,EF∥BC且交AC于F.求证:AE=CF.【答案】如下解析【解析】解:作GH⊥BC于H,连接EH.因为BG是∠ABH的平分线,GA⊥BA,所以GA=GH,从而△ABG≌△HBG(AAS),所以 AB=HB.①在△ABE及△HBE中,∠ABE=∠CBE,BE=BE,所以△ABE≌△HBE(SAS),所以 AE=EH,∠BEA=∠BEH.下面证明四边形EHCF是平行四边形.因为AD∥GH,所以∠AEG=∠BGH(内错角相等).②又∠AEG=∠GEH(因为∠BEA=∠BEH,等角的补角相等),∠AGB=∠BGH(全等三角形对应角相等),所以∠AGB=∠GEH.从而EH∥AC(内错角相等,两直线平行).由已知EF∥HC,所以EHCF是平行四边形,所以FC=EH=AE.【知识点】平行四边形【适用场合】当堂练习【难度系数】3【试题来源】【题目】如图2-34所示.ABCD中,DE⊥AB于E,BM=MC=DC.求证:∠EMC=3∠BEM.【答案】如下解析【解析】证明:延长EM交DC的延长线于F,连接DM.由于CM=BM,∠F=∠BEM,∠MCF=∠B,所以△MCF≌△MBE(AAS),所以M是EF的中点.由于AB∥CD及DE⊥AB,所以,DE⊥FD,三角形DEF是直角三角形,DM为斜边的中线,由直角三角形斜边中线的性质知∠F=∠MDC,又由已知MC=CD,所以∠MDC=∠CMD,则∠MCF=∠MDC+∠CMD=2∠F.从而∠EMC=∠F+∠MCF=3∠F=3∠BEM【知识点】平行四边形【适用场合】当堂例题【难度系数】3【试题来源】【题目】如图2-35所示.矩形ABCD中,CE⊥BD于E,AF平分∠BAD交EC延长线于F.求证:CA=CF.【答案】如下解析【解析】解:延长DC交AF于H,显然∠FCH=∠DCE.又在Rt△BCD中,由于CE⊥BD,故∠DCE=∠DBC.因为矩形对角线相等,所以△DCB≌△CDA,从而∠DBC=∠CAD,因此,∠FCH=∠CAD.①又AG平分∠BAD=90°,所以△ABG是等腰直角三角形,从而易证△HCG也是等腰直角三角形,所以∠CHG=45°.由于∠CHG是△CHF的外角,所以∠CHG=∠CFH+∠FCH=45°,所以∠CFH=45°-∠FCH.②由①,②∠CFH=45°-∠CAD=∠CAF,于是在三角形CAF中,有CA=CF.【知识点】平行四边形【适用场合】当堂练习题【难度系数】3【试题来源】【题目】设正方形ABCD的边CD的中点为E,F是CE的中点(图2-36).求证:【答案】如下解析【解析】解:如图作∠BAF的平分线AH交DC的延长线于H,则∠1=∠2=∠3,所以FA=FH.设正方形边长为a,在Rt△ADF中,所以 Rt△ABG≌Rt△HCG(AAS),所以Rt△ABG≌Rt△ADE(SAS),【知识点】平行四边形【适用场合】当堂例题【难度系数】4【试题来源】【题目】如图2-37所示.正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G.求证:△GHD是等腰三角形.【答案】如下解析【解析】证明:因为DE BC,所以四边形BCED为平行四边形,所以∠1=∠4.又BD=FD,所以所以 BC=GC=CD.因此,△DCG为等腰三角形,且顶角∠DCG=45°,所以又所以∠HDG=∠GHD,从而GH=GD,即△GHD是等腰三角形.【知识点】平行四边形【适用场合】当堂练习题【难度系数】4【试题来源】【题目】如图,在矩形ABCD中,已知AD=12,AB=5,P是AD边上任意一点,PE⊥BD于E,PF ⊥AC于F,那么PE+PF的值为.【答案】60/13【解析】解:延长CD至M,使DM=CD,连接AM,过P作PN⊥AM,N为AM上的点.在△ACM中,AD⊥CM且CD=DM,则AD是△ACM的角平分线.则PF=PN.又在四边形ABDM中,AB平行等于DM.则为平行四边形.AM平行BD,故PE,PN在同一直线上.那么PE+PF=PE+PN=EN平行四边形ABDM面积S=ABxAD=BDxEN而BD=√(5x5+12x12)=13则EN=ABxAD/BD=5x12/13=60/13.【知识点】平行四边形【适用场合】当堂例题【难度系数】4【试题来源】【题目】如图,设P为等腰直角三角形ACB斜边AB上任意一点,PE⊥AC于点E,PF⊥BC于点F,PG⊥EF于G点,延长GP并在其延长线上取一点D,使得PD=PC,求证:BC⊥BD,且BC=BD【答案】如下解析【解析】证明:∵PE⊥AC于E,PF⊥BC于F,∠ACB=90°,∴CEPF是矩形(三角都是直角的四边形是矩形),∴OP=OF,∠PEF+∠3=90°,∴∠1=∠3,∵PG⊥EF,∴∠PEF+∠2=90°,∴∠2=∠3,∴∠1=∠2,∵△ABC是等腰直角三角形,∴∠A=∠ABC=45°,∴∠APE=∠BPF=45°,∴∠APE+∠2=∠BPF+∠1,即∠APG=∠CPB,∵∠BPD=∠APG(对顶角相等),∴∠BPD=∠CPB,又∵PC=PD,PB是公共边,∴△PBC≌△PBD(SAS),∴BC=BD,∠PBC=∠PBD=45°,∴∠PBC+∠PBD=90°,即BC⊥BD.