第四章 刚体的转动 习题

合集下载

第四章 刚体转动习题

第四章 刚体转动习题

1.如图所示,一质量为m得匀质细杆AB,A端靠在光滑得竖直墙壁上,B端置于粗糙水平地面上而静止,杆身与竖直方向成θ角,则A端对墙壁得压力为2.两个均质圆盘A与B得密度分别为ρA与ρB , 若ρA﹥ρB但两圆盘得质量与厚度相同, 如果两盘对通过盘心垂直于盘面轴得转动惯量各为JA与JB , 则( )3.一电唱机得转盘以n =78 转/分得转速匀速转动,则与转轴相距r =15cm 得转盘上得一点P得线速度v = ,法向加速度an= 、在电唱机断电后, 转盘在恒定得阻力矩作用下减速, 并在t =15s内停止转动,则转盘在停止转动前得角加速度a= ,转过得圈数N= 、4、一转动惯量为J 得圆盘绕一固定轴转动,起始角速度为ω0, 设它所受得阻力矩与转动角速度成正比,即M = -kω (k为正得常数),若它得角速度从ω0变到ω0/2, 则所需得时间t = 。

5.一轻绳绕在半径r =20 cm得飞轮边缘, 在绳端施以F=98 N得拉力, 飞轮得转动惯量J = 0、5kg·m2飞轮与转轴间得摩擦不计,试求(1)飞轮得角加速度;(2)当绳下降5m时飞轮所获得得动能;(3)如以质量m=10kg得物体挂在绳端再计算飞轮得角加速度.6.质量为m, 长为l得均匀细棒, 可绕垂直于棒得一端得水平轴转动, 如将此棒放在水平位置, 然后任其落下, 求(1)开始转动时棒得角加速度; (2)棒下落到竖直位置时得动能;(3)下落到竖直位置时得角速度.第四章刚体转动课后练习七1.我国第一颗人造卫星绕地球作椭圆运动,地球中心为椭圆得一个焦点.在运行过程中,下列叙述中正确得就是( )(A)动量守恒(B)动能守恒(C)角动量守恒(D)以上均不守恒.2.一半径为R 得水平圆转台,可饶通过其中心得竖直固定光滑轴转动,转动惯量为J,开始时转台以匀角速度ω0 转动,此时有一质量为m 得人站在转台中心,随后人沿半径向外走去,当人到达转台边缘时,转台得角速度为( )3.一质量为m得小球由一绳索系着,以角速度ω0在无摩擦得水平面上作半径为r0得圆周运动、如果在绳得另一端作用一竖直向下得拉力, 使小球作半径为r0 /2得圆周运动, 则小球新得角速度为, 拉力所作得功为。

大学物理题库-第4章-刚体的转动习题(含答案解析)

大学物理题库-第4章-刚体的转动习题(含答案解析)

