西安尊德中学2014-2015年北师大八年级下第二次月考数学试题
北师大版2014-2015学年八年级(下)期中数学试卷2014-2015学年八年级(下)期中数学试卷 (1)

2014-2015学年山东省枣庄市山亭区八年级(下)期中数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)(1999•成都)与三角形三个顶点距离相等的点,是这个三角形的()A.三条中线的交点B.三条角平分线的交点C.三条高的交点 D.三边的垂直平分线的交点2.(3分)(2015春•山亭区月考)下列命题中,正确的是()A.若a>b,则ac2>bc2B.若a>b,c=d则ac>bdC.若ac2>bc2,则a>b D.若a>b,c<d 则3.(3分)(2015春•山亭区月考)如图,在△ABC中,DE是AC的垂直平分线,AC=6cm,且△ABD 的周长为13cm,则△ABC的周长为()cm.A.13 B.19 C.10 D.164.(3分)(2015春•山亭区月考)已知一个等腰三角形有一个角为80°,则顶角是()A.20°B.80°C.20°或80°D.不能确定5.(3分)(2004•遂宁)函数y=中自变量x的取值范围是()A.x ≤且x≠0 B.x >﹣且x≠0 C.x≠0 D.x <且x≠06.(3分)(2013•日照)如果点P(2x+6,x﹣4)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为()A .B .C .D .7.(3分)(2013•河南)不等式组的最小整数解为()A.﹣1 B.0 C.1 D.28.(3分)(2010春•北京校级期末)如果不等式组的解集是x>4,则n的取值范围是()A.n≥4 B.n≤4 C.n=4 D.n<49.(3分)(2015春•山亭区月考)在Rt△ABC中,已知∠C=90°,∠A=30°,BD是∠B的平分线,AC=18,则BD的值为()A . B.9 C.12 D.610.(3分)(2013春•龙岗区期末)已知(x﹣2)2+|2x﹣3y﹣m|=0中,y为正数,则m的取值范围为()A.m<2 B.m<3 C.m<4 D.m<511.(3分)(2015春•山亭区月考)已知△ABC中,∠A=90°,角平分线BE,CF交于点O,则∠BOC 等于()A.135°B.90°C.45°D.145°12.(3分)(2013•临沂)不等式组的解集是()A.x≥8 B.x>2 C.0<x<2 D.2<x≤8二、填空题(共8小题,每小题3分,满分24分)13.(3分)(2015春•山亭区月考)在△ABC中,∠A=∠B=∠C,则△ABC是三角形.14.(3分)(2013春•翠屏区期末)等腰三角形的两边分别为7cm,3cm,则它的周长为cm.15.(3分)(2015春•山亭区月考)若不等式组的解集为﹣1<x<1,那么(a+1)(b+1)=.16.(3分)(2014•毕节市三模)如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD 的长为.17.(3分)(2013•宿迁)如图,数轴所表示的不等式的解集是.18.(3分)(2015春•山亭区月考)不等式11﹣3x>1的所有非负整数解的和为.19.(3分)(2008春•招远市期末)如图,当y>0时,自变量x的取值范围是.20.(3分)(2014•嘉峪关校级三模)若不等式组的解集是x>3,则m的取值范围是.三、解答题(共6小题,满分60分)21.(10分)(2015春•山亭区月考)计算:(1)已知如图,在角的内部有两点A、B,请找出点P,使PA=PB,并且到交两边的距离相等,(不写作法,保留作图痕迹)(2)求不等式2x+9≥3(x+2)的解集,在数轴上表示并指出它的正整数解.22.(8分)(2013•遂宁)解不等式组:并把它的解集在数轴上表示出来.23.(10分)(2013•温州)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D 作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.24.(10分)(2015春•陕西校级期末)如图,已知在△ABC中,AB=AC,AB的垂直平分线DE交AC于点E,CE的垂直平分线正好经过点B,与AC相交于点F,求∠A的度数.25.(10分)(2012•成都模拟)已知,如图,O是△ABC的∠ABC、∠ACB的角平分线的交点,OD∥AB交BC于D,OE∥AC交BC于E,若BC=10cm,求△ODE的周长.26.(12分)(2012•郴州)某校为开展好大课间活动,欲购买单价为20元的排球和单价为80元的篮球共100个.(1)设购买排球数为x(个),购买两种球的总费用为y(元),请你写出y与x的函数关系式(不要求写出自变量的取值范围);(2)如果购买两种球的总费用不超过6620元,并且篮球数不少于排球数的3倍,那么有哪几种购买方案?(3)从节约开支的角度来看,你认为采用哪种方案更合算?2014-2015学年山东省枣庄市山亭区八年级(下)期中数学试卷参考答案一、选择题(共12小题,每小题3分,满分36分)1.D 2.C 3.B 4.C 5.A 6.C 7.B 8.C 9.C 10.C 11.A 12.D二、填空题(共8小题,每小题3分,满分24分)13.直角14.17 15.-2 16.2 17.x≤3 18.6 19.x<1 20.m≤3三、解答题(共6小题,满分60分)21.22.23.24.25.26.。
2014-2015年北师大八年级下期末数学试题及答案

2014—2015学年下期期末学业水平测试八年级 数学 参考答案一、选择题BCDADBBB二、填空题9.2a ;10.1a b =?;11.不唯一,(1)2(1)(1)(2)x x x x x +++=++或(2)x x ++(2)(1)(2)x x x +=++等;12.7;4>13.45;14.4;15.843+或16. 三、解答题16.是分母x 和2x 的最简公分母; .............2分等式的基本性质; .............4分解分式方程就是利用等式的基本性质把分式方程转化为一元一次方程求解...........6分17.例如:250x -=, .............1分因为函数25y x =-图象与x 轴的交点横坐标为 2.5,(根据所写方程,在图中表示也可以) .............2分所以方程250x -=的解为x =2.5. ............3分250x ->, .............4分因为从图象上看当y >0时,函数值对应的自变量的值x >2.5, .............5分所以不等式的解集为x >2.5. ............6分18.解:甲单独完成任务的时间是m 小时, 甲、乙两人合作的完成任务的时间是ma a b+. ............2分 所以提前完成任务的时间是: ma m a b-+ ............. 4分 =()m a b ma a b +-+=ma mb ma a b +-+ =.mb a b+ .............6分 答:甲、乙两人同时工作,可以提前mb a b +小时完成任务. ...........7分 19.方案;先用绳子测量出四边形ABCD 的边AB 的长,并在绳子上做上标记;然后再用这根绳子测量出CD 的长做上标记,比较AB 与CD 的长短.用同样的方法比较BC 、AD 的长短。
北京师大附中2014-2015学年度第二学期期末考试初二数学试题

