一元二次方程 小结与思考
一元二次方程回顾与思考小结课件

∴我 把 数 b2 −4ac叫 方 ax2 +bx +c = 0(a ≠ 0)的 们 代 式 做 程 根 判 式用 ∆"来 示即 = b2 −4ac. 的 别 . " 表 . ∆
1.不解方程,判别方程
5 x −1 − x = 0
2
(
)
的根的情况______________ 方程要先化 别式 b − 4ac = (− 1) − 4 ⋅ 5 ⋅ (− 5) = 101 > 0 ∴
解: 设 正 形 皮 边 为 ,根 题 ,得 原 方 铁 的 长 xcm 据 意
4(x −8) =100.
2
快乐学习 4
几何与方程
4. 如图 在一块长 如图,在一块长 在一块长92m,宽60m的矩形耕 宽 的矩形耕 地上挖三条水渠,水渠的宽度都相等 水渠的宽度都相等.水 地上挖三条水渠 水渠的宽度都相等 水 渠把耕地分成面积均为885m2的6个矩 渠把耕地分成面积均为 个矩 形小块,水渠应挖多宽 形小块 水渠应挖多宽. 水渠应挖多宽
回顾与复习 4 • 列方程解应用题的一般步骤是: 列方程解应用题的一般步骤是:
解应用题
• 1.审:审清题意:已知什么,求什么?已知,未知之间有什么关系? 1.审 审清题意:已知什么,求什么?已知,未知之间有什么关系? 关系 • 2.设:设未知数,语句要完整,有单位(同一)的要注明单位; 2.设 设未知数,语句要完整,有单位(同一)的要注明单位; • 3.列:列代数式,列方程; 3.列 列代数式,列方程; • 4.解:解所列的方程; 4.解 解所列的方程; • 5.验:是否是所列方程的根;是否符合题意; 5.验 是否是所列方程的根;是否符合题意; • 6.答:答案也必需是完整的语句,注明单位且要贴近生活. 6.答 答案也必需是完整的语句,注明单位且要贴近生活. • 列方程解应用题的关键是:找出相等关系. 列方程解应用题的关键是 找出相等关系. 关键 相等关系
第二章 一元二次函数、方程和不等式复习与小结)课件-高一数学人教A版(2019)必修第一册)

常量(如1)替换,变量替换(消元)
返回
6.二次函数与一元二次方程、不等式的关系:
(1)形式上
二次函数 y=ax2+bx+c
(2)数值上 二次函数函数 y=ax2+bx+c的零点
一元二次方程 ax2+bx+c=0
右边化为0, 左边设为y
一元二次不等式 ax2+bx+c<0(或>0)
一元二次方程 ax2+bx+c=0的根
a b a b 0; 2.两个实数大小关系的基本事实: a b a b 0;
a b a b 0.
利用这个事实可以采取作差法可以对一些代数式的大小进 行了比较也可以证明不等式:
(1)作差; (2)变形;
目的:便于判定差的符号 常用的方法:因式分解、配方、通分、分子有理化等 (3)定号; 当差的符号不确定时,一般需要分类讨论 (4)作结论。 根据当差的正负与实数大小关系的基本事实作出结论 返回
1
1
ab
返回
4.基本不等式及其推导
对任意的a 0,b 0,有 ab a b 2
当且仅当a b时,等号成立
(1)基本不等式的常见变形:
① a+b≥2 ab ;
② ab≤( a+b )2 2
代数特征: 两个正数的几何平均数不大于它们的算术平均数,当且仅 当这两个正数相等时,二者相等. 几何解释: 圆O的半弦CD不大于圆的半径OD,当且仅当C与圆心O 重合时,二者相等。 (2)基本不等式的推导和证明: ①利用两个实数大小关系的基本事实用作差法得出;
求a b的最小值以及此时a的值。
解: 方法1
a0 , b0
由a b ab - 3得 a b ab - 3 ( a b )2 3
21.2解一元二次方程——直接开平方法教学反思

21.2解一元二次方程——直接开平方法教学反思第一篇:21.2解一元二次方程——直接开平方法教学反思21.2解一元二次方---直接开平方法的教学反思解一元二次方程是初中数学学习中非常重要的一部分,而直接开平方法则是解一元二次方程的基础方法,它看似简单,却不容忽视。