刚体习题一、选择题 1、如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦,则有(A) βA =βB . (B) βA >βB .(C) βA <βB . (D) 开始时βA =βB ,以后βA <βB . [ ]2、关于刚体对轴的转动惯量,下列说法中正确的是(A )只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B )取决于刚体的质量和质量的空间分布,与轴的位置无关.(C )取决于刚体的质量、质量的空间分布和轴的位置.(D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关.[ ]3、有两个力作用在一个有固定转轴的刚体上:(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A) 只有(1)是正确的.(B) (1) 、(2)正确,(3) 、(4) 错误.(C) (1)、(2) 、(3) 都正确,(4)错误.(D) (1) 、(2) 、(3) 、(4)都正确. [ ]4、如图所示,一质量为m 的匀质细杆AB ,A 端靠在粗糙的竖直墙壁上,B 端置于粗糙水平地面上而静止.杆身与竖直方向成θ角,则A 端对墙壁的压力大小 (A) 为 41mg cos θ. (B)为21mg tg θ. (C) 为 mg sin θ.(D) 不能唯一确定. [ ]5、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A) 角速度从小到大,角加速度从大到小.(B) 角速度从小到大,角加速度从小到大.(C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大. [ ]6、关于力矩有以下几种说法:(1) 对某个定轴而言,内力矩不会改变刚体的角动量.(2) 作用力和反作用力对同一轴的力矩之和必为零.(3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的角加速度一定相等.在上述说法中,(A) 只有(2) 是正确的.(B) (1) 、(2) 是正确的.(C) (2) 、(3) 是正确的.(D) (1) 、(2) 、(3)都是正确的. [ ]7、一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人.把人和圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系统(A) 动量守恒.(B) 机械能守恒.(C) 对转轴的角动量守恒.(D) 动量、机械能和角动量都守恒.(E) 动量、机械能和角动量都不守恒. [ ]8、质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为(A) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,顺时针. (B) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,逆时针. (C) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,顺时针.(D) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,逆时针.[ ]9、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω(A) 增大. (B) 不变.(C) 减小. (D) 不能确定 [ ]10、(0405)人造地球卫星,绕地球作椭圆轨道运动,地球在椭圆的一个焦点上,则卫星的(A)动量不守恒,动能守恒.(B)动量守恒,动能不守恒.(C)对地心的角动量守恒,动能不守恒.(D)对地心的角动量不守恒,动能守恒. [ ]11、一个圆盘在水平面内绕一竖直固定轴转动的转动惯量为J ,初始角速度为ω 0,后来变为021ω.在上述过程中,阻力矩所作的功为: (A) 2041ωJ . (B) 2081ωJ -. (C) 2041ωJ - (D) 2083ωJ -. [ ] 12、一均匀细杆可绕垂直它而离其一端l / 4 (l 为杆长)的水平固定轴O 在竖直平面内转动.杆 m m的质量为m ,当杆自由悬挂时,给它一个起始角速度ω 0,如杆恰能持续转动而不作往复摆动(一切摩擦不计)则需要 (A) ω 0≥l g 7/34. (B) ω 0≥l g /4.(C) ω 0≥()l g /3/4. (D) ω 0≥l g /12.[已知细杆绕轴O 的转动惯量J =(7/48)ml 2] [ ]13、假设卫星环绕地球中心作圆周运动,则在运动过程中,卫星对地球中心的(A) 角动量守恒,动能也守恒.(B) 角动量守恒,动能不守恒.(C) 角动量不守恒,动能守恒.(D) 角动量不守恒,动量也不守恒.(E) 角动量守恒,动量也守恒. [ ]14、一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力(A) 处处相等. (B) 左边大于右边. (C) 右边大于左边. (D) 哪边大无法判断. [ ]15、如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统(A) 只有机械能守恒.(B) 只有动量守恒.(C) 只有对转轴O 的角动量守恒.(D) 机械能、动量和角动量均守恒. [ ]二、填空题1、如图4-23所示,质量为m 和m 2的两个质点A 和B ,用一长为l 的轻质细杆相连,系统绕通过杆上o 点且与杆垂直的轴转动。

大学物理第四章 刚体的转动部分的习题及答案

大学物理第四章 刚体的转动部分的习题及答案

第四章 刚体的转动一、简答题:1、简述刚体定轴转动的角动量守恒定律并给出其数学表达式?答案:刚体定轴转动时,若所受合外力矩为零或不受外力矩,则刚体的角动量保持不变。

2、写出刚体绕定轴转动的转动定律文字表达与数学表达式?答案:刚体绕定轴转动的转动定律:刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比。

表达式为:αJ M =。

3、写出刚体转动惯量的公式,并说明它由哪些因素确定?答案:dm r J V⎰=2①刚体的质量及其分布;②转轴的位置;③刚体的形状。

二、选择题1、在定轴转动中,如果合外力矩的方向与角速度的方向一致,则以下说法正确的是 ( A )A.合力矩增大时,物体角速度一定增大;B.合力矩减小时,物体角速度一定减小;C.合力矩减小时,物体角加速度不一定变小;D.合力矩增大时,物体角加速度不一定增大2、关于刚体对轴的转动惯量,下列说法中正确的是 ( C ) A.只取决于刚体的质量,与质量的空间分布和轴的位置无关; B.取决于刚体的质量和质量的空间分布,与轴的位置无关; C.取决于刚体的质量,质量的空间分布和轴的位置;D.只取决于转轴的位置,与刚体的质量和质量的空间分布无关;3、有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动, 转动惯量为J ,开始时转台以匀角速度0ω转动,此时有一质量为m 的人站住转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 ( A ) A.()2mR J J +ω B.()2Rm J J +ω C.20mR J ω D.0ω4、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。