北京师大附中2014—2015学年度第二学期期末考试初 二 数 学 试 卷试卷说明:本试卷满分120分,考试时间为120分钟. 一、选择题(每小题3分,共30分)1. 下列电视台的台标,是中心对称图形的是( )A .B .C .D .2.下列四组线段中,可以构成直角三角形的是( ) A . 4,5,6B . 1.5,2,2.5C . 2,3,4D . 1,,33. 在下列命题中,正确的是( )A .一组对边平行的四边形是平行四边形B .有一个角是直角的四边形是矩形C .有一组邻边相等的平行四边形是菱形D .对角线互相垂直平分的四边形是正方形4. 已知反比例函数的图象过点M (-1,2),则此反比例函数的表达式为( ) A .y =x 2 B .y =-x 2 C .y =x 21 D .y =-x215. 方程(x -1)(x +2)=2(x +2)的根是( )A .1,-2B .0,-2C .3,-2D .16.学校为了丰富学生课余活动开展了一次歌咏比赛,共有18名同学入围,他们的决赛成绩如下表: 成绩(分) 9.40 9.50 9.60 9.70 9.80 9.90 人数235431则入围同学决赛成绩的中位数和众数分别是( ) A . 9.70,9.60B . 9.60,9.60C . 9.60,9.70D . 9.65,9.607.已知点A (x 1,y 1),B (x 2,y 2)是反比例函数3=-y x的图象上的两点,若x 1<0<x 2,则下列结论正确的是 ( )A .y 1<0<y 2B .y 2<0<y 1C .y 1<y 2<0D .y 2<y 1<08.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x 株,则可以列出的方程是( ) A .(3+x )(4﹣0.5x )=15 B .(x +3)(4+0.5x )=15 C .(x +4)(3﹣0.5x )=15D .(x +1)(4﹣0.5x )=159. 如图,过x 轴正半轴任意一点P 作x 轴的垂线,分别与反比例函数y 1=2x 和y 2=4x的图象交于点B 和点A .若点C 是y 轴上任意一点,连结AC 、BC ,则△ABC 的面积为( )A .4B .3C .2D .110.如图,在△ABC 中,∠BCA=90°,AC=4,BC=2,点A 、C 分别在x 轴、y 轴上,当点A 在x 轴上运动时,点C 随之在y 轴上运动,在运动过程中,点B 到原点的最大距离是( ). A.6 B.26 C.25 D.222+二、填空题(每空3分,共30分)11.为测试两种电子表的走时误差,做了如下统计则这两种电子表走时稳定的是 .12.小明在射击训练中,五次命中的环数分别为5、7、8、6、6,则小明命中环数的中位数为________, 平均数为__________.13.如图,在直角△OAB 中,∠AOB=30°,将△OAB 绕点O 逆时针旋转100°得到△OA 1B 1,则∠A 1OB= .14.反比例函数13my x-=的图象在每一个象限内y 随x 的增大而增大,则m 的取值范围是 .15.已知关于x 的一元二次方程01)1(2=++-x x m 有实数根,则m 的取值范围是 .16.已知a ,b 是方程x 2﹣x ﹣3=0的两个根,则代数式a 2+b 2 +5ab 的值为________.平均数方差甲 0.4 0.026 乙 0.4 0.13717. 如图,△ABC 绕点A 顺时针旋转45°得到△A ′B ′C ′,若∠BAC =90°,AB =AC =2,则图中阴影部分的面积等于__________.18.如图,菱形ABCD 中,对角线AC =6,BD =8,M 、N 分别是BC 、CD的中点,P 是线段BD 上的一个动点,则PM +PN 的最小值是 .19.如图,四边形OABC 是矩形,ADEF 是正方形,点A 、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点B 、E 在反比例函数xky的图象上,OA =1,OC =6,则正方形ADEF 的边长为 .20.如图,正方形ABCD 的边长为2,将长为2的线段QR 的两端放在正方形的相邻的两边上同时滑动.如果Q 点从A 点出发,沿图中所示方向按A→B→C→D→A 滑动到A 止,同时点R 从B 点出发,沿图中所示方向按B→C→D→A→B 滑动到B 止,在这个过程中,线段QR 的中点M 所经过的路线围成的图形的面积为_____________.A BCQRMD北京师大附中2014—2015学年度第二学期期末考试初 二 数 学 试 卷(答题纸)班级________ 姓名__________ 学号_______ 成绩_______一、选择题(每小题3分,本题共30分)二、填空题(每小题3分,本题共30分)11.________ 12._____,____ 13.__________ 14._________ 15._______________ 16.________ 17._________ 18.__________ 19._________ 20.________________ 三、用适当方法解一元二次方程(每小题4分,共8分)21. 0342=-+x x 22.)0(022)23(2>=+++-m m x m mx四、解答题(共52分) 23.(7分)已知某品牌显示器的寿命大约为2×104h ,(1)这种显示器可工作的天数d 与平均每日工作的小时数t 之间具有怎样的函数关系? (2)如果平均每天工作10h ,那么这种显示器大约可使用多长时间?其他8%丙28%乙甲34%图一24.(7分)如图,四边形ABCD 中,对角线相交于点O, E 、F 、G 、H 分别是AD 、BD 、BC 、AC 的中点。
北师大版陕西省八年级(下)月考数学试卷(含答案) (35)

2016-2017学年江西省抚州市南城二中自强班八年级(下)第二次月考数学试卷一、选择题(本大题共6个小题,每小题3分,共18分,每小题只有一个正确选项)1.(3分)下列说法中,正确的是()A.相等的角一定是对顶角; B.四个角都相等的四边形一定是正方形;C.平行四边形的对角线互相平分; D.矩形的对角线一定垂直2.(3分)将一包卷筒卫生纸按如图所示的方式摆放在水平桌面上,则它的俯视图是()A.B.C.D.3.(3分)在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为()A.B.C.D.4.(3分)若x=﹣2是关于x的一元二次方程x2+ax﹣a2=0的一个根,则a的值为()A.1或﹣4 B.﹣1或﹣4 C.﹣1或4 D.1或45.(3分)在反比例函数y=的图象中,阴影部分的面积不等于4的是()A.B.C.D.6.(3分)关于x的一元二次方程kx2+2x+1=0有两个实根,则实数k的取值范围是()A.k≤1B.k<1 C.k≤1且k≠0D.k<1且k≠0二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)若==(y≠n),则=.8.(3分)某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率相同,则这个百分率为.9.(3分)如图所示,将△ABC绕AC的中点O顺时针旋转180°得到△CDA,添加一个条件,使四边形ABCD为矩形.10.(3分)如图是两个形状相同的红绿灯图案,则根据图中给出的部分数值,得到x的值是.11.(3分)如图,直线x=2与反比例函数和的图象分别交于A、B两点,若点P是y轴上任意一点,则△P AB的面积是.12.(3分)如图,平面直角坐标系xOy中,已知A(4,0)和B点(0,3),点C是AB 的中点,点P在x轴上,若以P、A、C为顶点的三角形与△AOB相似,那么点P的坐标是.三、(本大题共5小题,每小题6分,共30分)13.(6分)(1)解方程:x2+16x=0(2)已知反比例函数y=的图象上有一点(3,6),试确定反比例函数的解析式.14.(6分)小亮在某一时刻测得小树高为1.5m,其影长为1.2m,当他测量教学楼旁的一棵大树影长时,因大树靠近教学楼,它的一部分影子便落在了教学楼的墙上,经测量,地面部分影长为6.4m,墙上影长为2m,那么这棵大树高为多少米?15.