数学建模

合集下载

什么是数学建模

什么是数学建模

什么是数学建模数学建模是指运用数学的理论、方法和技术,以模型为基础,通过对实际问题进行抽象、建模、求解和验证,为实际问题的研究和决策提供可靠依据的过程。

数学建模可以帮助我们更好地理解、分析、解决实际问题。

它是一种综合运用数学、物理、计算机科学和其他相关学科知识的跨学科研究领域,可以应用于各个领域的问题,包括自然科学、工程技术、社会科学、医学、金融等。

数学建模的过程一般包括以下几个步骤:1. 定义问题和目标。

在这个阶段,我们需要对实际问题进行全面的了解,明确研究的目标和需要解决的问题是什么,确定问题的限制和条件。

2. 建立模型。

在这个阶段,我们需要根据实际问题的特点和需要解决的问题,选择适当的模型类型,建立数学模型。

模型应该尽可能简明明了,能够比较好地描述实际问题,并且便于求解。

3. 求解模型。

在这个阶段,我们需要根据所建立的模型,采用数学和计算机科学等相关方法,对模型进行求解,得到具体的结果和解决方案。

4. 验证模型。

在这个阶段,我们需要根据模型的求解结果,进行模型的验证。

验证模型的正确性和可靠性,以及对模型的结果进行误差分析和敏感性分析,以保证模型的可行性和实用性。

5. 应用模型。

在这个阶段,我们需要将模型的结果应用于实际问题的解决中。

根据模型的结果,提出相应的决策和措施,实现问题的解决和优化。

数学建模具有广泛的应用领域和重要性。

在物理、化学、生物学和工程技术等领域,数学建模可以帮助我们解决复杂的系统问题,如气候模型、流体力学模型、生物进化模型等。

在社会科学领域,数学建模可以应用于经济学、管理学、社会学等领域,对社会现象进行建模和预测,如人口增长模型、市场模型、网络模型等。

在医学领域,数学建模可以帮助我们研究疾病的发展和治疗方法,如病毒传播模型、治疗模型等。

在金融领域,数学建模可以帮助我们分析风险和投资策略,如股票价格模型、期权评估模型等。

总之,数学建模是一种重要的跨学科研究领域,以模型为基础,运用数学和相关学科知识,对实际问题进行抽象、建模、求解和验证,为实际问题的研究和决策提供可靠依据,具有广泛的应用领域和重要性。

数学建模简介

数学建模简介

●模型求解和分析
在模型构成中建立的数学模型可以采用解方程、推理、图 解、计算机模拟、定理证明等各种传统的和现代的数学方法对 其进行求解,其中有些可以用计算机软件来做这些工作。建模 的目的是解释自然现象、寻找规律以解决实际问题。要达到此 目的,还要对获得结果进行数学上的分析,如分析变量之间的 依赖关系和稳定状况等,这一过程称为模型求解与分析。
( x y) 30 750 ( x y) 50 750
实际上方程组就是上述航行问题的数学模型。列 出方程组,原问题已转化为纯粹的数学问题。方程的 解x=20km/h、y=5km/h,最终给出了航行问题的答案。
大家都做过数学应用题,比如说“树上有十只鸟,开枪打死一 只,还剩几只?”,这样的问题就是一道数学应用题,正确答案应 该是0只。这样的题同样是数学建模题,不过答案就不重要了,重 要是过程。 真正的数学建模选手会这样回答这道题。 “是无声手枪吗?”“您确定那只鸟真的被打死啦?” “树上的鸟里有没有聋子?”“有没有关在笼子里的?” “边上还有没有其他的树,树上还有没有其他鸟?” “有没有残疾的或饿的飞不动的鸟?”“算不算怀孕肚子里的小 鸟?”“打鸟的人眼有没有花?保证是十只?” “有没有傻的不怕死的?”“会不会一枪打死两只?” “所有的鸟都可以自由活动吗?”“如果您的问题没有骗人,打死 的鸟要是挂在树上没掉下来,那么就剩一只,如果掉下来,就一只 不剩。”
分析:设甲桶中有x个红球,乙桶中有y个蓝球,因为对
甲桶来说,甲桶中的蓝球数加上乙桶中的蓝球
数等于10000,所以
10000-x+y=10000
即 x=y
故甲桶中的红球和乙桶中的蓝球一样多。
问题2、哥哥和妹妹分别在离家2km和1km且方向相反的两 所学校上学,每天同时放学后分别以4km/h和2km/h的速度 步行回家。一小狗以6km/h的速度由男孩处奔向女孩,又 从女孩处奔向男孩,如此往返直至回到家中,问小狗奔跑 了多少路程?