今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? ( A )A.角速度从小到大,角加速度从大到小.B.角速度从小到大,角加速度从小到大.C.角速度从大到小,角加速度从大到小.D.角速度从大到小,角加速度从小到大.5、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度( C )A.增大B.不变C.减小 (D) 、不能确定6、在地球绕太阳中心作椭圆运动时,则地球对太阳中心的 ( B ) A.角动量守恒,动能守恒 B.角动量守恒,机械能守恒 C.角动量不守恒,机械能守恒 D.角动量守恒,动量守恒7、有两个半径相同,质量相等的细圆环A 和B ,A 环的质量分布均匀,B 环的质量分布不均匀,它们对通过环心并与环面垂直的轴的转动惯量分别为A J 和B J ,则 ( C )A.B A J J >;B.B A J J <;C.B A J J =;D.不能确定A J 、B J 哪个大。

第四章_刚体的转动部分习题分析与解答

第四章_刚体的转动部分习题分析与解答

h 1 at2
(4)
2
联合式(1)、(2)、(3)、(4)可解得飞轮的转动惯量为
J mR 2 ( gt2 1) 2h
解2 设根据系统的机械能守恒定律,有
mgh 1 mv2 1 J2 0
(1' )
2
2
线速度和角速度的关系为
v R
(2' )
根据重物作匀加速运动时,有
v at
(3' )
v2 2ah
a1 a2
J1 J1
m1R m2r Jm2 1Rm1Rm22r m2r 2 J2 m1R 2 m2r 2
gR gr
FT1
J1 J1
J2 J2
m2r2 m2Rr m1R 2 m2r2
m1g
FT 2
J1 J2 m1r2 m1Rr J1 J2 m1R 2 m2r2
m2g
4-12 如图示装置,定滑轮半径为r,绕转轴的转动惯量为J,滑 轮两边分别悬挂质量为m1和m2的物体A、B。A置于倾角为θ斜 面上,它和斜面间的摩擦因数为μ。若B向下作加速运动时,求 (1)其下落加速度的大小;(2)滑轮两边绳子的张力。(设 绳的质量及伸长均不计,绳与滑轮间无滑动,滑轮轴光滑)
整个矩形板对该轴的转动惯量为
J
a/2
dJ
b / 2 (x 2 y2 )dxdy
a / 2 b / 2
1 ab(a 2 b2 ) 12
4-11 质量为m1和m2的两物体A、B分别悬挂在如图所示的组合 轮两端。设两轮的半径分别为R和r,两轮ab的(转a 2动惯b量2分) 别为J1 和J2,轮与轴承间、绳索与轮间的摩1擦2力均略去不计,绳的质 量也略去不计。试求两物体的加速度和强绳的张力。

刚体转动习题

刚体转动习题

第四章:刚体转动习题及解答1.在半径为R 的具有光滑竖直固定中心轴的水平圆盘上,有一人静止站立在距转轴为R 21处,人的质量是圆盘质量的1/10.开始时盘载人对地以角速度ω0匀速转动,现在此人沿圆盘半径走到圆盘边缘。