(6分)在函数的图象上有点P1,P2,P3,P4,它的横坐标依次为1,2,3,4,分别过这些点作x轴与y轴的垂线,图中构成的阴影部分面积从左到右依次为S1,S2,S3,求S1+S2+S3的值.16.(6分)如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.(1)证明:四边形AECF是矩形;(2)若AB=8,求菱形的面积.17.(6分)如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:①仅用无刻度直尺,②保留必要的画图痕迹.(1)在图1中画出一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;(2)在图2中画出线段AB的垂直平分线.四、(本大题共3小题,每小题8分,共24分)18.(8分)如图,已知A、B、C是数轴上异于原点O的三个点,且O为AB的中点,B为AC的中点.若点B对应的数是x,点C对应的数是x2﹣3x,求x的值.19.(8分)在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小完全相同,小明从布袋里随机取出一个小球,记下数字为x,小红在剩下的3个小球中随机取出一个小球,记下数字为y.(1)计算由x、y确定的点(x,y)在函数y=﹣x+5的图象上的概率.(2)小明和小红约定做一个游戏,其规则为:若x、y满足xy>6则小明胜,若x、y满足xy<6则小红胜,这个游戏公平吗?说明理由.若不公平,请写出公平的游戏规则.20.(8分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6,AF=4,求AE的长.五、(本大题共2小题,每小题9分,共18分)21.(9分)如图,点B(3,3)在双曲线y=(x>0)上,点D在双曲线y=﹣(x<0)上,点A和点C分别在x轴,y轴的正半轴上,且点A,B,C,D构成的四边形为正方形.(1)求k的值;(2)求点A的坐标.22.(9分)将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)如图①摆放,点D为AB的中点,DE交AC于点P,DF经过点C.(1)求∠ADE的度数;(2)如图②,将△DEF绕点D顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC于点M,DF′交BC于点N,试判断的值是否随着α的变化而变化?如果不变,请求出的值;反之,请说明理由.六、(本大题共共12分)23.(12分)在直角梯形OABC中,CB∥OA,∠COA=90°,CB=3,OA=6,BA=.分别以OA、OC边所在直线为x轴、y轴建立如图所示的平面直角坐标系.(1)求点B的坐标;(2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交x轴于点F,求直线DE的解析式;(3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一个点N,使以O、D、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.2016-2017学年江西省抚州市南城二中自强班八年级(下)第二次月考数学试卷参考答案与试题解析一、选择题(本大题共6个小题,每小题3分,共18分,每小题只有一个正确选项)1.(3分)下列说法中,正确的是()A.相等的角一定是对顶角B.四个角都相等的四边形一定是正方形C.平行四边形的对角线互相平分D.矩形的对角线一定垂直【解答】解:A、相等的角一定是对顶角错误,例如,角平分线分成的两个角相等,但不是对顶角,故本选项错误;B、四个角都相等的四边形一定是矩形,不一定是正方形,故本选项错误;C、平行四边形的对角线互相平分正确,故本选项正确;D、矩形的对角线一定相等,但不一定垂直,故本选项错误.故选:C.2.(3分)将一包卷筒卫生纸按如图所示的方式摆放在水平桌面上,则它的俯视图是()A.B.C.D.【解答】解:从几何体的上面看可得两个同心圆,故选:D.3.(3分)在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为()A.B.C.D.【解答】解:根据题意可得:大于2的有3,4,5三个球,共5个球,任意摸出1个,摸到大于2的概率是.故选:C.4.(3分)若x=﹣2是关于x的一元二次方程x2+ax﹣a2=0的一个根,则a的值为()A.1或﹣4 B.﹣1或﹣4 C.﹣1或4 D.1或4【解答】解:∵x=﹣2是关于x的一元二次方程x2+ax﹣a2=0的一个根,∴(﹣2)2+a×(﹣2)﹣a2=0,即a2+3a﹣4=0,整理,得(a+4)(a﹣1)=0,解得a1=﹣4,a2=1.即a的值是1或﹣4.故选:A.5.(3分)在反比例函数y=的图象中,阴影部分的面积不等于4的是()A.B.C.D.【解答】解:A、图形面积为|k|=4;B、阴影是梯形,面积为6;C、D面积均为两个三角形面积之和,为2×(|k|)=4.故选:B.6.(3分)关于x的一元二次方程kx2+2x+1=0有两个实根,则实数k的取值范围是()A.k≤1B.k<1 C.k≤1且k≠0D.k<1且k≠0【解答】解:∵关于x的一元二次方程kx2+2x+1=0有两个实根,∴,解得:k≤1且k≠0.故选:C.二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)若==(y≠n),则=.【解答】解:∵若==(y≠n),∴==∴=.故答案为.8.(3分)某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率相同,则这个百分率为10%.【解答】解:降价的百分率为x,根据题意列方程得100×(1﹣x)2=81解得x1=0.1,x2=1.9(不符合题意,舍去).所以降价的百分率为0.1,即10%.故答案为:10%.9.(3分)如图所示,将△ABC绕AC的中点O顺时针旋转180°得到△CDA,添加一个条件∠B=90°,使四边形ABCD为矩形.【解答】解:∵△ABC绕AC的中点O顺时针旋转180°得到△CDA,∴AB=CD,∠BAC=∠DCA,∴AB∥CD,∴四边形ABCD为平行四边形,当∠B=90°时,平行四边形ABCD为矩形,∴添加的条件为∠B=90°.故答案为∠B=90°.10.(3分)如图是两个形状相同的红绿灯图案,则根据图中给出的部分数值,得到x的值是16.【解答】解:∵两个红绿灯的形状相同,∴=,∴x=16.故答案为:16.11.(3分)如图,直线x=2与反比例函数和的图象分别交于A、B两点,若点P 是y轴上任意一点,则△P AB的面积是.【解答】解:∵把x=2分别代入、,得y=1、y=﹣.∴A(2,1),B(2,﹣),∴AB=1﹣(﹣)=.∵P为y轴上的任意一点,∴点P到直线x=2的距离为2,∴△P AB的面积=AB×2=AB=.故答案是:.12.(3分)如图,平面直角坐标系xOy中,已知A(4,0)和B点(0,3),点C是AB的中点,点P在x轴上,若以P、A、C为顶点的三角形与△AOB相似,那么点P的坐标是(2,0)或(,0).【解答】解:∵A(4,0)和B点(0,3),∴OA=4,OB=3,∴AB=5,∵C是AB的中点,∴AC=2.5,设P(x,0),由题意可知点P在点A的左侧,∴AP=4﹣x,∵以P、A、C为顶点的三角形与△AOB相似,∴有△APC∽△AOB和△ACP∽△AOB两种情况,当△APC∽△AOB时,则=,即=,解得x=2,∴P(2,0);当△ACP∽△AOB时,则=,即=,解得x=,∴P(,0);综上可知P点坐标为(2,0)或(,0).故答案为:(2,0)或(,0).三、(本大题共5小题,每小题6分,共30分)13.(6分)(1)解方程:x2+16x=0(2)已知反比例函数y=的图象上有一点(3,6),试确定反比例函数的解析式.