数学建模

数学建模
材料均匀,热传导系数为常数 Q ~单位时间单位面积传导的热量 T~温差, d~材料厚度, k~热传导系数 记双层玻璃窗传导的热量Q1 记单层玻璃窗传导的热量Q2 热量传播只有传导,没有对流
室 内 T1
d
l
d
室 外 T2
Q1

室 内 T1
2d
室 外 T2
Q2

Ta~内层玻璃的外侧温度 Tb~外层玻璃的内侧温度 k1~玻璃的热传导系数 k2~空气的热传导系数
乙安全线
y0 0 x
y1 y0 0
y=f ( x)
y0 y f ( x) y0 x
x0
P(xm,ym)甲 安 x=g(y) 全 区 x1 x
P~平衡点(双方最少导弹数)
精细 模型
x<y x=y
乙方残存率 s ~甲方一枚导弹攻击乙方一个 基地,基地未被摧毁的概率。 甲方以 x攻击乙方 y个基地中的 x个, sx个基地未摧毁,y–x个基地未攻击。 y0=sx+y–x y0=sy y= y0+(1-s)x y=y0 / s
• (4)模型求解:利用获取的数据资料,对模 型的所有参数做出计算(估计)。 • (5)模型分析:对所得结果进行数学的分析。 • (6)模型检验:将模型分析结果与实际情形 进行比较,以此来验证模型的准确性、合 理性和适用性。如果模型与实际较吻合, 则要对计算结果给出其实际含义,并进行 解释。如果模型与实际吻合较差,则应该 修改假设,再次重复建模过程。 • (7)模型应用:应用方式因问题的性质和建 模的目的而异
0
x0
x
甲方的被动防御也会使双方军备竞赛升级。
模型解释
• 甲方将固定核导弹基地改进为可移动发射架 乙安全线y=f(x)不变

什么是数学建模

什么是数学建模

什么是数学建模数学建模是指对现实世界的一特定对象,为了某特定目的,做出一些重要的简化和假设,运用适当的数学工具得到一个数学结构,用它来解释特定现象的现实性态,预测对象的未来状况,提供处理对象的优化决策和控制,设计满足某种需要的产品等。

一般来说数学建模过程可用如下框图来表明:数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。

例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。

今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。

特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。

因此数学建模被时代辅予更为重要的意义。

大学生数学建模竞赛自1985年由美国开始举办,竞赛以三名学生组成一个队,赛前有指导教师培训。

赛题来源于实际问题。

比赛时要求就选定的赛题每个队在连续三天的时间里写出论文,它包括:问题的适当阐述;合理的假设;模型的分析、建立、求解、验证;结果的分析;模型优缺点讨论等。

数学建模竞赛宗旨是鼓励大学师生对范围并不固定的各种实际问题予以阐明、分析并提出解法,通过这样一种方式鼓励师生积极参与并强调实现完整的模型构造的过程。

以竞赛的方式培养学生应用数学进行分析、推理、证明和计算的能力;用数学语言表达实际问题及用普通人能理解的语言表达数学结果的能力;应用计算机及相应数学软件的能力;独立查找文献,自学的能力,组织、协调、管理的能力;创造力、想象力、联想力和洞察力。

他还可以培养学生不怕吃苦、敢于战胜困难的坚强意志,培养自律、团结的优秀品质,培养正确的数学观。

这项赛事自诞生起就引起了越来越多的关注,逐渐有其他国家的高校参加。

我国自1989年起陆续有高校参加美国大学生数学建模竞赛。

1992年起我国开始举办自己的大学生数学建模竞赛,并成为国家教育部组织的全国大学生四项学科竞赛之一竞赛简介:本竞赛每年9月下旬举行,竞赛面向全国大专院校的学生,不分专业。