已知圆盘对中心轴的转动惯量为221MR .求:求此时圆盘对地的角速度.解答及评分标准:(1) 设当人走到圆盘边缘时,圆盘对地的绕轴角速度为ω ,则人对与地固联的转轴的角速度也为 ω , 2分 人与盘视为系统,所受对转轴合外力矩为零,系统的角动量守恒.设盘的质量为M ,则人的质量为M / 10,有:ωω⎥⎦⎤⎢⎣⎡+=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+220221021211021R M MR R M MR 6分 解得: 087ωω=2分2.如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子质量可以忽略,它与定滑轮之间无滑动.假设定滑轮质量为M 、半径为R ,其转动惯量为221MR ,滑轮轴光滑.试求该物体由静止开始下落的过程中,下落速度与时间的关系.解答及评分标准:根据牛顿运动定律和转动定律列方程对物体: mg -T =ma ① 2分 对滑轮: TR = J β ② 2分运动学关系: a =R β ③ 2分将①、②、③式联立得a =mg / (m +21M ) 2分∵ v 0=0,∴ v =at =mgt / (m +21M ) 2分3.一长为1 m 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒向上与水平面成60°,然后无初转速地将棒释放.已知棒对轴的转动惯量为231ml ,其中m 和l 分别为棒的质量和长度.求: (1) 放手时棒的角加速度;(2) 棒转到水平位置时的角加速度.解答及评分标准:设棒的质量为m ,当棒与水平面成60°角并开始下落时,根据转动定律βJ M = 2分 其中 4/30sin 21mgl mgl M == 2分于是 2r a d /s 35.743 ===lg J M β 2分当棒转动到水平位置时, mgl M 21= 2分 那么 2r a d /s 7.1423 ===lg J M β 2分4.一半径为25 cm 的圆柱体,可绕与其中心轴线重合的光滑固定轴转动.圆柱体上绕上绳子.圆柱体初角速度为零,现拉绳的端点,使其以1 m/s 2的加速度运动.绳与圆柱表面无相对滑动.试计算在t = 5 s 时(1) 圆柱体的角加速度,(2) 如果圆柱体对转轴的转动惯量为2 kg ·m 2,那么要保持上述角加速度不变,应加的拉力为多少?解答及评分标准:(1) 圆柱体的角加速度 ββ=a / r =4 rad / s 24分(2) 根据转动定律fr = J β 3分则 f = J β / r = 32 N 3分5.质量为1m 的物体A 可在光滑水平面上滑动,系于A 上的不可伸长的轻绳绕过半径为r 、转动惯量为J 的转轮B 与质量为2m 的C 物相连,如图所示,设绳子与轮之间无滑动,且阻力不计。

大学物理练习题第四章 刚体的转动

大学物理练习题第四章 刚体的转动

大学物理练习题第四章刚体的转动一、选择题1. 有两个力作用在一个有固定转轴的刚体上:(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零。

对上述说法下述判断正确的是( )A. 只有(1)是正确的;B. (1)、(2)正确,(3)、(4)错误;C. (1)、(2)、(3)都正确,(4)错误;D. (1)、(2)、(3)、(4)都正确。

2. 关于力矩有以下几种说法:(1) 对某个定轴转动刚体而言,内力矩不会改变刚体的角加速度;(2) 一对作用力和反作用力对同一轴的力矩之和必为零;(3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的运动状态一定相同。

对上述说法下述判断正确的是( )A. 只有(2)是正确的B. (1)、(2)是正确的C. (2)、(3)是正确的D. (1)、(2)、(3)都是正确的3. 均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆到竖直位置的过程中,下述说法正确的是( )A. 角速度从小到大,角加速度不变B. 角速度从小到大,角加速度从小到大C. 角速度从小到大,角加速度从大到小D. 角速度不变,角加速度为零4. 一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计。

射过来两个质量相同、速度大小相同、方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘和子弹系统的角动量L以及圆盘的角速度ω的变化情况为( )A. L不变,ω增大B. 两者均不变C. L不变,ω减小D. 两者均不确定5. 假设卫星环绕地球中心作椭圆运动,则在运动过程中,卫星对地球中心的( )A. 角动量守恒,动能守恒B. 角动量守恒,机械能守恒C. 角动量不守恒,机械能守恒D. 角动量不守恒,动量也不守恒6. 一绕定轴转动的刚体,某时刻的角速度为ω,角加速度为α,那么其转动加快的依据是:( )A.α> 0B.ω>0,α>0C.ω<0,α>0D.ω>0,α<07. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,那么它们对过盘心且垂直盘面的轴的转动惯量( )A. 相等;B. 铅盘的大;C. 铁盘的大;D. 无法确定谁大谁小二、填空题1. 半径为30cm的飞轮,从静止开始以0.5rad∙s−2的角加速度匀加速转动,那么飞轮边缘上一点在转过240°时的切向加速度为;法向加速度为。

