塔吊基础计算方案

合集下载

塔吊基础地基承载力计算

塔吊基础地基承载力计算

塔吊基础地基承载力计算塔吊基础是塔吊安装的重要部分,直接影响塔吊的稳定性和承载能力。

地基承载力计算是指确定地基能够承受的荷载大小,从而确定塔吊的安装位置和地基尺寸的计算过程。

本文将介绍塔吊基础的种类、设计原则以及地基承载力计算的方法。

一、塔吊基础的种类塔吊基础一般可以分为两种类型:单桩基础和桩基础。

1.单桩基础:单桩基础适用于地质条件较好的场所,基础形式简单,施工便利。

其承载形式为桩端摩擦和端承共同作用。

在设计单桩基础时,需要考虑桩身的直径、长度和承载能力等因素。

2.桩基础:桩基础适用于地质条件较差的场所。

桩基础一般由多根桩组成,桩与桩之间通过横梁连接,形成一个整体。

其承载形式为桩端摩擦作用和土体的侧阻力共同承载。

在设计桩基础时,需要考虑桩的类型、桩径和桩之间的间距等因素。

二、塔吊基础的设计原则1.安全性原则:塔吊基础的设计首要考虑因素是安全性,要保证基础的稳定性和承载能力。

2.经济性原则:在满足安全性的前提下,尽量降低基础的造价,提高施工效率。

3.可靠性原则:基础的设计应该具备一定的可靠性,能够适应多种复杂地质条件的需求。

三、地基承载力计算方法地基承载力计算是通过对地质条件和土壤特性的分析,确定基础承载能力的过程。

常用的计算方法包括以下几种:1.线性法:线性法是最简单的计算方法,适用于均匀土层和一般土质情况。

其计算公式为:P=cA+qA,其中P为单位面积的承载力,c为土壤的单位侧摩擦力,q为土壤的平均有效应力。

2.弯曲法:弯曲法适用于软土层和荷载较大的情况。

其计算公式为:P=cA+qA+ΣW,其中P为单位面积的承载力,c为土壤的单位侧摩擦力,q 为土壤的平均有效应力,ΣW为上部结构和载荷的总重力。

3.有限元法:有限元法适用于复杂地质条件和土壤特性的计算,通过建立有限元模型,利用计算机程序进行计算。

总结:塔吊基础的设计和地基承载力的计算是确保塔吊安全运行的重要环节。

设计师需要根据地质条件和土壤特性,选择适当的基础类型和计算方法,并严格遵守相关标准和规范,确保基础的稳定性和承载能力。

塔吊基础计算

塔吊基础计算
3 30 2121 236 超出 36.268 满足要求
光面钢筋 m 1.5 ~ 3.5N/m
m 2.5 ~ 6.0N/m
1.5 ~ 3.5N/mm 2 2.5 ~ 6.0N/mm 2
23
1036.464
-500.664
2072.929 1666.301 904.779 2571.079 Rk实际>R,符合要求 1542.648 满足要求
0.65% 0.003267
20.000 10.4
30
9.9 0.017 0.044694 0.000675 0.809675
44694395045 67522500
i=(I/A)0.5
λ=H/i f y 2 3 5
λ=H/i f y 2 3 5
最大应力
σ=Ni/Aφ
最大应力
σ=Ni/Aφ 钢构件插入桩深度(不计钢柱顶端阻力)
钢筋和混凝土的粘结应力(光面钢筋取1.5~3.5)
型钢等截面圆钢直径
插入桩长度
h=Ni/(τ×π×d)
型钢上部水平钢板焊接强度验算
焊接强度 塔吊拔力 焊缝长度 焊缝高度,等于6
N/mm2 N/mm2
kN/m2 m m
N/mm2 N mm mm
mm2 KN KN KN N/mm2
颗 mm m㎡ N/mm2 N/mm2
12
42535.38462
153.9904
42689.37502
204528
计算值
60.0 9.3 1.6 20.0 587.0 60.0 186.0 348.0 1242.0 72.0 -9.05 2.0 0.80 1.600
C12槽钢 塔吊水平力引起剪力 扭矩引起的剪力 水平力和扭矩组合作用剪力 槽钢抗剪强度

塔吊四桩基础的计算书(TC7020)

塔吊四桩基础的计算书(TC7020)