【解答】解:(1)x2+16x=0x(x+16)=0,解得x1=0,x2=﹣16;(2)把(3,6)代入y=,得k=xy=3×6=18,所以反比例函数的解析式为:y=.14.(6分)小亮在某一时刻测得小树高为1.5m,其影长为1.2m,当他测量教学楼旁的一棵大树影长时,因大树靠近教学楼,它的一部分影子便落在了教学楼的墙上,经测量,地面部分影长为6.4m,墙上影长为2m,那么这棵大树高为多少米?【解答】解:设被挡部分的影长为xm,则=,解得:x=1.6,设树高为ym,则=,解得:y=10,答:树高为10m.15.(6分)在函数的图象上有点P1,P2,P3,P4,它的横坐标依次为1,2,3,4,分别过这些点作x轴与y轴的垂线,图中构成的阴影部分面积从左到右依次为S1,S2,S3,求S1+S2+S3的值.【解答】解:由题意可知点P1、P2、P3、P4坐标分别为:(1,2),(2,1),(3,),(4,).∴由反比例函数的几何意义可知:S1+S2+S3=2﹣1×==1.5.16.(6分)如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.(1)证明:四边形AECF是矩形;(2)若AB=8,求菱形的面积.【解答】(1)证明:∵四边形ABCD是菱形,∴AB=BC,又∵AB=AC,∴△ABC是等边三角形,∵E是BC的中点,∴AE⊥BC(等腰三角形三线合一),∴∠1=90°,∵E、F分别是BC、AD的中点,∴AF=AD,EC=BC,∵四边形ABCD是菱形,∴AD∥BC且AD=BC,∴AF∥EC且AF=EC,∴四边形AECF是平行四边形(一组对边平行且相等的四边形是平行四边形),又∵∠1=90°,∴四边形AECF是矩形(有一个角是直角的平行四边形是矩形);(2)解:在Rt△ABE中,AE==4,所以,S菱形ABCD=8×4=32.17.(6分)如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:①仅用无刻度直尺,②保留必要的画图痕迹.(1)在图1中画出一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;(2)在图2中画出线段AB的垂直平分线.【解答】解:(1)如图所示,∠ABC=45°.(AB、AC是小长方形的对角线).(2)线段AB的垂直平分线如图所示,点M是长方形AFBE是对角线交点,点N是正方形ABCD的对角线的交点,直线MN就是所求的线段AB的垂直平分线.四、(本大题共3小题,每小题8分,共24分)18.(8分)如图,已知A、B、C是数轴上异于原点O的三个点,且O为AB的中点,B为AC的中点.若点B对应的数是x,点C对应的数是x2﹣3x,求x的值.【解答】解:∵O是原点,且是AB的中点,∴OA=OB,∵B点表示的数是x,∴A点表示的数是﹣x.∵B是AC的中点,∴AB=BC,∴(x2﹣3x)﹣x=x﹣(﹣x),解得:x1=0,x2=6.∵B异于原点,∴x≠0,∴x=6.答:x的值为6.19.(8分)在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小完全相同,小明从布袋里随机取出一个小球,记下数字为x,小红在剩下的3个小球中随机取出一个小球,记下数字为y.(1)计算由x、y确定的点(x,y)在函数y=﹣x+5的图象上的概率.(2)小明和小红约定做一个游戏,其规则为:若x、y满足xy>6则小明胜,若x、y满足xy<6则小红胜,这个游戏公平吗?说明理由.若不公平,请写出公平的游戏规则.【解答】解:(1)画树状图得:∵共有12种等可能的结果,在函数y=﹣x+5的图象上的有:(1,4),(2,3),(3,2),(4,1),∴点(x,y)在函数y=﹣x+5的图象上的概率为:=;(2)∵x、y满足xy>6有:(2,4),(3,4),(4,2),(4,3)共4种情况,x、y满足xy <6有(1,2),(1,3),(1,4),(2,1),(3,1),(4,1)共6种情况,∴P(小明胜)==,P(小红胜)==,∴P(小明胜)≠P(小红胜),∴不公平;公平的游戏规则为:若x、y满足xy≥6则小明胜,若x、y满足xy<6则小红胜.20.(8分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6,AF=4,求AE的长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠C+∠B=180°,∠ADF=∠DE C.∵∠AFD+∠AFE=180°,∠AFE=∠B,∴∠AFD=∠C.在△ADF与△DEC中,∴△ADF∽△DE C.(2)解:∵四边形ABCD是平行四边形,∴CD=AB=8.由(1)知△ADF∽△DEC,∴,∴DE===12.在Rt△ADE中,由勾股定理得:AE===6.五、(本大题共2小题,每小题9分,共18分)21.(9分)如图,点B(3,3)在双曲线y=(x>0)上,点D在双曲线y=﹣(x<0)上,点A和点C分别在x轴,y轴的正半轴上,且点A,B,C,D构成的四边形为正方形.(1)求k的值;(2)求点A的坐标.【解答】解:(1)∵点B(3,3)在双曲线y=上,∴k=3×3=9;(2)∵B(3,3),∴BN=ON=3,设MD=a,OM=b,∵D在双曲线y=﹣(x<0)上,∴ab=4,过D作DM⊥x轴于M,过B作BN⊥x轴于N,则∠DMA=∠ANB=90°,∵四边形ABCD是正方形,∴∠DAB=90°,AD=AB,∴∠MDA+∠DAM=90°,∠DAM+∠BAN=90°,∴∠ADM=∠BAN,在△ADM和△BAN中,,∴△ADM≌△BAN(AAS),∴BN=AM=3,DM=AN=a,∴0A=3﹣a,即AM=b+3﹣a=3,a=b,∵ab=4,∴a=b=2,∴OA=3﹣2=1,即点A的坐标是(1,0).22.(9分)将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)如图①摆放,点D为AB的中点,DE交AC于点P,DF经过点C.(1)求∠ADE的度数;(2)如图②,将△DEF绕点D顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC于点M,DF′交BC于点N,试判断的值是否随着α的变化而变化?如果不变,请求出的值;反之,请说明理由.【解答】解:(1)∵∠ACB=90°,点D为AB的中点,∴CD=AD=BD=AB,∴∠ACD=∠A=30°,∴∠ADC=180°﹣30°×2=120°,∴∠ADE=∠ADC﹣∠EDF=120°﹣90°=30°;(2)∵∠EDF=90°,∴∠PDM+∠E′DF=∠CDN+∠E′DF=90°,∴∠PDM=∠CDN,∵∠B=60°,BD=CD,∴△BCD是等边三角形,∴∠BCD=60°,∵∠CPD=∠A+∠ADE=30°+30°=60°,∴∠CPD=∠BCD,在△DPM和△DCN中,,∴△DPM∽△DCN,∴=,∵=tan∠ACD=tan30°=,∴的值不随着α的变化而变化,是定值.六、(本大题共共12分)23.(12分)在直角梯形OABC中,CB∥OA,∠COA=90°,CB=3,OA=6,BA=.分别以OA、OC边所在直线为x轴、y轴建立如图所示的平面直角坐标系.(1)求点B的坐标;(2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交x轴于点F,求直线DE的解析式;(3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一个点N,使以O、D、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.