第四章-刚体的转动-问题与习题解答

第四章-刚体的转动-问题与习题解答

第四章 刚体的转动 问题与习题解答问题:4-2、4-5、4-94-2如果一个刚体所受合外力为零,其合力矩是否也一定为零?如果刚体所受合外力矩为零,其合外力是否也一定为零? 答:一个刚体所受合外力为零,其合力矩不一定为零,如图a 所示。

刚体所受合外力矩为零,其合外力不一定为零,例如图b 所示情形。

4-5为什么质点系动能的改变不仅与外力有关,而且也与内力有关,而刚体绕定轴转动动能的改变只与外力矩有关,而与内力矩无关? 答:因为合外力对质点所作的功,等于质点动能的增量;而质点系中内力一般也做功,故内力对质点系的动能的增量有贡献。

而在刚体作定轴转动时,任何一对内力对转轴的力矩皆为一对大小相等、方向相反的力矩,且因定轴转动时刚体转过的角度d θ都一样,故其一对内力矩所作的功()0inij ij ji ij ji W M d M d M M d θθθ=+=+=,其内力功总和也为零,因而根据刚体定轴转动的动能定理可知:内力矩对其转动动能的增量无贡献。

4-9一人坐在角速度为0ω的转台上,手持一个旋转的飞轮,其转轴垂直地面,角速度为ω'。

如果突然使飞轮的转轴倒转,将会发生什么情况?设转台和人的转动惯量为J ,飞轮的转动惯量为J '。

答:(假设人坐在转台中央,且飞轮的转轴与转台的转轴重合)视转台、人和飞轮为同一系统。

(1)如开始时飞轮的转向与转台相同,则系统相对于中心轴的角动量为:10L J J ωω''=+飞轮转轴快速倒转后,飞轮的角速度大小还是ω',但方向与原来相反;如设转台此时的角速度为1ω,则系统的角动量为:21L J J ωω''=-在以上过程中,外力矩为零,系统的角动量守恒,所以有:10J J J J ωωωω''''-=+即 102J Jωωω''=+,转台的转速变大了。

(2)如开始时飞轮的转向与转台相反,则系统相对于中心轴的角动量为:10L J J ωω''=-飞轮转轴快速倒转后,飞轮的角速度大小还是ω',但方向与原来相反;如设转台此时的角速度为1ω,则系统的F 1F 3ab角动量为:21L J J ωω''=+在以上过程中,外力矩为零,系统的角动量守恒,所以有:10J J J J ωωωω''''+=-即 102J Jωωω''=-,转台的转速变慢了。

大学物理第四章习题及答案

大学物理第四章习题及答案

第四章 刚体的转动4-1 一汽车发动机曲轴的转速在12s 内由3102.1⨯r.min -1增加到3107.2⨯r.min -1。

(1)求曲轴转动的角加速度;(2)在此时间内,曲轴转了多少转? 解:曲轴做匀变速转动。

(1)角速度n πω2=,根据角速度的定义dtd ωα=,则有:()=-=-=tn n t002πωωα13.1rad.s -2 (2)发动机曲轴转过的角度为t t t 221020ωωαωθ+=+=()t n n 0+=π在12秒内曲轴转过的圈数为 N 390220=+==t n n πθ圈。

4-2 一半径为0.25米的砂轮在电动机驱动下,以每分钟1800转的转速绕定轴作逆时针转动,现关闭电源,砂轮均匀地减速,15秒钟后停止转动.求(1)砂轮的角加速度;(2)关闭电源后10=t s 时砂轮的角速度,以及此时砂轮边缘上一点的速度和加速度大小.解:(1)4.1886060180020==⨯=ππω rad.s 1- 57.12415600=-=-=πα rad.s 2- (2)7.621057.124.1880=⨯-=+=t αωω rad.s 1-7.1525.07.62=⨯==r v ω m.s 1-14.3-==αr a t m.s 2- , 9872==ωr a n m. s 2-98822=+=n t a a a m. s 2-.4-3如图,质量201=m kg 的实心圆柱体A 其半径为20=r cm ,可以绕其固定水平轴转动,阻力忽略不计,一条轻绳绕在圆柱体上,另一端系一个质量102=m kg 的物体B ,求:(1)物体B 下落的加速度;(2)绳的张力T F 。