在这节教材编写中还突出体现了换元、转化等重要的数学思想方法。
因此,这节课不仅是为后续学习打下坚实基础的一节课,更是让学生体验并逐步掌握相关数学思想方法的一节课。
本节课我以出示学习目标开场,让学生明确本节课的学习任务,抓住学习重点。
在复习近平方根的知识,为本节课的教学做好准备,符合学生的认知规律。
然后接着从实际问题切入向学生提出问题,激发学生的学习热情和问题探索的强烈欲望,然后通过一系列的问题让学生在合作与探究中逐步理解并掌握直接开平方法解一元二次方程,同时在问题的解决过程中让学生体会类比的学习方法和换元、转化的数学思想,从而培养学生良好的数学学习学习方法和数学思维方式。
其中教学问题的设计围绕目标环环相扣,同时注重层次性与启发性;在典例解析、巩固新知和达标检测环节中,注重突出重点,分层评价。
整节课学生的参与积极性较高,达到了预期的教学效果。
当然,这节课也存在不足之处,还有学生参与讨论的过程中个别学生参与程度不足,教师应关照这些边缘人员。
今后,我会更努力,多渠道向优秀老师学习,不断地提升自我、完善自我,使课堂教学更高效。
第二篇:配方法解一元二次方程教学反思在“一元二次方程”这一章里,《配方法》是作为解一元二次方程的第三种解法出现的,学生往往会把配方法和前面学过的直接开平方法以及因式分解法等同理解,所以在用配方法解题时只是简单模仿老师的解题步骤,对为什么要配方理解不到位,因此在需要用配方法证明一个代数式一定为正数或负数时往往不知所措。
而我认为配方法更多的是一种代数式变形的技巧,她可以为解一元二次方程服务,但不仅仅只是一种解方程的方法。
事实上,一个一元二次方程在配方后还是要结合直接开平方法才能解出方程的解。
《一元二次方程》教学反思范文(通用9篇)

《一元二次方程》教学反思《一元二次方程》教学反思范文(通用9篇)在发展不断提速的社会中,我们需要很强的课堂教学能力,反思指回头、反过来思考的意思。
我们该怎么去写反思呢?以下是小编为大家收集的《一元二次方程》教学反思范文(通用9篇),仅供参考,希望能够帮助到大家。
《一元二次方程》教学反思1今天上了《一元二次方程的解法》一课,课后根据听课老师的反馈意见及自己对上课的一些情况的了解进行了反思:一、本节课采用了“先学后教、合作探究、当堂达标”的课堂教学模式,先由学生课外自学,了解用因式分解法解一元二次方程的解法,并会求一些简单的一元二次方程的解;其次,在课堂中通过合作探究、小组交流、学生展示、教师点评进一步掌握一元二次方程的解法;第三,通过当堂练习、讲评,进一步巩固解一元二次方程的解题方法与技巧。
通过本课的授课情况及听、评课教师的反馈来看,基本上达到了课前设计的教学目的。
二、一些问题与想法:1、不管是自己外出听类似的公开教学,还是自己在实际操作中都会遇到同样的一个问题:学生数学语言运用得不好!很多时候,上台来展示的学生讲完后,我往下看看台下的学生,都是是一脸的茫然,不知道台上的同学在说什么。
特别是在讲解一些问题、解题技巧时,上面讲解的同学常常会采用一些自创的语言来描述。
好吧,能让下面的同学听懂也行。
只是大多时候都是让台下的同学听得云里雾里,摸不着头脑。
2、新的课堂教学要求体现学生的主体地位,教师只起到引导作用。
在本课的教学过程中,因要用到因式分解的方法来解一元二次方程,在实际教学环节中,我花了一些时间对初二的因式分解进行了复习。
课后的教师评课中,有老师讲到这一环节处理得不是很理想,我个人感觉也是如此,因式分解作为初二学习过的旧知识,完全可以让学生利用课余时间自己完成,教师在授课过程中可以直接检查学生完成的情况,视情况进行点评即可。
节省下来的时间用在后面的课堂小结和当堂达标上会让本节课的时间安排更加合理、充分。
解一元二次方程教学反思

解一元二次方程教学反思解一元二次方程教学反思1本节共分3课时,第一课时引导学生通过转化得到解一元二次方程的配方法,第二课时利用配方法解数字系数的一般一元二次方程,第3课时通过实际问题的解决,培养学生数学应用的意识和能力,同时又进一步训练用配方法解题的技能。