(TC7020)塔吊四桩基础的计算书依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2009)。

二. 荷载计算1. 自重荷载及起重荷载1) 塔机自重标准值F k1=1260kN2) 基础以及覆土自重标准值G k=4.5×4.5×1.60×25=810kN3) 起重荷载标准值F qk=160kN2. 风荷载计算1) 工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值 (Wo=0.2kN/m 2)W k=0.8×1.59×1.95×1.2×0.2=0.60kN/m2q sk=1.2×0.60×0.35×2=0.50kN/mb. 塔机所受风荷载水平合力标准值F vk=q sk×H=0.50×46.50=23.25kNc. 基础顶面风荷载产生的力矩标准值M sk=0.5F vk×H=0.5×23.25×46.50=540.62kN.m2) 非工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值 (本地区 Wo=0.35kN/m 2)W k=0.8×1.62×1.95×1.2×0.35=1.06kN/m2q sk=1.2×1.06×0.35×2.00=0.89kN/mb. 塔机所受风荷载水平合力标准值F vk=q sk×H=0.89×46.50=41.46kNc. 基础顶面风荷载产生的力矩标准值M sk=0.5F vk×H=0.5×41.46×46.50=963.93kN.m3. 塔机的倾覆力矩工作状态下,标准组合的倾覆力矩标准值M k=1639+0.9×(1400+540.62)=3385.55kN.m非工作状态下,标准组合的倾覆力矩标准值M k=1639+963.93=2602.93kN.m三. 桩竖向力计算非工作状态下:Q k=(F k+G k)/n=(1260+810.00)/4=517.50kNQ kmax=(F k+G k)/n+(M k+F vk×h)/L=(1260+810)/4+Abs(2602.93+41.46×1.60)/4.95=1056.85kNQ kmin=(F k+G k-F lk)/n-(M k+F vk×h)/L=(1260+810-0)/4-Abs(2602.93+41.46×1.60)/4.95=-21.85kN工作状态下:Q k=(F k+G k+F qk)/n=(1260+810.00+160)/4=557.50kNQ kmax=(F k+G k+F qk)/n+(M k+F vk×h)/L=(1260+810+160)/4+Abs(3385.55+23.25×1.60)/4.95=1249.11kNQ kmin=(F k+G k+F qk-F lk)/n-(M k+F vk×h)/L=(1260+810+160-0)/4-Abs(3385.55+23.25×1.60)/4.95=-134.11kN四. 承台受弯计算1. 荷载计算不计承台自重及其上土重,第i桩的竖向力反力设计值:工作状态下:最大压力 N i=1.35×(F k+F qk)/n+1.35×(M k+F vk×h)/L=1.35×(1260+160)/4+1.35×(3385.55+23.25×1.60)/4.95=1412.92kN 最大拔力 N i=1.35×(F k+F qk)/n-1.35×(M k+F vk×h)/L=1.35×(1260+160)/4-1.35×(3385.55+23.25×1.60)/4.95=-454.42kN 非工作状态下:最大压力 N i=1.35×F k/n+1.35×(M k+F vk×h)/L=1.35×1260/4+1.35×(2602.93+41.46×1.60)/4.95=1153.38kN最大拔力 N i=1.35×F k/n-1.35×(M k+F vk×h)/L=1.35×1260/4-1.35×(2602.93+41.46×1.60)/4.95=-302.88kN2. 弯矩的计算依据《塔式起重机混凝土基础工程技术规程》第6.4.2条其中 M x,M y1──计算截面处XY方向的弯矩设计值(kN.m);x i,y i──单桩相对承台中心轴的XY方向距离(m);N i──不计承台自重及其上土重,第i桩的竖向反力设计值(kN)。