解: (1) 对实心圆柱体A ,利用转动定律αα2121r m J r F T == ——①对物体B ,利用牛顿定律a m F g m T 22=- ——② 有角量与线量之间的关系 αr a = 解得:9.422212=+=m m g m a m ·s -2(2)由②得 492)(2121=+=-=g m m m m a g m F T N4—3题图4-4如图,一定滑轮两端分别悬挂质量都是m 的物块A 和B ,图中R 和r ,已知滑轮的转动惯量为J ,求A 、B 两物体的加速度及滑轮的角加速度(列出方程即可)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 刚体的转动
1. 一质量为m 0 ,长为l 的棒能绕通过O 点的水平轴自由转动。

一质量为m ,速率为v 0的子弹从水平方向飞来,击中棒的中点且留在棒内,如图所示。

则棒中点的速度为( )。

A .
00m m mv +; B .0
433m m mv +;
C .0023m mv ;
D .0
43m mv 。

2. 一根长为l ,质量为m 的均匀细棒在地上竖立着。

如果让竖立着的棒以下端与地面接触处为轴倒下,则上端到达地面时速率应为( )。

A .gl 6;
B .gl 3;
C .gl 2;
D .
l
g
23。

3. 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一个是正确的?( ) A .角速度从小到大,角加速度从大到小 B .角速度从小到大,角加速度从小到大 C .角速度从大到小,角加速度从大到小 D .角速度从大到小,角加速度从小到大
4. 一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并留在盘内,则子弹射入后的瞬间,圆盘的角速度ω( ) A .增大 B .不变 C .减小 D .不能确定
5. 一静止的均匀细棒,长为L ,质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内
转动,转动惯量为
23
1
ML 。

一质量为m 速率为v 的子弹在水平面内沿与棒垂直的方向射入并穿入棒的自由端,设穿过棒后子弹的速率为v 2
1
,则此时棒的角速度应为( )
A .ML mv
B .ML mv 23
C .ML
mv 35 D .ML mv 47
6. 在某一瞬时,物体在力矩作用下,则有( )
A 、角速度ω可以为零,角加速度α也可以为零;
B 、角速度ω不能为零,角加速度α可以为零;
C 、角速度ω可以为零,角加速度α不能为零;
D 、角速度ω与角加速度α均不能为零。

O
v 0
7.一均匀细棒质量为m ,长度为l ,则对于通过棒的一端与棒垂直的轴的转动惯量为( ),对于通过棒的中点与棒垂直的轴的转动惯量( )。

8.某均匀细棒可绕其一端自由转动,若使棒从水平位置由静止开始释放,在棒摆到竖直位置的过程中,角速( ),角加速度( )(填“变大”、“变小”或“不变”)。

9. 质量为m 1、长为l 的匀质棒竖直悬在水平轴O 上,一质量为m 2的小球以水平速度v 与棒的下端相碰,碰后速度v '反向运动。

在碰撞中因时间很短,棒可看作一直保持竖直位置,求棒在碰撞后的角速度。

[l m v v m 1'
2/)(3+=ω]
10. 一圆盘绕固定轴由静止开始作匀加速运动,角加速度为3.14rad ·s -2。

求经过10s 后盘上离轴1.0cm 处一点的切向加速度和法向加速度各等于多少?在刚开始时,该点的切向加速度和法向加速度各等于多少?(3.14cm/s -2
,9.9 cm/s -2
,3.14 cm/s -2
,0)
11. 长为l ,质量为m 0的细棒,可绕垂直于一端的水平轴自由转动。