故证得:BC⊥BD,且BC=BD【知识点】平行四边形【适用场合】当堂练习题【难度系数】4【试题来源】【题目】如图,正方形ABCD外有一点P,P在BC外侧,并在平行线AB与CD之间,若PA=,PB=,PC=,则PD=()【答案】2【解析】解:延长AB,DC,过P分作PE⊥AE,PF⊥DF,则CF=BE,AP2=AE2+EP2,BP2=BE2+PE2,DP2=DF2+PF2,CP2=CF2+FP2,∴AP2+CP2=CF2+FP2+AE2+EP2,DP2+BP2=DF2+PF2+BE2+PE2,即AP2+CP2=DP2+BP2,代入AP,BP,CP得DP==2,【知识点】平行四边形【适用场合】当堂例题【难度系数】3【试题来源】【题目】如图,在△ADC中,∠BAC=90°,AD⊥BC,BE、AF分别是∠ABC、∠DAC的平分线,BE 和AD交于G,求证:GF∥AC.【答案】如下解析【解析】证明:连接EF.∵∠BAC=90°,AD⊥BC.∴∠C+∠ABC=90°,∠C+∠DAC=90°,∠ABC+∠BAD=90°.∴∠ABC=∠DAC,∠BAD=∠C.∵BE、AF分别是∠ABC、∠DAC的平分线.∴∠ABG=∠EBD.∵∠AGE=∠GAB+∠GBA,∠AEG=∠C+∠EBD,∴∠AGE=∠AEG,∴AG=AE,∵AF是∠DAC的平分线,∴AO⊥BE,GO=EO,∵∴△ABO≌△FBO,∴AO=FO,∴四边形AGFE是平行四边形,∴GF∥AE,即GF∥AC.【知识点】平行四边形【适用场合】当堂练习题【难度系数】4习题演练【试题来源】【题目】如图,在等腰三角形ABC中,延长AB到点D,延长CA到点E,且AE=BD,连接DE.如果AD=BC=CE=DE,求∠BAC的度数.【答案】100°【解析】解:过D作DF∥BC,且使DF=BC,连CF、EF,则四边形BDFC是平行四边形,∴BD=CF,DA∥FC,∴∠EAD=∠ECF,∵AD=CE,AE=BD=CF,∴△ADE≌△CEF(SAS)∴ED=EF,∵ED=BC,BC=DF,∴ED=EF=DF∴△DEF为等边三角形设∠BAC=x°,则∠ADF=∠ABC=,∴∠DAE=180°﹣x°,∴∠ADE=180°﹣2∠DAE=180°﹣2(180°﹣x°)=2x°﹣180°,∵∠ADF+∠ADE=∠EDF=60°∴+(2x°﹣180°)=60°∴x=100.∴∠BAC=100°.【知识点】平行四边形【适用场合】随堂课后练习【难度系数】5【试题来源】【题目】如图所示,在Rt△ABC中,AB=AC,∠A=90°,点D为BC上任一点,DF⊥AB于F,DE ⊥AC于E,M为BC的中点,试判断△MEF是什么形状的三角形,并证明你的结论【答案】如下解析【解析】解:△MEF是等腰直角三角形.证明如下:连接AM,∵M是BC的中点,∠BAC=90°,AB=AC,∴AM=BC=BM,AM平分∠BAC.∵∠MAC=∠MAB=∠BAC=45°.∵AB⊥AC,DE⊥AC,DF⊥AB,∴DE∥AB,DF∥AC.∵∠BAC=90°,∴四边形DFAE为矩形.∴DF=AE.∵DF⊥BF,∠B=45°.∴∠BDF=∠B=45°.∴BF=FD,∠B=∠MAE=45°,∴AE=BF.∵AM=BM∴△AEM≌△BFM(SAS).∴EM=FM,∠AME=∠BMF.∵∠AMF+∠BMF=90°,∴∠AME+∠AMF=∠EMF=90°,∴△MEF是等腰直角三角形.【知识点】平行四边形【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】如图,在锐角△ABC中,AD、CE分别是BC、AB边上的高,AD、CE相交于F,BF的中点为P,AC的中点为Q,连接PQ、DE.(1)求证:直线PQ是线段DE的垂直平分线;(2)如果△ABC是钝角三角形,∠BAC>90°,那么上述结论是否成立?请按钝角三角形改写原题,画出相应的图形,并给予必要的说明.【答案】如下解析【解析】解:(1)证明:连接PD、PE、QD、QE.因为CE⊥AB,P是BF的中点,所以△BEF是直角三角形,且PE是Rt△BEF斜边的中线,所以PE=BF.又因为AD⊥BC,所以△BDF是直角三角形,且PD是Rt△BDF斜边的中线,所以PD=BF=PE,所以点P在线段DE的垂直平分线上.同理可证,QD、QE分别是Rt△ADC和Rt△AEC斜边上的中线,所以QD=AC=QE,所以点Q也在线段DE的垂直平分线上所以直线PQ垂直平分线段DE.(2)当△ABC为钝角三角形时,(1)中的结论仍成立.如图,△ABC是钝角三角形,∠BAC>90°.原题改写为:如图,在钝角△ABC中,AD、CE分别是BC、AB边上的高,DA与CE的延长线交于点F,BF的中点为P,AC的中点为Q,连接PQ、DE.求证:直线PQ垂直且平分线段DE.证明:连接PD,PE,QD,QE,则PD、PE分别Rt△BDF和Rt△BEF的中线,所以PD=BF,PE=BF,所以PD=PE,点P在线段DE的垂直平分线上.同理可证QD=QE,所以点Q在线段DE的垂直平分线上.所以直线PQ垂直平分线段DE.【知识点】平行四边形【适用场合】随堂课后练习【难度系数】4【试题来源】【题目】如图,在△ABC中,∠C=90°,点M在BC上,且BM=AC,N在AC上,且AN=MC,AM 与BN相交于P,求证:∠BPM=45°.【答案】如下解析【解析】解:如图,过M作ME∥AN,使ME=AN,连NE,BE,则四边形AMEN为平行四边形,∴NE=AM,ME⊥BC,∵ME=AN=CM,∠EMB=∠MCA=90°,BM=AC,∴△BEM≌△AMC,得BE=AM=NE,∠1=∠2,∠3=∠4,∵∠1+∠3=90°,∴∠2+∠4=90°且BE=NE,∴△BEN为等腰直角三角形,∠BNE=45°,∵AM∥NE,∴∠BPM=∠BNE=45°【知识点】平行四边形【适用场合】随堂课后练习【难度系数】3。