塔吊桩基础计算范文

塔吊桩基础计算范文

塔吊桩基础计算范文
一、桩基数量的确定:
确定桩基数量需要根据塔吊的重量和地基承载能力进行计算。

通常情
况下,桩基数量可根据以下公式进行计算:
N=W/P
其中,N为桩基数量,W为塔吊的总重量,P为单根桩基的承载力。

这样可以保证单根桩基能够承受足够的力量。

二、桩基直径的确定:
桩基直径的确定需要结合地基的土壤类型、承载能力以及塔吊的重量
等多种因素进行考虑。

对于土壤承载能力较强的情况下,一般可以采用较
小的桩径;相反,对于土壤承载能力较弱的情况下,需要采用较大的桩径。

根据经验公式和试验结果,可以制定合理的桩径范围。

三、桩基深度的确定:
桩基深度的确定主要考虑的是地下水位、地质构造以及土层性质等因素。

通常情况下,为了保证桩基的稳定性,桩基的埋深应大于冻土深度以
及地下水位。

同时,需要对桩基周边土壤的承载能力进行充分的考虑,以
确定桩基的深度。

四、配筋的确定:
配筋是为了增加桩基的抗弯强度,提高桩基的承载能力。

根据桩基的
受力条件和受力特点,可以通过抗弯设计原理计算出合理的配筋数量和位置。

通常情况下,桩基的配筋应满足一定的比例,以保证桩基在受力时能
够充分发挥其抗弯强度。

总之,塔吊桩基础计算涉及了多个方面的内容,包括桩基数量、直径、深度以及配筋等关键参数的确定。

这些参数的选择需要综合考虑地基的承
载能力、土质条件以及塔吊的重量等因素,以保证桩基的稳定性和安全性。

在实际计算中,还需要对相关规范和标准进行参考,并尽量进行现场试验
和监测,以验证计算结果的合理性。

塔吊基础计算

塔吊基础计算

塔吊基础计算一、天然基础塔吊在安装完毕后。

其下地基即承受塔吊基础传来的上部荷载,一是竖向荷载,包括塔吊重量F和基础重量G;另一部分是弯矩M,主要是风荷载和塔吊附加荷卸产生的弯矩。

塔吊基础受力,可简化成偏心受压的力学模型(图1),此时,基础边缘的接触压力最大值和最小值分别可以按下式计算:图1塔吊基础受力简图(天然地基)图1塔吊基础受力简图(天然地基)其中:F————塔吊工作状态的重量,单位KNG————基础自重,单位KNG=b×b×h×ρ,单位KNb×h———基础边长、厚度,单位mρ——————基础比重,取25KN/m3e————偏心距,单位me=M/(F+G)M————塔吊非工作状态下的倾覆力矩。

若计算出的P min<0,即基底出现拉力,由于基底和地基之间不能承受拉力,此时基底接触压力将重新分布。

应按下式重新计算P maxF、M可由塔吊说明书中给出,将计算得出的最大接触压力P max和地质资料中给出的地基承载力标准值相比较,小于地基的承载力标准值即可满足要求。

二、桩基础对于有桩基础的塔吊,必须验算桩基础的承载力。

根据计算分析,在非工作状态下,塔吊大臂垂直于基础面对角线时最危险。

当以对角两根桩的连线为轴(图2—1),产生倾覆力矩时,将由单桩受力,此时桩的受力为最不利情况。

图2—1桩基础1、受力简图图2—2塔吊基础受力简图(桩基础)2、荷载计算当只受到倾覆力矩时:当只受到基础承台及塔吊重力时:3、单桩荷载最不利情况3、单桩最小荷载若计算出的P2<0,即桩将受到拉力,拉力为|P2|L———桩的中心距。

4、单桩承载力单桩的受压承载力由桩侧摩阻力共同承担的,单桩受压承载力为:单桩的抗拔承载力由桩侧摩阻力承担,单桩抗拔力为:R K2=U P∑q Si L i (2—6)其中:q p—————桩端承载力标准值,KP aA P—————桩身横截面面积,m2U—————桩身的周长,mPq Si—————桩身第I层土的摩阻力标准值,KP A kL i—————按土层划分的各段桩长,m将计算所得的P1和R K1相比较,|P2|和R K2相比较,若P1< R K1且|P2|< R K2则可满足要求。

塔吊基础计算

塔吊基础计算

塔吊基础计算QTZ63塔吊天然基础的计算书参数信息:塔吊型号为QTZ63,自重(包括压重)为F1=450.80kN,最大起重荷载为F2=60.00kN,塔吊倾覆力距为M=630.00kN.m,塔吊起重高度为70.00m,塔身宽度为B=1.50m,混凝土强度等级为C35,基础埋深为D=5.00m,基础最小厚度为h=1.35m,基础最小宽度为Bc=5.00m。