棒原来处于平衡状态。

现有一质量为m 的小球沿光滑水平面飞来,正好与棒下端相碰(设碰撞完全弹性),使杆向上摆到
θ求小球的初速度。

12. 如图所示,一质量
M ,半径为R 的圆柱,可绕固定的水平轴O 自由转动。

今有一质量为m ,速度为v 0的子弹,水平射入静止的圆柱下部(近似看作在圆柱边缘),且停留在圆柱内(0v 垂直于转轴)。

求: (1)子弹与圆柱的角速度。

(2)该系统的机械能的损失。

13. 如图所示,均匀直杆质量为m ,长为l ,初始时棒水平静止。

轴光滑,4/l AO =。

求杆下摆到θ角时的角速度ω。

14. 如图所示的物体系中,倔强系数为k 的弹簧开始时处在原长,定滑轮的半径为R ,转动惯量为J 。

质量为m 的物体从静止开始下落,求下落高度h 时物体的速度v 。

15. 一细杆质量为m ,长度为l
时的角速度和角加速度。

16.质量为m 1和m 2的两个物体跨在定滑轮上,m 2放在光滑的桌面上,滑轮半径为R ,质量为M 。


m 1下落的加速度和绳子的张力T 1、T 2。

17.长为l ,质量为m 的细杆,初始时的角速度为ω0,由于细杆与桌面的摩擦,经过时间t 后杆静止,求摩擦力矩M 阻。

m
18.长为l ,质量为m 0的细棒,可绕垂直于一端的水平轴自由转动。

棒原来处于平衡状态,现有一质量为m 的小球沿光滑水平面飞来,正好与棒下端相碰(设碰撞为完全非弹性碰撞)使棒向上摆到 30=θ处,如图所示,求小球的初速度。

19.均匀细棒长L ,质量为m ,可绕通过O 点与棒垂直的水平轴转动,如图所示。

在棒A 端作用一水平恒力F =2mg ,3
L
OA =。

棒在力F 的作用下,由静止转过角度 30=θ。

求: (1)力F 所做的功;
(2)若此时撤去力F ,则细棒回到平衡位置时的角速度。

20.在光滑的水平面上有一木杆,其质量m 1=1.0kg ,长l=40cm ,可绕通过其中心并与之垂直的轴转动,一质量为m 2=10g 的子弹以v=200m ·s -1的速度射入杆端,其方向与杆及轴正交,若子弹陷入杆中,试求所得到的角速度。

(29.1)
21.如图所示,一匀质木棒长度l=1m ,质量为m1=10kg ,可绕其一端的光滑水平轴O 在铅垂面内自由转动。

初时棒自然下垂,一质量m2=0.05kg 的子弹沿水平方向以速度v 击入棒下端(嵌入其中),求棒获得的角速度及最大上摆角。

l
o m 1
v 子弹 m 2
θ v 0
F A F O
θ
22.长为l 、质量为M 的匀质杆可绕通过杆一端O 的水平光滑固定轴转动,转动惯量为
2
3
1Ml ,开始时杆竖直下垂,如图所示.有一质量为m 的子弹以水平速度0v
射入杆上A 点,并嵌在杆中,OA =2l / 3,则子弹射入后瞬间杆的角速度ω为多大。

23.如图所示,质量为M ,长为l 的直拉杆,可绕水平轴O无摩擦地转动,今有一质量为m的子弹沿水平方向飞来,恰好射入杆的下端,若直棒(连同入射子弹)的最大摆角为 60=θ。

试证子弹的速率为
m
gl m M m M v 6)3)(2(60++=。

24.如图所示,一质量为M,半径为R的匀质滑轮,可绕一无摩擦的水平轴转动,圆盘上绕有质量不计的绳子,绳子的一端固定在滑轮上,另一端悬挂一质量为 m的物体。

问物体由静止下落h高度时,物体的速率为多少?
25.质量为m 、长为L 的均匀细棒,可绕其一端在竖直平面内转动。

现将其在水平位置静止释放。

求:(1)刚释放时的角加速度α;(2)棒摆至垂直位置时的角速度ω、角加速度α。

26.如图所示,圆盘的质量为m ,半径为R ,求(1) 以圆盘的中心为圆心,将半径为2R 的部分挖去,剩余部分对OO 轴的转动惯量;(2) 剩余部分对O O ''轴(即通过圆盘边缘且平行于盘中心轴)的转动惯量。

27.一汽车发动机曲轴的转速在12s 内由3
1.210⨯r/min 均匀的增加到3
2.710⨯r/min 。

(1)求曲轴转动的角加速度; (2)在此时间内,曲轴转了多少转?
28.一个作圆周运动的质点m ,R 为圆半径,求对圆心的转动惯量。

2
mR J =
29.求质量为m ,半径为R 的均匀薄圆环的转动惯量,轴与圆环平面垂直并且通过其圆心。

2
mR J =。

相关文档
最新文档