【解答】解:(1)作BH⊥x轴于点H,则四边形OHBC为矩形,∴OH=CB=3,∴AH=OA﹣OH=6﹣3=3,在Rt△ABH中,BH===6,∴点B的坐标为(3,6);(2)作EG⊥x轴于点G,则EG∥BH,∴△OEG∽△OBH,∴,又∵OE=2EB,∴,∴=,∴OG=2,EG=4,∴点E的坐标为(2,4),又∵点D的坐标为(0,5),设直线DE的解析式为y=kx+b,则,解得k=﹣,b=5,∴直线DE的解析式为:y=﹣x+5;(3)答:存在;①如图1,当OD=DM=MN=NO=5时,四边形ODMN为菱形.作MP⊥y轴于点P,则MP∥x 轴,∴△MPD∽△FOD∴,又∵当y=0时,﹣x+5=0,解得x=10,∴F点的坐标为(10,0),∴OF=10,在Rt△ODF中,FD===5,∴,∴MP=2,PD=,∴点M的坐标为(﹣2,5+),∴点N的坐标为(﹣2,);②如图2,当OD=DN=NM=MO=5时,四边形ODNM为菱形.延长NM交x轴于点P,则MP⊥x轴.∵点M在直线y=﹣x+5上,∴设M点坐标为(a,﹣a+5),在Rt△OPM中,OP2+PM2=OM2,∴a2+(﹣a+5)2=52,解得:a1=4,a2=0(舍去),∴点M的坐标为(4,3),∴点N的坐标为(4,8);③如图3,当OM=MD=DN=NO时,四边形OMDN为菱形,连接NM,交OD于点P,则NM与OD互相垂直平分,∴y M=y N=OP=,∴﹣x M+5=,∴x M=5,∴x N=﹣x M=﹣5,∴点N的坐标为(﹣5,),综上所述,x轴上方的点N有三个,分别为N1(﹣2,),N2(4,8),N3(﹣5,).(其它解法可参照给分)。
北师大版2014-2015学年度八年级数学下册期末考试

北师大版2014-2015学年度八年级数学下册期末考试学校:___________姓名:___________班级:___________考号:___________一、选择题(题型注释)1. 下列各图中,不是中心对称图形的是( )2.下列四个命题:(1)两组对边分别相等的四边形是平行四边形; (2)两组对角分别相等的四边形是平行四边形; (3)对角线互相平分的四边形是平行四边形; (4)一组对边平行且相等的四边形是平行四边形. 其中正确的命题个数有( )A .4个B .3个C .2个D .1个 3.分式121,11,121222++-+-a a a a a 的最简公分母是 A.22)1(-a B.)1)(1(22+-a a C.)1(2+a D.4)1(-a 4.不等式组 的解集是 x+1>0A .x >一1B .x >3C .x <一1D .一l <x <3 5.下列四种标志中,既是轴对称图形又是中心对称图形的为( ).A .B .C .D .6.若把分式yx yx -+2中的x 和y 都扩大3倍,那么分式的值 ( )A .不变 B. 缩小3倍 C. 扩大3倍 D.无法确定 7.一张圆形纸片,小芳进行了如下连续操作:图(2)图(5)图(4)图(3)图(1)⑴.将圆形纸片左右对折,折痕为AB ,如图(2)所示.⑵.将圆形纸片上下折叠,使A 、B 两点重合,折痕CD 与AB 相交于M ,如图(3)所示. ⑶.将圆形纸片沿EF 折叠,使B 、M 两点重合,折痕EF 与AB 相交于N,如图(4)所示. ⑷.连结AE 、AF ,如图(5)所示.经过以上操作小芳得到了以下结论:①. CD ∥EF ②.四边形 MEBF 是菱形③. △AEF 为等边三角形 ④.:4AEF S S π∆=圆,以上结论正确的有( ) A .1个 B .2个 C .3个 D .4个8.化简)2()242(2+÷-+-m mm m 的结果是A .0B .1C .-1D .2)2(+m9.在数轴上与原点的距离小于8的点对应的x 满足( )A.﹣8<x <8B.x <﹣8或x >8 C.x <8 D.x >810.如图,把菱形ABCD 沿AH 折叠,使B 点落在BC 上的E 点处,若∠B=700,则∠EDC 的大小为A 、100B 、150C 、200D 、300二、填空题(题型注释)11.如图,菱形ABCD 的对角线相交于点O ,请你添加一个条件: ,使其为正方形A B CDD C BAO 图6O12.不等式组⎩⎨⎧>-≤-01202x x 的整数解是 ▲ .13.若分式351x x +-无意义,则当510322m x m x-=--时,m =_______. 14.如图,在△ABC 中,AD ⊥BC 于D,E 、F 分别是AB 、AC 的中点,当△ABC 满足条件__________时,AEDF是菱形.15.等腰三角形的一个角是100°,其底角是 °三、计算题(题型注释)16.已知a = -3,b =2,求代数式b a b ab a b a +++÷+222)11(的值.17.(8分)解方程: 11322xx x -=--- 18.(4分)计算:x x65322-19.化简:(1)0222-+ (2)24142x x ---.四、解答题(题型注释)如图,已知在直角梯形ABCD 中,AB ∥DC ,90DAB ∠=,AD=DC=12AB ,E 是AB 的中点。
2017学年八年级数学下第二次月考试卷(北师大含答案和解释)

2016-2017学年陕西八年级(下)第二次月考数学试卷一、选择题(共10小题,每小题3分,计30分.每小题只有一选项符合题意)1.(3分)如图,这个紫荆花图形()A.是轴对称图形B.是中心对称图形C.既是轴对称图形,也是中心对称图形D.既不是轴对称图形,也不是中心对称图形2.(3分)若a>0,b<﹣2,则点(a,b+2)在()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)下列条件中,不能判断四边形ABCD是平行四边形的是()A.∠A=∠C,∠B=∠D B.AB∥CD,AB=CD C.AB=CD,AD∥BC D.AB∥CD,AD ∥BC4.(3分)下列命题中正确的命题是()①经过旋转,图形上的每一点都移动了相同的距离;②经过旋转,图形上的每一点都绕旋转中心转过了相同的角度;③经过旋转.对应点到旋转中心的距离相等;④经过旋转,所有点到旋转中心的距离相等.A.①②B.②③C.③④D.②④5.(3分)若不等式组的解集是x<2,则a的取值范围是()A.a<2 B.a≤2 C.a≥2 D.无法确定6.(3分)能使分式的值为零的所有x的值是()A.x=0 B.x=1 C.x=0或x=1 D.x=0或x=±17.(3分)解关于x的方程产生增根,则常数m的值等于()A.﹣1 B.﹣2 C.1 D.28.(3分)如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH(不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm2,四边形ABCD面积是11cm2,则①②③④四个平行四边形周长的总和为()A.48cm B.36cm C.24cm D.18cm9.(3分)已知关于x的一次函数y=mx+2m﹣7在﹣1≤x≤5上的函数值总是正的,则m的取值范围()A.m>7 B.m>1 C.1≤m≤7 D.以上都不对10.(3分)在平行四边形ABCD中,AB=6,AD=8,∠B是锐角,将△ACD沿对角线AC折叠,点D落在△ABC所在平面内的点E处.如果AE过BC的中点,则平行四边形ABCD的面积等于()A.48 B.10C.12D.24二、填空题(共6小题,每小题3分,计18分)11.(3分)分解因式:﹣3x2+6xy﹣3y2=.12.(3分)菱形的一个内角是60°,边长为5cm,则这个菱形较短的对角线长是cm.13.(3分)某超市从厂家以每件21元的价格购进一批商品,该超市可以自行定价,但物价局限定每件商品加价不能超过售价的20%,则这批商品的售价不能超过元.14.(3分)已知一个n边形,除去一个内角α外,其余内角和等于1500°,则这个内角α=°.15.(3分)已知关于x的不等式组的解集为3≤x<5,则的值为.16.(3分)如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,∠EAF=45°,且AE+AF=,则平行四边形ABCD的周长是.三、解答题(共6小题,计52分.