苏教版二年级上册数学期末复习平行四边形的初步认识专项复习课件PPT

苏教版二年级上册数学期末复习平行四边形的初步认识专项复习课件PPT

的图形是( 平行四边形 )。
平行四边形两组对边分别( 相等 )。它具有( 不稳定 )性。
用4根木条钉成一个长方形木框,沿这个长方形木框的一组相 对的角拉一拉,会变成( 平行四边 )形。
在点子图上画一个平行四边形。
下图中有( 9 )个平行四边形。
两个完全一样的三角形一定能拼成( D )。
A.三角形 B.长方形
你能选择三块,拼一个平行四边形吗? 你能选择四块,拼一个平行四边形吗? 你还能拼出其它平行四边形吗?
动手做 1、你能用同样长的6根小棒摆出一个平行四边形吗? 2、剪两个完全一样的三角形,再用它们拼成平行四边形。 3、折一折,剪一剪,拼一拼。怎样使长方形变成平行四边形。
C.正方形
D.平行四边形
下面哪两个三角形可以拼成一个平行四边形?( C )
A.①和② B.③和④
C.①和④
有趣的七巧板
(1)一副七巧板中有( 2 )块是 四边形,( 5 )块是三角形。
(2)图形( ①)和( ② )可以拼 成一个平行四边形,图形( ③ )和 ( ⑥ )也可以拼成一个平行四边形 。
数数下面的图形各有几条边,照样子写一写,再填表。
5
4
5
4
4
64Leabharlann 5四边形 五边形 六边形 (4)个 (3)个 (2)个
沿虚线把一张长方形纸折一折,每次折出的是几边形?填一填。
( 四 )边形
( 五 )边形
( 六 )边形
把下面每个图形都分成三角形,最少能分成几个?
( 2 )个三角形
( 3 )个三角形
➢苏教版小学数学二年级(上册)
期末复习
平行四边形的初步认识复习
平行四边形 的初步认识
认识多边形 认识平行四边形
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


4.对角线互相平分

1.平行四边形所有的性质

性质 2.四个内角皆为90°

矩形
3.对角线相等
1.有一个角为90°的平行四边形
2.三个角边形
平行
(亦或对角线相等且平分的四边形)
四边形
1.平行四边形所有的性质
性质
2.四边相等
3.对角线互相垂直平分
菱形
4.每一条对角线分别平分一组对角 1.四条边都相等的平行四边形
判定
2.对角线互相垂直的平行四边形
(亦或对角线互相垂直且平分的四边形)
3.一组邻边相等的平行四边形
4.对角线平分一组对角的平行四边形
边:平行四边形的两组对边分别平行且相等 (补充:过对角线的交
性质
角:邻角互补 对角相等 对角线:对角线互相平分
其它:具有 不稳定性
点的直线平分平行四边 形的面积)
判定前提:四边形 5.两组邻角互补(补充)
1.两组对边分别平行 6.两组对角相等(补充)

判定
2.两组对边分别相等 3.一组对边平行且相等
相关文档
最新文档