基础最小尺寸计算:基础的最小厚度为H=1.35m,基础的最小宽度为Bc=5.00m。

塔吊基础承载力计算:按照《建筑地基基础设计规范》(GB-2002)第5.2条承载力计算。

计算简图如下:当不考虑附着时的基础设计值计算公式为:当考虑附着时的基础设计值计算公式为:当考虑偏心距较大时的基础设计值计算公式为:其中,F为塔吊作用于基础的竖向力,包括塔吊自重、压重和最大起重荷载,F=1.2×510.8=612.96kN;G为基础自重与基础上面的土的自重,G=1.2×(25.0×Bc×Bc×Hc+20.0×Bc×Bc×D) =4012.50kN;Bc为基础底面的宽度,取Bc=5.00m;W为基础底面的抵抗矩,W=Bc×Bc×Bc/6=20.83m3;M为倾覆力矩,包括风荷载产生的力距和最大起重力距,M=1.4×630.00=882.00kN.m;a为合力作用点至基础底面最大压力边缘距离(m),按下式计算:a=5.00/2-882.00/(612.96+4012.50)=2.31m。

经过计算得到:无附着的最大压力设计值为Pmax=(612.96+4012.50)/5.002+882.00/20.83=227.35kPa;无附着的最小压力设计值为Pmin=(612.96+4012.50)/5.002-882.00/20.83=142.68kPa;有附着的压力设计值为P=(612.96+4012.50)/5.002=185.02kPa;偏心距较大时压力设计值为Pkmax=2×(612.96+4012.50)/(3×5.00×2.31)=267.06kPa。

塔吊基础计算书

塔吊分项参数计算塔吊是施工场地最重要的施工机械之一,其使用贯穿了整个工程。

在这过程中间隔时间长,不可预见性因素多,为确保塔吊的安全,以下计算都按极限苛刻条件下能保证塔吊正常工作计算。

即:塔吊设置在最大开挖深度处;型钢柱与混凝土灌注桩连接按光滑面锚固。

(计算详值见计算表格) 1. 基础竖向极限承载力计算F=F1+ F2F ——基础竖向极限承载力kn F1——塔吊自重(包括压重)kn F2最大起吊重量kn 2.单桩抗压承载力、抗拔力计算桩顶竖向力的计算(依据《建筑桩技术规范》JGJ94-94的第条)F 十。

iV V-A- M =1.2 —±士 弱尹2" Z* ("+”计算结果为抗压,“-”为抗拔)其中 N i ——单桩桩顶竖向力设计值kNn 单桩个数,n=4;F ——作用于桩基承台顶面的竖向力设计值TG ——塔吊基础重量KNMx,My 承台底面的弯矩设计值kN.mxi,yi 单桩相对承台中心轴的XY 方向距离mM ——塔吊的倾覆力矩kN.m3.桩长以及桩径计算 桩采用钻孔灌注桩R =f A +U £ f l >R = N xgk 实际 ppp s ii1U P =n d其中Rk 实际一一实际钻孔灌注桩承载能力KN桩端面承载能力KN桩侧摩擦阻力总和IUp£fsliKNR——单桩轴向承力安全值KN孔一一桩安全系数取2d桩直径m4.桩抗拔验算Ok=入RQk八k实际5.桩配筋计算桩身配筋率可取0.20%〜0.65% (计算取上限0.65%),抗压主筋不应少于6①10,箍筋采用不少于①6@3mm的螺旋箍筋,在桩顶5倍桩身直径范围内箍筋①6@1mm,每隔2m设一道2①12焊接加强箍筋。

As = S桩截面*配筋率n = 4As/ (n 巾2)其中n ——竖筋根数根As ——钢筋总截面积m①一一竖筋直径m6.桩上部钢支柱计算钢支柱采用 hxbxtwxt = 350 * 350 x 12 x 19, H 型钢。