数学建模是什么

数学建模是什么

数学建模是什么
数学建模是指利用数学工具和方法分析和解决实际问题的过程,是一种跨学科的综合性应用科学研究方法。

数学建模的基本步骤包括:问题建模、假设、模型的构建、模型求解和模型评价。

在这个过程中,数学建模的核心是模型的构建和求解,其中模型的构建需要理解实际问题的基本特征和数学方法的应用,而模型求解则需要掌握数学分析、数值计算等技能和方法。

数学建模的应用范围非常广泛,包括但不限于自然科学、社会科学、经济学、工程学等领域的问题。

数学建模在现实生活中的应用包括:企业生产、物流配送、城市交通规划、自然资源评估、环境保护、金融、医学等各个领域。

数学建模的方法多种多样,常见的数学方法包括:微积分、线性代数、概率论、统计学、优化理论等。

通过对实际问题的建模、数学方法的应用和模型求解的计算和分析,数学建模可进一步为决策提供科学依据和参考。

数学建模的主要特点是模型化思维、跨学科交叉和创新性思维。

在这个过程中,数学建模要求研究者对问题进行深入的分析和研究,要对数学方法的应用有较大的理解和掌握,并且要结合实际考虑模型的可行性。

数学建模的创新性思维则要求研究者在模型的构建和求解中体现出一定的创新性和思维深度。

无论是学术界还是实际应用领域,数学建模的应用都已经深入到各个角落。

在数学建模中,数学是一种工具性语言,
而模型则是实际问题的一种映射。

数学建模不仅促进了数学研究和应用之间的相互促进和发展,还连接了传统学科和新兴学科之间的桥梁,推动了知识的跨领域传播和交流。

常见数学建模模型

常见数学建模模型

常见数学建模模型一、线性规划模型线性规划是一种常用的数学建模方法,它通过建立线性函数和约束条件,寻找最优解。

线性规划可以应用于各种实际问题,如生产调度、资源分配、运输问题等。

通过确定决策变量、目标函数和约束条件,可以建立数学模型,并利用线性规划算法求解最优解。

二、整数规划模型整数规划是线性规划的一种扩展形式,它要求决策变量为整数。

整数规划模型常用于一些离散决策问题,如旅行商问题、装箱问题等。

通过引入整数变量和相应的约束条件,可以将问题转化为整数规划模型,并利用整数规划算法求解最优解。

三、非线性规划模型非线性规划是一类目标函数或约束条件中存在非线性项的优化问题。

非线性规划模型常见于工程设计、经济优化等领域。

通过建立非线性函数和约束条件,可以将问题转化为非线性规划模型,并利用非线性规划算法求解最优解。

四、动态规划模型动态规划是一种通过将问题分解为子问题并以递归方式求解的数学建模方法。

动态规划常用于求解具有最优子结构性质的问题,如背包问题、最短路径问题等。

通过定义状态变量、状态转移方程和边界条件,可以建立动态规划模型,并利用动态规划算法求解最优解。

五、排队论模型排队论是一种研究队列系统的数学理论,可以用于描述和优化各种排队系统,如交通流、生产线、客户服务等。

排队论模型通常包括到达过程、服务过程、队列长度等要素,并通过概率和统计方法分析系统性能,如平均等待时间、系统利用率等。

六、图论模型图论是一种研究图结构和图算法的数学理论,可以用于描述和优化各种实际问题,如网络优化、路径规划、社交网络等。

图论模型通过定义节点、边和权重,以及相应的约束条件,可以建立图论模型,并利用图算法求解最优解。

七、随机模型随机模型是一种考虑不确定性因素的数学建模方法,常用于风险评估、金融建模等领域。

随机模型通过引入随机变量和概率分布,描述不确定性因素,并利用概率和统计方法分析系统行为和性能。

八、模糊模型模糊模型是一种用于处理模糊信息的数学建模方法,常用于模糊推理、模糊控制等领域。

数学建模的概念

数学建模的概念

数学建模的概念数学建模是指将现实世界中的问题,通过数学语言和技术进行分析、表述、求解的过程。

它是数学与应用学科相结合的一项重要工作。

数学建模包括以下三个阶段:第一、问题的数学化,即将实际问题转化为符合数学语言和数学规律的数学问题;第二、建立数学模型,根据数学问题的特性和问题的需求建立数学模型,确定数学模型中的各个参数;第三、求解数学模型,利用数学方法和计算机技术进行建模求解,从而给出实际问题的数值解或者给出实际问题的变化规律。