在教学中最关键的是让学生掌握配方,配方的对象是含有未知数的二次三项式,其理论依据是完全平方式,配方的方法是通过添项:加上一次项系数一半的平方构成完全平方式,对学生来说,要理解和掌握它,确实感到困难,因此在教学过程中及课后批改中发现学生出现以下几个问题:1、在利用添项来使等式左边配成一个完全平方公式时,等式的右边忘了加。
2、在开平方这一步骤中,学生要么只有正、没有负的,要么右边忘了开方。
3、当一元二次方程有二次项的系数不为1时,在添项这一步骤时,没有将系数化为1,就直接加上一次项系数一半的平方。
因此,要纠正以上错误,必须让学生多做练习、上台表演、当场讲评,才能熟练掌握。
解一元二次方程教学反思2一、教学目标:1、知识与能力:理解配方法,会利用配方法以一元二次式进行配方。
通过对比、转化,总结得出配方法的一般过程,提高分析能力。
通过对一元二次方程二次项系数是否为1的分类处理,锻炼学生的抽象概括能力。
2、过程与方法:会用配方法解简单的数学系数的一元二次方程。
发现不同方程的转化方式,运用已有知识解决新问题。
3、情感态度价值观:通过配方法的探究活动,培养学生勇于探索的良好学习习惯。
感觉数学的严谨性以及数学结论的确定性。
二、教学重难点:1、重点---会利用配方法熟练解一元二次方程。
2、难点---对于二次项系数不为1的一元二次方程通过系数化1进行适当变形后再利用配方法求解。
三、教学过程(一)活动1:提出问题要使一块长方形场地的长比宽多6m,并且面积为16m2,场地的长和宽各是多少?设计意图:让学生在解决实际问题中学习一元二次方程的解法。
师生行为:教师引导学生回顾列方程解决实际问题的基本思路,学生讨论分析。
第四章一元二次方程小结与思考教学案+课堂作业

南沙初中初三数学教学案教学内容:一元一次方程小结与思考课 型:复习课 学生姓名:______ 教学过程:一、知识点归纳:1.方程的分类:2.一元二次方程:只含有 个未知数,并且未知数的最高次数是 的整式方程,叫做一元二次方程,其一般形式为 。
◆ 解一元二次方程的方法有:① ;② ;③ ;④ ;3.一元二次方程ax 2+bx+c=0的求根公式为x= 。
4.一元二次方程ax 2+bx+c=0的根的判别式。
二、例题:(一)一元二次方程的概念、一般形式的考查:1、下列方程中,是一元二次方程的是 ( )A 、x 2+3x +y=0 ;B 、 x+y+1=0 ;C 、 213122+=+x x ;D 、0512=++xx 2、关于x 的一元二次方程(m -1)x 2+x +m 2-1=0有一根为0,则m 的值为 ( )A 、1B 、-1C 、1或-1D 、213、(2008东营)若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值等于 ( )A .1B .2C .1或2D .0(二)一元二次方程的解及其解法的考查1、(2007潍坊)关于x 的一元二次方程225250x x p p -+-+=的一个根为1,则实数p 的值是 ( )A .4B .0或2C .1D .1- 2、要使分式4452-+-x x x 的值为0,则x 应该等于( ) (A )4或1 (B )4 (C )1 (D )4-或1- 3、 必有一个根是则一元二次方程如果)0(0,02≠=++=+-a c bx ax c b a 。
4、若最简二次根式 x x 42- 与3x -10是同类二次根式,则x 的值是5、三角形的两边长分别是5和9 第三边的长为一元二次方程x 2-14x+48=0的根,则这个三角形的边长为______________。
6、若关于x 的一元二次方程220x mx -+=与2(1)0x m x m -++=有一个相同的实数根,求m 的值。
用分解因式法解一元二次方程教学反思

篇一:因式分解法解一元二次方程教学反思因式分解法解一元二次方程教学反思大布苏中学:杨慧敏在学习了一元二次方程的四种基本解法后,由于在实际运用中十字相乘法解方程运用确实很广,而且用处之大不可忽视。