解答应写出过程)17.(6分)解不等式组,并把解集在数轴上表示出来.18.(6分)先化简,再求值:已知x=+2,y=﹣2,求的值.19.(6分)如图,△DEF是由△ABC通过一次旋转得到的,请用直尺和圆规画出旋转中心.20.(11分)某超市规定:凡一次购买大米180kg以上可以按原价打折出售,购买180kg(包括180kg)以下只能按原价出售.小明家到超市买大米,原计划买的大米,只能按原价付款,需要500元;若多买40kg,则按打折价格付款,恰巧需要也是500元.(1)求小明家原计划购买大米数量x(千克)的范围;(2)若按原价购买4kg与打折价购买5kg的款相同,那么原计划小明家购买多少大米?21.(10分)已知如图所示的一张平行四边形纸片ABCD(AD>AB),将纸片折叠一次,使点A与点C重合,再展开,折痕EF交AD边于点E,交BC边于点F,分别连结AF和CE.(1)求证:四边形AFCE是菱形.(2)若AB=8cm,∠B=90°,△ABF的面积为24cm2,求菱形AFCE的周长.22.(13分)已知四边形ABCD,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3.(1)如图1,若P为AB边上一点以PD,PC为边作平行四边形PCQD,请问对角线PQ的长是否存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.(2)若P为AB边上任意一点,延长PD到E,使DE=PD,再以PE,PC为边作平行四边形PCQE,请问对角线PQ的长是否也存在最小值?如果存在,请直接写出最小值,如果不存在,请说明理由.(3)如图2,若P为直线DC上任意一点,延长PA到E,使AE=AP,以PE、PB 为边作平行四边形PBQE,请问对角线PQ的长是否存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.2016-2017学年陕西八年级(下)第二次月考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,计30分.每小题只有一选项符合题意)1.(3分)如图,这个紫荆花图形()A.是轴对称图形B.是中心对称图形C.既是轴对称图形,也是中心对称图形D.既不是轴对称图形,也不是中心对称图形【解答】解:这个紫荆花图形既不是轴对称图形,也不是中心对称图形,故选:D.2.(3分)若a>0,b<﹣2,则点(a,b+2)在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵a>0,b<﹣2,∴b+2<0,∴点(a,b+2)在第四象限.故选D.3.(3分)下列条件中,不能判断四边形ABCD是平行四边形的是()A.∠A=∠C,∠B=∠D B.AB∥CD,AB=CD C.AB=CD,AD∥BC D.AB∥CD,AD ∥BC【解答】解:A、∵∠A=∠C,∠B=∠D,∴四边形ABCD是平行四边形,正确,故本选项错误;B、∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,正确,故本选项错误;C、根据AB=CD,AD∥BC可能得出四边形是等腰梯形,不一定推出四边形ABCD 是平行四边形,错误,故本选项正确;D、∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,正确,故本选项错误;故选:C.4.(3分)下列命题中正确的命题是()①经过旋转,图形上的每一点都移动了相同的距离;②经过旋转,图形上的每一点都绕旋转中心转过了相同的角度;③经过旋转.对应点到旋转中心的距离相等;④经过旋转,所有点到旋转中心的距离相等.A.①②B.②③C.③④D.②④【解答】解:①经过旋转,图形上的每一点都移动了相同的距离,错误.②经过旋转,图形上的每一点都绕旋转中心转过了相同的角度,正确.③经过旋转.对应点到旋转中心的距离相等,正确.④经过旋转,所有点到旋转中心的距离相等,错误.故选:B.5.(3分)若不等式组的解集是x<2,则a的取值范围是()A.a<2 B.a≤2 C.a≥2 D.无法确定【解答】解:由(1)得:x<2由(2)得:x<a因为不等式组的解集是x<2∴a≥2故选:C.6.(3分)能使分式的值为零的所有x的值是()A.x=0 B.x=1 C.x=0或x=1 D.x=0或x=±1【解答】解:∵,∴x2﹣x=0,即x(x﹣1)=0,x=0或x=1,又∵x2﹣1≠0,∴x≠±1,综上得,x=0.故选:A.7.(3分)解关于x的方程产生增根,则常数m的值等于()A.﹣1 B.﹣2 C.1 D.2【解答】解;方程两边都乘(x﹣1),得x﹣3=m,∵方程有增根,∴最简公分母x﹣1=0,即增根是x=1,把x=1代入整式方程,得m=﹣2.故选:B.8.(3分)如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH(不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm2,四边形ABCD面积是11cm2,则①②③④四个平行四边形周长的总和为()A.48cm B.36cm C.24cm D.18cm【解答】解:由题意得:S⑤=S四边形ABCD﹣(S①+S②+S③+S④)=4cm2,∴S菱形EFGH=14+4=18cm2,又∵∠F=30°,设菱形的边长为x,则菱形的高为sin30°x=,根据菱形的面积公式得:x•=18,解得:x=6,∴菱形的边长为6cm,而①②③④四个平行四边形周长的总和=2(AE+AH+HD+DG+GC+CF+FB+BE)=2(EF+FG+GH+HE)=48cm.故选:A.9.(3分)已知关于x的一次函数y=mx+2m﹣7在﹣1≤x≤5上的函数值总是正的,则m的取值范围()A.m>7 B.m>1 C.1≤m≤7 D.以上都不对【解答】解:根据题意,得:当x=﹣1时,y=﹣m+2m﹣7=m﹣7>0,∴m>7;当x=5时,y=5m+2m﹣7=7m﹣7>0,∴m>1,∴m的取值范围是m>7.故选:A.10.(3分)在平行四边形ABCD中,AB=6,AD=8,∠B是锐角,将△ACD沿对角线AC折叠,点D落在△ABC所在平面内的点E处.如果AE过BC的中点,则平行四边形ABCD的面积等于()A.48 B.10C.12D.24【解答】解:设AE与BC交于O点,O点是BC的中点.∵四边形ABCD是平行四边形,∴∠B=∠D.AB∥CD,又由折叠的性质推知∠D=∠E,CE=CD∴∠B=∠E.CE=AB∴△ABO和△ECO中,,所以△ABO≌△CEO(AAS),所以AO=CO=4,OE=OB=4.∴AE=AD=8.∴△AED为等腰三角形,又C为底边中点,故三线合一可知∠ACE=90°,从而由勾股定理求得AC=.平行四边形ABCD的面积=AC×CD=12.故选:C.二、填空题(共6小题,每小题3分,计18分)11.(3分)分解因式:﹣3x2+6xy﹣3y2=﹣3(x﹣y)2.【解答】解:﹣3x2+6xy﹣3y2,=﹣3(x2﹣2xy+y2),=﹣3(x﹣y)2.故答案为:﹣3(x﹣y)2.12.(3分)菱形的一个内角是60°,边长为5cm,则这个菱形较短的对角线长是5cm.【解答】解:菱形的一个内角是60°,根据菱形的性质得,60°角所对的对角线与菱形的两边构成的三角形是一等边三角形,故这个菱形较短的对角线长是5cm.故答案为5.13.(3分)某超市从厂家以每件21元的价格购进一批商品,该超市可以自行定价,但物价局限定每件商品加价不能超过售价的20%,则这批商品的售价不能超过26.25元.【解答】解:设这批商品的售价为x元,则每件商品的加价为x﹣21.依题意得:x﹣21≤20%x解得:x≤26.25即这批商品的售价不能超过26.25元.14.(3分)已知一个n边形,除去一个内角α外,其余内角和等于1500°,则这个内角α=120°.