塔吊基础技术计算公式

塔吊基础技术计算公式引言。

塔吊是建筑工地上常见的起重设备,它具有起重能力大、操作范围广等优点,因此在建筑施工中得到了广泛应用。

在塔吊的设计和施工过程中,基础技术计算是至关重要的一环。

正确的基础技术计算可以确保塔吊的安全稳定运行,保障施工现场的安全。

本文将介绍塔吊基础技术计算的一些常用公式,希望对相关工程师和施工人员有所帮助。

一、塔吊基础技术计算公式。

1. 塔吊的起重能力计算公式。

塔吊的起重能力是指它能够承受的最大起重重量。

起重能力的计算公式如下:Q = (P F) × r。

其中,Q为塔吊的起重能力,P为塔吊的额定起重能力,F为塔吊自重,r为塔吊的工作半径。

2. 塔吊基础承载力计算公式。

塔吊的基础承载力是指它能够承受的最大荷载。

基础承载力的计算公式如下:Pb = ∑(Gk + Qk) + ∑(Ek × Ak)。

其中,Pb为塔吊的基础承载力,Gk为地面荷载,Qk为动载荷,Ek为风载荷,Ak为风载面积。

3. 塔吊的抗倾覆稳定计算公式。

塔吊在使用过程中需要保持稳定,抗倾覆稳定的计算公式如下:Fh = (M × L) / (H × 2)。

其中,Fh为塔吊的抗倾覆稳定系数,M为塔吊的最大起重力矩,L为塔吊的最大工作半径,H为塔吊的高度。

4. 塔吊的基础尺寸计算公式。

塔吊的基础尺寸是指它的基础面积和深度,基础尺寸的计算公式如下:A = Pb / σ。

D = A / B。

其中,A为塔吊的基础面积,Pb为塔吊的基础承载力,σ为土壤承载力,D为塔吊的基础深度,B为土壤的承载力系数。

5. 塔吊的基础沉降计算公式。

塔吊的基础沉降是指它在使用过程中可能发生的沉降情况,基础沉降的计算公式如下:S = (Q / A) × C。

其中,S为塔吊的基础沉降,Q为塔吊的荷载,A为塔吊的基础面积,C为土壤的沉降系数。

二、塔吊基础技术计算实例分析。

为了更好地理解塔吊基础技术计算公式的应用,我们以一个实际工程为例进行分析。

塔吊基础计算方案


xi,yi──单桩相对承台中心轴的XY方向距离取a/2-B/2=0.90m;
Ni1──扣除承台自重的单桩桩顶竖向力设计值(kN),Ni1=Ni-G/n=486.17kN/m2;
经过计算得到弯矩设计值:
Mx1=My1=2×486.17×0.90=875.11kN.m。
3300
8
固定基节
1020
即塔吊自重(包括压重)F1=50438496.63kN,最大起重荷载F2=kN 塔吊倾覆力距M=1552kN.m,塔吊起重高度H=58.80m,塔身宽度B=1.6m 混凝土强度:C35,钢筋级别:Ⅱ级,承台长度Lc或宽度Bc=5.00m 桩直径d=0.60m,桩间距a=3.40m,承台厚度Hc=1.00m 基础埋深D=1.00m,承台箍筋间距S=200mm,保护层厚度:50mm
(二)、单桩桩顶作用力的计算和承载力验算
1、轴心竖向力作用下: (DB33/1001--2003)(9.2.1-1) kn 2、偏心竖向力作用下:
按照Mx作用在对角线进行计算 Mx=Mk=2172.8+73.9×1.0=2246.7kN·m (DB33/1001--2003)(9.2.1-2) =354.14±476.25 3、水平力作用下: Hik=(DB33/1001--2003)(9.2.1-3) =18.48kN
4、采用钢筋混凝土承台,尺寸为5000×5000×1000mm,内配钢筋双层双向
B14@200,箍筋B12@450,承台混凝土强度C35,承台顶标高-6.15(6.30)m,基础下为150厚片石、70厚C10混凝土垫层。在塔吊承台位置地下室底板预留洞4000×4000,四周设一道止水板,与基础连接处用100厚泡沫板相隔并做防水处理。塔吊基础处后浇带处理方法同地下室后浇带。塔身穿楼板处,楼板预留洞四周比塔身外围大500mm(2600×2600),该处梁板后浇带处理方法同地下室顶板后浇带。

塔吊基础计算书

塔吊基础计算书10.1 D1100-63型塔吊基础设计计算依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2009)。