在解题过程中实际用起来带来很大的方便,也能提高解题效率,所以加上些节课。
在介绍十字相乘法时,先从一元二次方程一般式引入,使学生分清二次项系数、一次项系数、常数项,再进行十字相乘。
在对系数的处理上,学生搭配较简单的数时很快,但对系数较大的十字分解还缺乏经验。
所以介绍了小学学过的短除法,对常数项进行因式分解,再合理尝试十字交*相乘。
学生经过理解后,感觉十分好用,且在经过多个方程的十字相乘后,学生积累了一定的经验对符号的处理上能找到巧妙方法,通过先考虑合系数的绝对值,再确定符号所处位置。
最后出现的问题在交*相乘以后对分解式的书写,部分学生习惯前面的交*相乘从而导致了书写分解式时也交*书写造成错误。
正确的应是横向书写,所以要多强调、多指导、多个别指出学生的错误。
问题二出现在“历史”遗留问题上:一元一次方程的解法中的最后一个步骤。
所以还要用课外时间对这部份知识以前掌握不是很好的学生加以辅导。
篇二:因式分解法解一元二次方程反思《因式分解法解一元二次方程》的教学反思本节课采用了“先学后教、合作探究、当堂达标”的课堂教学模式,教学注重学生的基础,调动了学生学习的积极性、主动性,并激发了学生学习的兴趣,提高了课堂效率。
先由学生课外自学,了解用因式分解法解一元二次方程的解法,并会求一些简单的一元二次方程的解;其次,在课堂中通过合作探究、小组交流、学生展示、教师点评进一步掌握一元二次方程的解法;第三,通过当堂练习、讲评,进一步巩固解一元二次方程的解题方法与技巧。
通过本课的授课情况及听、评课教师的反馈来看,基本上达到了课前设计的教学目的。
结合这些,在上这节课时,我注意了以下方面:1、突出重点,合理设计在教学中,各个环节均围绕着利用分解因式解一元二次方程这一重点内容展开,我根据学生的实际情况进行大量的课前预习,把学生在解题过程中容易出现的各种问题及时展现出来,有利于学生迅速掌握基本的解题技能。
苏科版九年级数学上册第1章一元二次方程小结与思考课件

【求解】
解方程 x2 28x 96 0
x2 28x 96 0(配方法)
x 14 10, x 14 10
x2 28x 96 0(因式分解法 ) x2 28x 96 0(公式法) 一元二次方程
x 4 0, x 24 0
x 28 400 , x 28 400
2
小结与思考
初中数学
一元二次方程小结与思考
【问题情境】
在一块长是32米、宽是24米的矩形空地内, 要设计花圃,使花圃面积是矩形面积的一半。你 能给出设计方案吗?
例如:在空地中间开辟一个矩形的花圃,四 周修筑同样宽的道路,道路的面积与花圃的面积 相等。你能计算出道路的宽吗?
32
x
x
x
24
x
一元二次方程的定义
2.某厂今年1月的产值为50万元,第一季度共完成产 值182万元,今年前两个月平均每月增长的百分率 是多少?
选做题:
1、用配方法证明:
x2 4y2 2x 4y 3的值不小于1
2、已知(1-m2-n2)(m2+n2)=-6,求m2+n2的值。
3、设m、n分别为x2+2x-202X=0的两个实 数根,求m2+3m+n的值。
x2 b x c .
a
a
2
2
x2 b
x
b
b
c .
a 2a 2a a
2
b
b2 4ac
x 2a
4a 2
.
当b2 4ac 0时,
b
b2 4ac
x
.
2a
2a
b b2 4ac
x
.
2a
公式法的应用
一元二次方程根的判别式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
快乐学习 4
数字与方程
4.有一个两位数,它的十位数字与个位数字的和是5.把这个 两位数的十位数字与个位数字互换后得到另一个两位 数,两个两位数的积为763.求原来的两位数.
解 : 设这个两位数的个位数字为x, 根据题意, 得
105 x x10x 5 x 736.
整理得 :
x 2 56 x ( ) 100. 4 4
x 2 56 x 0,
2
解得 : x 56, x 0不合题意, 舍去. 1 2
答 : 不剪, 可围成一个正方形的其面积能等于196cm2 .