【解答】解:∵1500°÷180°=8…60°,∴去掉的内角为180°﹣60°=120°,故答案为:120.15.(3分)已知关于x的不等式组的解集为3≤x<5,则的值为﹣2.【解答】解:不等式组由①得,x≥a+b,由②得,x<,∴,解得,∴=﹣2.故答案为﹣2.16.(3分)如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,∠EAF=45°,且AE+AF=,则平行四边形ABCD的周长是8.【解答】解:∵∠EAF=45°,∴∠C=360°﹣∠AEC﹣∠AFC﹣∠EAF=135°,∴∠B=∠D=180°﹣∠C=45°,则AE=BE,AF=DF,设AE=x,则AF=2﹣x,在Rt△ABE中,根据勾股定理可得,AB=x同理可得AD=(2﹣x)则平行四边形ABCD的周长是2(AB+AD)=2[x+(2﹣x)]=8故答案为8.三、解答题(共6小题,计52分.解答应写出过程)17.(6分)解不等式组,并把解集在数轴上表示出来.【解答】解:解不等式3(x+1)>4x+2,得:x<1,解不等式≥,得:x≥﹣2,则不等式组的解集为﹣2≤x<1,将解集表示在数轴上如下:18.(6分)先化简,再求值:已知x=+2,y=﹣2,求的值.【解答】解:原式==∵x=+2,y=﹣2时,∴x﹣y=4,xy=1∴原式=419.(6分)如图,△DEF是由△ABC通过一次旋转得到的,请用直尺和圆规画出旋转中心.【解答】解:如图所示,点P即为所求作的旋转中心.20.(11分)某超市规定:凡一次购买大米180kg以上可以按原价打折出售,购买180kg(包括180kg)以下只能按原价出售.小明家到超市买大米,原计划买的大米,只能按原价付款,需要500元;若多买40kg,则按打折价格付款,恰巧需要也是500元.(1)求小明家原计划购买大米数量x(千克)的范围;(2)若按原价购买4kg与打折价购买5kg的款相同,那么原计划小明家购买多少大米?【解答】解:(1)由题意可得不等式140<x≤180,即小明家原计划购买大米的数量范围是140<x≤180;(2)设小明家原来准备买大米x千克,根据题意,由对应成比例得解之得x=160.经检验:x=160是原方程的解,∴x=160,答:小明家原计划购买大米是160千克.法二:(2)设小明家原来准备买大米x千克,原价为元;折扣价为元.据题意列方程为:,解之得:x=160.经检验x=160是方程的解.答:小明家原来准备买160千克大米.21.(10分)已知如图所示的一张平行四边形纸片ABCD(AD>AB),将纸片折叠一次,使点A与点C重合,再展开,折痕EF交AD边于点E,交BC边于点F,分别连结AF和CE.(1)求证:四边形AFCE是菱形.(2)若AB=8cm,∠B=90°,△ABF的面积为24cm2,求菱形AFCE的周长.【解答】(1)证明:∵将平行四边形ABCD(AD>AB)折叠,使点A与点C重合,∴EF垂直平分AC,∴EA=EC,FA=FC,∴∠2=∠3,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠1=∠2,∴∠1=∠3,∵AO⊥EF,∴△AEF为等腰三角形,∴AE=AF,∴AE=EC=AF=CF,∴四边形A FCE是菱形;(2)解:在Rt△ABF中,∵AB•BF=24,AB=8cm,∴BF=6cm,∴AB2+BF2=AF2=100,∴AF=10cm,∴菱形AFCE的周长为10×4=40(cm).故菱形AFCE的周长为40cm.22.(13分)已知四边形ABCD,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3.(1)如图1,若P为AB边上一点以PD,PC为边作平行四边形PCQD,请问对角线PQ的长是否存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.(2)若P为AB边上任意一点,延长PD到E,使DE=PD,再以PE,PC为边作平行四边形PCQE,请问对角线PQ的长是否也存在最小值?如果存在,请直接写出最小值,如果不存在,请说明理由.(3)如图2,若P为直线DC上任意一点,延长PA到E,使AE=AP,以PE、PB 为边作平行四边形PBQE,请问对角线PQ的长是否存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.【解答】解:(1)存在,理由如下:如图2,在平行四边形PCQD中,设对角线PQ与DC相交于点G,则G是DC的中点,过点Q作QH⊥BC,交BC的延长线于H,∵AD∥BC,AB⊥BC,∴AD⊥AB,∠ADC=∠DCH,即∠ADP+∠PDG=∠DCQ+∠QCH,∵PD∥CQ,∴∠PDC=∠DCQ,∴∠ADP=∠QCH,在△ADP和△HCQ中,,∴△ADP≌△HCQ(AAS),∴AD=HC,∵AD=1,BC=3,∴BH=4,∴当PQ⊥AB时,PQ的长最小,即为4.(2)存在,理由如下:如图3,设PQ与DC相交于点G,∵四边形PCQE是平行四边形,∴PE∥CQ,PE=CQ,∴,∵PD=DE,∴CQ=2PD,∴=∴G是DC上一定点,作QH⊥BC,交BC的延长线于H,同(2)得:∠ADP=∠QCH,∴Rt△ADP∽Rt△HCQ,∴=,∴CH=2,∴BH=BC+CH=3+2=5,∴当PQ⊥AB时,PQ的长最小,即为5.(3)存在,理由如下:如图4,设PQ与AB相交于点G,∵四边形PBQE是平行四边形,∴PE∥BQ,PE=BQ,∴,∵AE=PA,∴BQ=2PA,∴=作QH∥PD,交CB的延长线于H,过点C作CK⊥C D,交QH的延长线于K,∵AD∥BC,AB⊥BC,∴∠ADP=∠QHC,∠DAP+∠PAG=∠QBH+∠QBG=90°,∠PAG=∠QBG,∴∠QBH=∠PAD,∴△ADP∽△BHQ,∴=,∵AD=1,∴BH=2,∴CH=BH+BC=2+3=5,过点D作DM⊥BC于M,则四边形ABND是矩形,∴B M=AD=1,DM=AB=2∴CM=BC﹣BM=3﹣1=2=DM,∴∠DCM=45°,∴∠KCH=45°,∴CK=CH•cos45°=5×=,在Rt△CDM中,CD=2,∴CK>CD,∴当PQ⊥CD时,PQ的长最小,但是,P点已经不在CD上了,到延长线上了,∴当D与P重合时的PQ长就是PQ的最小值,此时Q与H重合,PQ=HD===∴最小值为。
北京师范大学附属实验中学2014—2015学年度第二学期初二年级数学期中试卷及答案

12-3-210-13A OA BCD 北京师范大学附属实验中学2014—2015学年度第二学期初二年级数学期中试卷班级 姓名_______ 学号_______ 成绩_______ 一、选择题:(每题3分,共30分.请将唯一正确的答案填涂在机读卡上.) 1.在三边分别为下列长度的三角形中,不是..直角三角形的是 A .9,12,15 B .1,2,3 C .2,3,5 D .4,7,5 2.用配方法解方程0522=--x x 时,原方程应变形为A. 6)1(2=+xB. 6)1(2=-xC. 9)2(2=+xD. 9)2(2=-x3.四边形ABCD 的对角线AC 、BD 互相平分,要使它成为矩形,需要添加的条件是A .AB =CD B .AC =BD C .AB =BC D .AC ⊥BD4.如图,矩形ABCD 中,AB=3,两条对角线AC 、BD 所夹的钝角为120°,则对角线BD 的长为A .3B .6C .33D .635. △ABC 中,D 、E 、F 分别为AB 、AC 、BC 的中点,若△DEF 的周长为6,则△ABC 周长为A. 3B. 6C. 12D. 24 6.如图,数轴上点A 所表示的数为a ,则a 的值是A .5-1B .-5+1C .5+1D .5试卷说明:1.本试卷共12页,共计30道小题;2.本试卷卷面总分110分,其中附加题10分,考试时间为100分钟;3.请将选择题答案填涂在机读卡上,填空题及解答题答案写在答题纸相应 位置处;4.一律不得使用涂改液及涂改带,本试卷主观试题书写部分铅笔答题无效。