数学建模在解决实际问题中具有重要意义。

首先,它能够帮助人们对实际问题进行深入的分析和理解,将问题形式化,从而更好地理解问题的本质和内在规律。

其次,它可以为实际问题提供更加准确、可靠的解决方案,并且在求解问题中提高效率,降低成本。

最重要的是,数学建模还能够帮助人们预测问题发展的趋势,提前做预防和控制,从而减少潜在风险和代价。

在数学建模的过程中,需要注意以下几个方面:一、正确理解实际问题。

这是数学建模的前提和基础。

要深入理解问题的背景、目的、约束条件以及关键因素,从而确定问题的数学表达方式和求解方法。

二、合理选择数学模型。

数学模型一是根据实际问题的特点和要求,二是根据数学方法和工具的可行性与有效性的考虑,进行选择。

建立的数学模型应当简单明了,能够反映实际问题的本质,准确捕捉关键因素的变化趋势,并且方便求解和分析。

三、确定数学模型的参数。

参数的选择应该考虑模型的可靠性和准确性,必须要有实际意义,并且需要根据实际数据和情况进行校正和调整。

四、有效求解数学模型。

为了提高效率和准确性,需要选择合适的数学工具和计算机软件,并且要按照求解计划进行前期数据处理、模型运行、结果验证等多个环节。

总之,数学建模是一项综合性的工作,需要涉及到多个学科和领域的知识。

在实际工作中,需要有一定的数学知识和操作技能,并且要具备对实际问题的深入理解、清晰思路、认真负责的态度。

这样才能够将数学建模发挥出其最大的应用价值。

数学建模(数学分支)

数学建模(数学分支)

建模背景
数学技术
建模应用
近半个多世纪以来,随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来 越重要的作用,而且以空前的广度和深度向经济、管理、金融、生物、医学、环境、地质、人口、交通等新的领 域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。
数学模型(Mathematical Model)是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质 属性的抽象而又简洁的刻画,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展 提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现 实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提 炼出数学模型的过程就称为数学建模(Mathematical Modeling)。
应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立数学模 型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和 研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的 理论和方法去分析和解决问题。这就需要深厚扎实的数学基础、敏锐的洞察力和想象力、对实际问题的浓厚兴趣 和广博的知识面。数学建模是联系数学与实际问题的桥梁,是数学在各个领域广泛应用的媒介,是数学科学技术 转化的主要途径。数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代 科技工作者必备的重要能力之一。
为了适应科学技术发展的需要和培养高质量、高层次科技人才,数学建模已经在大学教育中逐步开展,国内 外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞赛作为高等 院校的教学改革和培养高层次的科技人才的一个重要方面,许多院校正在将数学建模与教学改革相结合,努力探 索更有效的数学建模教学法和培养面向21世纪的人才的新思路,与我国高校的其它数学类课程相比,数学建模具 有难度大、涉及面广、形式灵活,对教师和学生要求高等特点,数学建模的教学本身是一个不断探索、不断创新、 不断完善和提高的过程。为了改变过去以教师为中心、以课堂讲授为主、以知识传授为主的传统教学模式,数学 建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

潍坊学院数学与信息科学学院数学建模实训论文实训题目:幸福感的评价与量化模型学生姓名、学号、专业班级1、2、3、指导教师:2012论文题目摘要问题一,采用加权平均的方法对主观指标进行分值量化(采取100到0分赋值法)利用熵值法求出二级指标对一级指标的权重向量,最后,建立了网民幸福指数的数学模型。

(单独一页,不得少于400字)关键字:二级模糊综合评价,层次分析法一问题重述改革开放三十多年,我国经济建设取得了巨大成就,人们物质生活得到了极大改善。

但也有越来越多的人开始思考:我们大力发展经济,最终目的是为了什么?温家宝总理近年来多次强调:我们所做的一切,都是为了让人民生活得更加幸福。

在今年的全国两会期间,“幸福感”也成为最热门词语之一。

幸福感是一种心理体验,它既是对生活的客观条件和所处状态的一种事实判断,又是对于生活的主观意义和满足程度的一种价值判断。

它表现为在生活满意度基础上产生的一种积极心理体验。

而幸福指数,就是衡量这种感受具体程度的主观指标数值。

美国、英国、荷兰、日本等发达国家都开始了幸福指数的研究,并创设了不同模式的幸福指数。

如果说GDP、GNP 是衡量国富、民富的标准,那么,百姓幸福指数就可以成为一个衡量百姓幸福感的标准。

百姓幸福指数与GDP一样重要,一方面,它可以监控经济社会运行态势;另一方面,它可以了解民众的生活满意度。

可以说,作为最重要的非经济因素,它是社会运行状况和民众生活状态的“晴雨表”,也是社会发展和民心向背的“风向标”。

国内学者也对幸福感指数进行了研究,试图建立衡量人们幸福感的量化模型,可参看附件的参考论文。

根据你自己对幸福感的理解,要求完成以下工作:1、附表给出了网上调查的一系列数据,根据这些数据,试建立网民幸福感的评价指标体系,并利用这些指标建立衡量幸福指数的数学模型。