快乐学习 3
几何与方程
解 : 3.设剪下的一段为xcm, 根据题意, 得
一元二次方程的概念
方程都是只含有 一个未知数x 的 整式方程,并且都可 以化为 ax2+bx+c=0(a,b,c为常数, a≠0) 的形式, 这样的方程叫做一元二次方程.
把ax2+bx+c=0(a,b,c为常数,a≠0)称 为一元二次方程的一般形式,其中ax2 , bx ,
c分别称为二次项、一次项和常数项,a, b分别
快乐学习 7
几何与方程
7 .一块长方形草地的长和宽分别为20cm和15cm, 在它的四周外围环绕着宽度相等的小路.已知小 路的面积为246cm2,求小路的宽度.
解 : 设小路的宽度xm, 根据题意, 得
15+2x
(20 2 x)15 2 x 25 15 246.
2 x 2 35x 123 0,
x 2 56 x ( ) 200. 42 4
2
快乐学习 3
几何与方程
10. 在<九章算术>“勾股”章中有这样一个问题: 今有邑方不知大小,各中开门.出北门二十步有木,出南门 十四步折而西行,一千七百七十五步见木.问邑方几何. 大意是: 如图,四边形DEFG是一 A 座正方形小城,北门H位 D G 于DG的中点.南门K位于 H EF的中点,出北门20步到 A处有一棵树,出南门14 K F E 步到C处,再向西行1775 B C 步到B处,正好看到A处 的树木(即点D在直线AB 上).求小城的边长.
解 : 设水渠的宽度xm, 根据题意, 得
(92 2 x)60 x 6 885.
x 2 106 x 105 0,
整理得 : 解得 :
x1 1; x2 105(不合题意, 舍去).
答 : 水渠的宽度为1m.
快乐学习 3
几何与方程
解 : 1.设剪下的一段为xcm, 根据题意, 得
快乐学习 3
数字与方程
3. 一个两位数,它的十位数字比个位数字小3,而它的个位 数字的平方恰好等于这个两位数.求这个两位数.
解 : 设这两位数的个位数字为x, 根据题意, 得 x 2 10x 3 x. 整理得x 2 11x 30 0. 解得x1 5, x2 6. x 3 5 3 2, 或x 3 6 3 3. 答 : 这个两位数为25, 或36.
老师提示:
1.用分解因式法的条件是:方程左边易于分解,而右 边等于零; 2. 关键是熟练掌握因式分解的知识; 3.理论依旧是“如果两个因式的积等于零,那么至少 有一个因式等于零.”
回顾与复习 5
解应用题
列方程解应用题的一般步骤是: 1.审:审清题意:已知什么,求什么?已知,未知之间有什么关系?
一元二次方程 小结与思考
回顾与思考 0
你掌握了些什么
1.一元二次方程在生活中有哪些应用?请举例说 明. 2.在解决实际问题的过程中,怎样判断所求得 的结果是否合理?请举例说明. 3.举例说明解一元二次方程有哪些方法?
4.配方法的一般过程是怎样的?
5.利用方程解决实际问题的关键是
什么?
回顾与复习 1
当b 2 4ac 0时, 方程ax 2 bx c 0a 0有两个不相等的实数根
b b 2 4ac x1, 2 . 2a 当b 2 4ac 0时, 方程ax 2 bx c 0a 0有两个相等的实数根 : b x1, 2 . 2a 当b 2 4ac 0时, 方程ax 2 bx c 0a 0没有实数根
2.设:设未知数,语句要完整,有单位(同一)的要注明单位;
3.列:列代数式,列方程; 4.解:解所列的方程; 5.验:是否是所列方程的根;是否符合题意; 6.答:答案也必需是完整的语句,注明单位且要贴近生活. 列方程解应用题的关键是: 找出相等关系.
回顾与思考6
有关利润的知识基本知识
解 : 设原正方形铁皮的边长为xcm, 根据题意, 得
4( x 8) 100.
2
解这个方程 : ( x 8) 2 100, x 8 10, x 8 10, x1 18; x2 2(不合题意, 舍去). 答 : 原正方形铁皮的边长为18cm.