一. 参数信息塔吊型号:D1100-63塔机自重标准值:Fk1=3213.90kN 起重荷载标准值:Fqk=630kN塔吊最大起重力矩:M=11000.00kN.m 塔吊计算高度:H=90.8m塔身宽度:B=4m 非工作状态下塔身弯矩:M=0kN.m承台混凝土等级:C40钢筋级别:HRB400地基承载力特征值:193kPa承台宽度:Bc=9.5m承台厚度:h=2m基础埋深:D=0m计算简图:二. 荷载计算1. 自重荷载及起重荷载1) 塔机自重标准值Fk1=3213.9kN2) 基础以及覆土自重标准值Gk=9.5×9.5×2×25=4512.5kN承台受浮力:Flk=9.5×9.5×1.50×10=1353.75kN3) 起重荷载标准值Fqk=630kN2. 风荷载计算1) 工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值(Wo=0.2kN/m2)=0.8×1.77×1.95×0.99×0.2=0.55kN/m2=1.2×0.55×0.35×4=0.92kN/mb. 塔机所受风荷载水平合力标准值Fvk=qsk×H=0.92×90.8=83.40kNc. 基础顶面风荷载产生的力矩标准值Msk=0.5Fvk×H=0.5×83.40×90.8=3786.29kN.m2) 非工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值(本地区Wo=0.45kN/m2)=0.8×1.84×1.95×0.99×0.45=1.28kN/m2=1.2×1.28×0.35×4=2.15kN/mb. 塔机所受风荷载水平合力标准值Fvk=qsk×H=2.15×90.8=195.07kNc. 基础顶面风荷载产生的力矩标准值Msk=0.5Fvk×H=0.5×195.07×90.8=8856.07kN.m3. 塔机的倾覆力矩工作状态下,标准组合的倾覆力矩标准值Mk=0+0.9×(11000+3786.29)=13307.66kN.m非工作状态下,标准组合的倾覆力矩标准值Mk=0+8856.07=8856.07kN.m三. 地基承载力计算依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2009)第4.1.3条承载力计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