2、试查找相关资料,分别建立某一地区或某一学校教师和学生的幸福指数的数学模型,并找出影响他们幸福感的主要因素。

3、你所建立的评价体系和模型,能否推广到更加普遍的人群,试讨论之。

4、根据你所建模型得出的结论,给相关部门(例如政府、或学校管理部门等)写一封短信(1页纸以内),阐明你对幸福的理解和建议。

二问题分析在问题一中,由于幸福指数的影响因素较多,我们可以采用表(表5-1)二级分层结构,即采用二级模糊综合评判的方法,就足以解决问题了。

我们发现要通过模糊综合评价对网民幸福指数幸福感指数进行衡量,缺少了各个因素的权重值,所以就必须要求出影响网民幸福指数的一级指标的权重才能进行网民幸福指数的衡量。

因为网民幸福指数有每个一级指标构成,所以要求出每个一级指标对于幸福指数影响的权重,而每个一级指标又是有二级指标来决定的,也要求出一级指标下每个二级指标对于一级指标影响的权重。

对于此,我们引入熵权法先求解二级指标对于一级指标的权重,进而求解出一级指标对于网民幸福指数的权重。

三符号说明模型建立与求解1.问题一1.1建立网民幸福感的评价指标体系我们根据附表给出的数据进行指标体系的确立。

根据大量文献,我们筛选出具有公平合理选取指标的基本原则如下:(1)针对性原则。

紧扣政府可作为目标,侧重与对提升居民幸福感的政府公共管理可作为的方面环节筛选指标。

(2)科学性原则。

既能科学反映现阶段居民幸福感的内涵,又与构建指标体系的目标相一致,能借助与所选取指标的指标值统计表现,反映一定问题,为提升政府服务效能提供依据。

(3)可行性原则。

能组织实施所构建指标体系设计的调查,所选取指标容易被认知,能为被访者接受并有效反馈。

(4)简洁性原则。

指标选取紧扣目标,避繁就简,依据所建指标体系所要开展的调查,既能服务与调研预期目的,又尽可能节约成本。

因此,我们将附表所给的19个数据分为5个类别——社会环境,经济因素,生活质量,人际关系,自我评价,作为一级指标;将19个数据作为二级指标;得到如下的评价指标体系:1.2建立衡量幸福指数的数学模型(1)的票数所占的比例乘以其对应的量化值得到。

(2)对于5个一级指标,19个二级指标,把)19,,2,1;5,,2,1( ==j i H ij 作为第i 个一级指标的第j 个二级指标的量化值(例如二级指标幸福程度对一级指标自我审视的量化值为:2.6706.02012.04035.06034.08013.010011=⨯+⨯+⨯+⨯+⨯=H )。

表 二级指标在一级指标中的量化值利用MATLAB 软件编程求权重根据熵权法原理,用MATLAB 编程求解(代码见附录),得到各个一级指标对幸福指数影响的权重如下表:(3)计算第j 个指标下第i 个一级指标占该指标的比重:)19,,2,1;5,,2,1(1===∑=j i HH p ni ijijij(4)计算第j 项指标的熵值。

1ln(),(0,1/ln(),0)mj ij ij j i e k p p k k n e ==->=≥∑(5)计算第j 个指标的差异系数。

对于第j 个指标,指标值的差异越大,对方案评价的作用就越大,熵值就越小。

定义差异系数:1,j i ee g m E -=-式中11,01,1mme jj j j j E eg g ===≤≤=∑∑(6)求权数:1(1)jj mjj g w j m g==≤≤∑(7):计算各指标的综合得分:1(1,2,...)mi jijj s wp i n ==∙=∑第一步:将因素集{}12,,,n U u u u = 按某种属性分成s 个子因素集12,,,s U U U ,其中{}12,,,,1,2,,i i i in U u u u i s == ,且满足:① 12s n n n n ++= ② 12s U U U U = ③ 对任意的,i j i j U U ≠=∅第二步:对每一个因素集i U ,分别做出综合评判。