快乐学习 6
整理得x 2 5x 6 0. 解得x1 2, x2 3. 5 x 5 2 3, 或5 x 5 3 2.
答 : 这两个数为32或23.
快乐学习 5
几何与方程
5 .将一块正方形的铁皮四角剪去一个边长为4cm 的小正方形,做成一个无盖的盒子.已知盒子的容 积是400cm3,求原铁皮的边长.
我们把代数式b 2 4ac叫做方程ax 2 bx c 0a 0的 根的判别式.用" " 来表示.即 b 2 4ac.
回顾与复习 4
分解因式法
当一元二次方程的一边是0,而另一边易于分解成两 个一次因式的乘积时,我们就可以用分解因式的方法 求解.这种用分解因式解一元二次方程的方法你为分 解因式法.
利润 商品利润=售价-进价; 商品利润率 . 进价
独立 作业
知识的升华
复习题.共22题;
祝你成功!
快乐学习 1
数字与方程
1. 两个数的差等于4,积等于45,求这两个数.
解 : 设其中一个数为x, 根据题意, 得 xx 4 45. 整理得x 2 4 x 45 0. 解得x1 5, x2 9. x 4 5 4 9, 或x 4 9 4 5. 答 : 这两个数为5,9或 9,5.
快乐学习 2
数字与方程
2. 两个连续奇数的积等于20022-1,求这两个数.
解 : 设这两个连续奇数2 x 1和2 x 1, 根据题意, 得
2 x 12 x 1 20022 1.
整理得x 2 1002001. 解得x1 1001, x2 1001. 2 x 1 2003, 或2 x 1 2001;2 x 1 2001或2 x 1 2003. 答 : 这两个连续奇数为2003,2001或 2001或 2003.
9. 将一条长为56cm的铁丝剪成两段,并把每一段围成一 个正方形. (1).要使这两个正方形的面积之和等于100cm2,该怎样剪? (2).要使这两个正方形的面积之和等于196cm2,该怎样剪? (3).这两个正方形的面积之和可能等于200m2吗?
整理得 :x 2 56 x 768 0, 解得 : x1 32, x2 24. 56 x 56 32 24; 或56 x 56 24 32. 答 : 剪下的一段为32cm或24cm, 可使正方形的面积和等于100cm2 .
回顾与复习 3
公式法
ax2+bx+c=0(a≠0)
一般地,对于一元二次方程
当b 2 4ac 0时, 它的根是 :
b b 2 4ac 2 x . b 4ac 0 . 2a
上面这个式子称为一元二次方程的求根公式. 用求根公式解一元二次方程的方法称为公式法 (solving by formular). 老师提示: 用公式法解一元二次方程的前提是: 1.必需是一般形式的一元二次方程: ax2+bx+c=0(a≠0). 2.b2-4ac≥0.
心动
2
不如行动
公式法是这样生产的
ax2+bx+c=0(a≠0) 吗?
你能用配方法解方程
b c 解 : x x 0. 1.化1:把二次项系数化为1; a a b c 2 x x . 2.移项:把常数项移到方程的右边; a a2 2 b b b c 3.配方:方程两边都加上一次项 2 x x . 系数绝对值一半的平方; a 2a 2a a 2 b b 2 4ac 4.变形:方程左边分解因 . x 2 2a 4a 式,右边合并同类项; 当b 2 4ac 0时,
20+2x
20
15
整理得 : 解得 :
41 x1 3; x2 (不合题意, 舍去). 2
答 : 小路的宽度为3m.
快乐学习 3
几何与方程
8. 如图,在一块长92m,宽60m的矩形耕 地上挖三条水渠,水渠的宽度都相等.水 渠把耕地分成面积均为885m2的6个矩 形小块,水渠应挖多宽.
9. 将一条长为56cm的铁丝剪成两段,并把每一段围成一 个正方形. (1).要使这两个正方形的面积之和等于100cm2,该怎样剪? (2).要使这两个正方形的面积之和等于196cm2,该怎样剪? (3).这两个正方形的面积之和可能等于200m2吗?
整理得 : x 56 x 34 0, 解得 : x 56 2 818 28 818. 2 x1 28 818 56; x2 28 818 0均不合题意, 舍去. 答 : 不能剪, 正方形的面积和不可能等于200cm2 .