塔式起重机基础计算方案书
工程名称:
施工单位:
编制人:
日期:
目录
一、编制依据 (1)
二、塔机属性 (1)
三、塔机荷载 (2)
四、基础验算 (4)
五、基础配筋验算 (7)
一、编制依据
1、工程施工图纸及现场概况
2、塔机使用说明书
3、《塔式起重机混凝土基础工程技术规范JGJ/T 187-2009》
4、《建筑施工塔式起重机安装、使用、拆卸安全技术规程》JGJ196-2010
5、《塔式起重机设计规范》GB13752-92
6、《混凝土结构设计规范GB50010-2010》
7、《建筑结构荷载规范》(GB50009-2012)
8、《建筑地基基础设计规范》(GB50007-2011)
9、《建筑安全检查标准》(JGJ59-2011)
二、塔机属性
三、塔机荷载
(一)塔机自身荷载标准值
(二)风荷载标准值
(三)塔机传递至基础荷载标准值
(四)塔机传递至基础荷载设计值
四、基础验算
基础底面积:A=2bl-l2+2a2=2×8×1.6-1.62+2×12=25.04m2
=bl+2(a+l)a=8×1.6+2×(1+1.6)×1=18m2基础中一条形基础底面积:A
基础及其上土的自重荷载标准值:G k=25.04×1.25×25=782.5kN
基础及其上土的自重荷载设计值:G=1.2×782.5=939kN
1、偏心距验算
条形基础的竖向荷载标准值:
F k''=(F k+
G k)A0/A=(285.10+782.5)×18/25.04=767.44kN
F''=(F+G)A0/A=(350.12+939)×18/25.04=926.68kN
e=(M k+F Vk·h)/ F k''=(209.02+10.44×1.25)/767.44=0.29m <b/4=8/4=2.00m
满足要求
2、基础偏心荷载作用应力
(1)、荷载效应标准组合时,基础底面边缘压力值
e=0.29m <b/6=8/6=1.33m
I=lb3/12+2×al3/12+4×[a4/36+ a2/2(a/3+l/2)2]
=1.6×83/12+2×1×1.63/12+4×[14/36+12/2×(1/3+1.6/2)2]=71.63
基础底面抵抗矩:W=I/(b/2)=71.63 /(8/2)=17.91m3
P kmin= F k''/A0-(M k+F Vk·h)/W=767.44/18-(209.02+10.44×1.25)/17.91 =30.24kPa P kmax= F k''/A0+(M k+F Vk·h)/W=767.44/18+(209.02+10.44×1.25)/17.91 =55.03kPa
(2)、荷载效应基本组合时,基础底面边缘压力值
P min= F''/A0-(M+F V·h)/W=926.68/18-(365.33+14.62×1.25)/17.91 =30.06kPa
P max= F''/A0+(M+F V·h)/W=926.68/18+(365.33+14.62×1.25)/17.91 =72.9kPa
3、基础轴心荷载作用应力
P k =(F k +G k )/A=(285.10+782.5)/25.04=42.64kN/m 2
4、基础底面压力验算
(1)、修正后地基承载力特征值 f a =f ak +ηd γm (d-0.5)
=160+1.6×19.3×(1.5-0.5)=190.88kPa (2)、轴心作用时地基承载力验算 P k =42.64kPa <f a =190.88kPa 满足要求!
(3)、偏心作用时地基承载力验算
P kmax =55.03kPa <1.2f a =1.2×190.88=229.06kPa 满足要求! 5、基础抗剪验算
基础有效高度:h 0=h-δ-D/2=1250-40-25/2=1198mm 塔身边缘至基础底边缘最大反力处距离: a 1=(b-1.414B)/2=(8-1.414×1.5)/2=2.94m 塔身边缘处基础底面地基反力标准值:
P k1=P kmax -a 1(P kmax -P kmin )/b=55.03-2.94×(55.03-30.24)/8=45.92kPa 基础自重在基础底面产生的压力标准值: P kG =G k /A=782.5/25.04=31.25kPa 基础底平均压力设计值:
P=γ((P kmax +P k1)/2-P kG )=1.35×((55.03+45.92)/2-31.25)=25.95kPa
基础所受剪力:V=pa1l=25.95×2.94×1.6=122.07kN
h0/l=1198/1600=0.75 <4
0.25βc f c lh0=0.25×1×14.3×1600×1198/1000=6852.56kN >V=122.07kN
满足要求!
6、地基变形验算
倾斜率:tanθ=|S1-S2|/b'=|46-50|/5000=0.0008 <0.001
满足要求!
五、基础配筋验算
基础底部配筋:HRB4008Φ25基础上部配筋:HRB4008Φ22
基础腰筋配筋:HPB3008Φ16基础箍筋配筋:HPB300Φ12@200,4肢
1、基础弯距计算
基础底均布荷载设计值:q1=pl=25.95×1.6=41.52kN/m
塔吊边缘弯矩:M=q1a12/2=41.52×2.942/2=179.44kN·m
2、基础配筋计算
(1)、基础梁底部配筋
αS1=M/(α1f c lh02)=179.44×106/(1×14.3×1600×11982)=0.005
ζ1=1-1
1sα
-=0.005
2
γS1=1-ζ1/2=1-0.005/2=0.998
A S1=M/(γS1h0f y1)=179.44×106/(0.998×1198×360)=417mm2
最小配筋率:ρ=max(0.2,45f t/f y1)=max(0.2,45×1.43/360)=max(0.2,0.18)=0.2% 最小配筋面积A min=ρlh0=0.2×1600.0×1198=3834mm2
取两者大值,A1= 3834mm2
基础底长向实际配筋:A s1'=3925mm2 >A1=3834mm2
满足要求!
(2)、基础梁上部配筋
基础梁上部实际配筋:A s2'=3040mm2'>0.5A s1=1962.50mm2
满足要求!
(3)、基础梁腰筋配筋
梁腰筋按照构造配筋HPB3008Φ16
(4)、基础梁箍筋配筋
箍筋抗剪
截面高度影响系数:βh=(800/h0)0.25=(800/1198)0.25=0.90
0.7βh f t lh0=0.7×0.90×1.43×103×1.6×1198=1726.85kN >V=122.07kN
满足要求!
配箍率验算
ρsv=nA sv1/(ls)=4×113.04/(1600×200)=0.14%>ρsv,min=0.24f t/f yv=0.24×1.43/270=0.13% 满足要求!
(5)、基础加腋处配筋
基础加腋处,顶部与底部配置水平构造筋Φ12@200mm、竖向构造箍筋Φ8@200mm,外侧纵向筋Φ10@200mm。

相关文档
最新文档