设{}12,,,m V v v v = 为评语集,i U 中各因素相对于V 的权重分配是:()12,,,i i i in A a a a =若i R 为单因素评判矩阵,则得到一级评判向量:()12,,,, 1,2,,i i i i i im B A R b b b i s ===第三步:将每个i U 看作一个因素,记为:{}12,,,s K u u u =这样,K 又是一个因素集,K 的单因素评判矩阵为:11112122122212m ms s sm s B b b b B b b b R b b b B ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦每个i U 作为U 的部分,反映了U 的某种属性,可以按它们的重要性给出权重分配()12,,,s A a a a = ,于是得到二级评判向量:()12,,,m B A R b b b ==如果每个子因素集,1,2,,i U i s = ,含有较多的因素,可将i U 再进行划分,于是有三级评判模型,甚至四级、五级模型等。

根据熵权法原理,用MATLAB 编程求解(代码见附录) 计算出各个二级指标所占一级指标的权重,结果如下表2.问题2.1 建立教师与学生的幸福指数的评价体系教师的幸福指数的评价体系学生的幸福指数的评价体系2.2 建立教师和学生的幸福指数的数学模型模型的建立一、层次分析法求权重我们将决策问题化为三个层次:目标成、准则层、方案层,每层都有若干元素,各层之间的关系用直线将其连起,通过一一比较得出各层对目标的权重及若干元素在上层中的权重,并将这两种权重组合确定对幸福度目标的。

运用层次分析模型,大致分为4个基本步骤。

1)建立递阶层结构模型(见图1)根据所给因素的属性将其分为最高层,中间层和最底层。

在相同一层的元素是一类标准,对同时对下一层元素有支配作用,同时有受上一层至支配,这种从上到下的关系就叫做一种地接层次。

最高一层只有一个元素,他是问题的预定目标,表示解决问题的目的,因此被称为目标层。

中间层为要实现目标可以采纳的方案、措施,它可以包含若干层次,但是同一层次必须为同等条件下的影响目标层的因素。

最底层即为实现目标可供选择的方案,解决措施,所以称为方案层。

2)构造两两比较判断矩形设要对比n 个因素X={x 1, x 2…。

x n }对目标Z 的影响之比 ,两两比较判断的矩阵:A = (a ij )n * n (1) 其中a ij > 0, a ji = 1/a ij ( i ≠j )a ij = 1 (i,j = 1,2,… n ) (2)使(2)成立的矩阵称为正反比较判断矩阵: 其中a ij 采用传统的1-9 及其倒数作为标度,如介于临届值,则采用中间值2,4,6,8.(见表 1) 心理学家认为成对比较的因素不宜超过9个。

用1~3,1~5,…1~17,…,1p ~9p(p =2,3,4,5), d +0.1~d +0.9 (d =1,2,3,4)等27种比较尺度对若干实例构造成对比较阵,算出权向量,与实际对比发现, 1~9尺度较优3)层次单排序及其一致性检验(1)层次单排序。

先接触判断矩阵A 的最大特征值λmax,再利用:AW = λmax W (3)⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=n n n nn n w w w w w w w w w w w w w w w w w w A212221212111(2)一致性检验。

首先计算A 的一致性指标CI ,定义 CI =1-n n-max λ (4)式中,n 为A 的阶数。

当CI – 0 ,即max λ = n 时,A 有完全一致性。

CI越大,A 的一致性越差。

将CI 于平均随机一致指标RI 进行比较,令CR =RICI ,称RI 为随机性一致性比率。

当CR < 0.10 时,A 具有满意的一致性,否则要对A 重新调整,知道具有满意的一致性。

这样便计算出max λ所对应的特征向量W ,经过标准化后,才可以作为层次单排序的权值。

(4)层次总排序及其一致性的检验 利用同一层中所有层次单排序的结果,计算对上一层而言本层次所有元素重要性的权值,这就是层次总排序。

设上一层次所有元素A 1A 2,…A m的总排序已经完成,七权值对应分别为a 1a 2…a m 与本岑元素B 1B 2B n 1单排序结果为.21,,,nj jj b b b 。

层次总排序一致性指标为CI =∑=mj ajCIj1(6)式中RIj 为于aj 对应的B 层次中判断矩阵的随机一致性指标。

层次综排序随机一致性比率为 RICI CR =(7)当10.0≤CR 时,认为总排序的计算结果有满意一致性表3 平均随机一致性指标R.I.表(1000次正互反矩阵计算结果)第三步,计算一致性比例C.R.(consistency ratio )并进行判断......I R I C R C =当C.R.<0.1时,认为判断矩阵的一致性是可以接受的,C.R.>0.1时,认为判断矩阵不符合一致性要求,需要对该判断矩阵进行重新修正。

相关文档
最新文档