命题人:高雯 审题人:陈平7.若关于y 的一元二次方程 ky 2 - 4y - 3 = 3y + 4 有实数根, 则k 的取值范围是A . k ≥74-且k ≠ 0 B . k > 74-且k ≠ 0 C .k ≥74- D .k > 74-8. 小明想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,则旗杆的高是A .8米B .10米C .12米D .14米9. 如图,在平行四边形ABCD 中,已知AD =8cm ,AB =6cm ,DE 平分∠ADC 交BC 边于点E ,则BE 等于A .2cmB .4cmC .6cmD .8cm(第9题) (第10题) 10.如图,四边形ABCD 中,AC =a ,BD =b ,且AC 丄BD ,顺次连接四边形ABCD 各边中点,得到四边形A 1B 1C 1D 1,再顺次连接四边形A 1B 1C 1D 1各边中点,得到四边形A 2B 2C 2D 2…,如此进行下去,得到四边形A n B n C n D n .下列结论正确的个数有 ① 四边形A 2B 2C 2D 2是矩形; ② 四边形A 4B 4C 4D 4是菱形;③ 四边形A 5B 5C 5D 5的周长是4a b +; ④ 四边形A n B n C n D n 的面积是12n ab+. A 、1个 B 、2个 C 、3个D 、4个ODCBA二、填空题:(每题2分,共20分.请将答案写在答题纸上.) 11. 一元二次方程x 2-5 x =0的根是________.12. 若1x =-是关于x 的方程2220x ax a +-=的一个根,则a =________. 13.若03)2(22=-+--x x m m是关于x 的一元二次方程,则m 的值是 .14. 如右图,菱形ABCD 中,E 、F 分别是AB 、AC 的中点,若EF =3,则菱形ABCD 的周长是 . 15.已知菱形的一条对角线长为12,面积是30,则这个菱形的另一条对角线长是________.16.如右图,平行四边形ABCD 的对角线相交于点O,两条对角线的和为18,AD 的长为5,则∆OBC 的周长为 ___________.17.直角三角形两直角边长分别为5和12,则它的斜边上的高为 .18.把一张矩形纸片ABCD 按如右图方式折叠,使顶点B 和顶点D 重合,折痕为EF .若∠ DEF =60°,FC=2,则BF 的长为 .19.已知:如图,在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点A 、C 的坐标分别为A (10,0)、C (0,4),点D 是线段OA 上一点,点P 在BC 边上运动,当△ODP 是腰长为5的等腰三角形时,点P 的坐标为_____________________.20. 如图,由全等三角形拼出的一系列图形中,第n 个图形由n+1个全等三角形拼成,则第4个图形中平行四边形的个数为 ;第2n -1个图形中平行四边形的个数为 .……n=4n=3n=2n=1FE DCBA以下空白处可当草稿纸使用北京师范大学附属实验中学2014—2015学年度第二学期初二年级数学期中试卷(答题纸) 班级 姓名_______ 学号_______ 成绩_______ 二、填空题:(共20分.请将答案写在横线上.)11. . 12. . 13. . 14. . 15. . 16. . 17. . 18. . 19. . 20. , . 三、解答题:(共50分) 21.解方程(共16分)(1) ()232=+x (2)2250x x +-=(3)9)7)(3(-=+-x x (4)2632-=x xD CBA22.(5分) 已知:如图,在平行四边形ABCD 中,E 、F 是对角线AC 上的两点,且CF AE =.求证:四边形BFDE 是平行四边形.23.(5分) 如图,四边形ABCD 中, AD//BC, ∠ABC=45︒ , ∠ADC=120︒ , AD=DC ,AB=22,求BC 的长.24.(5分) 列方程解应用题:某公司一月份营业额为10万元,第一季度总营业额为33.1万元,求该公司二、三月份营业额的平均增长率是多少?BCDAEF25.(4分) 根据题意作出图形,并回答相关问题:(1)现有5个边长为1的正方形,排列形式如图1,请在图1中用分割线把它们分割后标上序号,重新在图2中拼接成一个正方形.(标上相应的序号)(2)在△ABC 中,AC =BC =2,∠ACB =90︒,D 是BC 边上的中点,E 是AB 边上一动点,在右图中作出点E ,使EC +ED 的值最小 (不写作法,保留作图痕迹) , 此时EC +ED 的值是________.26.(5分) 已知关于x 的一元二次方程22(21)0x m x m m --+-= . (1)证明:不论m 取何值时,方程总有两个不相等的实数根;(2)若0≠m ,设方程的两个实数根分别为1x ,2x (其中1x >2x ),若y 是关于m 的函数,且121x x y -=,求y 与m 的函数解析式.DCBA图2图127.(5分) 有一块直角三角形纸片,两直角边AC = 6cm ,BC = 8cm . ①如图1,现将纸片沿直线AD 折叠,使直角边AC 落在斜边AB 上,则CD = _________ cm .图1 图2②如图2,若将直角∠C 沿MN 折叠,点C 与AB 中点H 重合,点M 、N 分别在AC 、BC 上,则2AM 、2BN 与2MN 之间有怎样的数量关系?并证明你的结论.ABCHM NAC BD班级 姓名_______ 学号_______28.(5分) (1)如图1,将∠EAF 绕着正方形ABCD 的顶点A 顺时针旋转,∠EAF 的两边交BC 于E ,交CD 于F ,连接EF .若∠EAF=45°,BE 、DF 的长度是方程2560x x -+=的两根,请直接写出EF 的长;(2)如图2,将∠EAF 绕着四边形ABCD 的顶点A 顺时针旋转,∠EAF 的两边交CB 的延长线于E ,交DC 的延长线于F ,连接EF .若AB=AD ,∠ABC与∠ADC 互补,∠EAF=21∠BAD ,请直接写出EF 与DF 、BE 之间的数量关系,并证明你的结论;(3)在(2)的前提下,若BC=4,DC=7,CF=2,求△CEF 的周长.图1 图2 (1)EF 的长为: ; (2)数量关系: ; 证明:FEABCDEF B DCA图3lC ABP A 'D附加题(共10分)29.(4分) 请阅读下列材料:问题:如图1,点A ,B 在直线l 的同侧,在直线l 上找一点P ,使得BP AP +的值最小.小明的思路是:如图2,作点A 关于直线l 的对称点'A ,连接B A ',则B A '与直线l 的交点P 即为所求.A 'P BAll图2图1AB请你参考小明同学的思路,探究并解决下列问题:(1)如图3,在图2的基础上,设'AA 与直线l 的交点为C ,过点B 作l BD ⊥,垂足为D . 若1=CP ,2=PD ,1=AC ,写出BP AP +的值为 ; (2)将(1)中的条件“1=AC ”去掉,换成“AC BD -=4”,其它条件不变,写出此时BP AP +的值 ;(3)1)32(2+-m +4)28(2+-m 的最小值为 .30.(6分) 如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED =90°,点E在AB上,点D在AC上.(1)若F是BD的中点,求证:CF=EF;(2)将图1中的△AED绕点A顺时针旋转,使AE恰好在AC上(如图2).若F为BD上一点,且CF=EF,求证:BF= DF;(3)将图1中的△AED绕点A顺时针旋转任意的角度(如图3).若F是BD 的中点.探究CE与EF的数量关系,并证明你的结论.以下空白处可当草稿纸使用参考答案一、 选择题 1. D 2. B 3. B 4. B 5. C 6. A 7. A 8. C 9. A 10. C二、填空题11. 0,512. -2. 1 13. -2 14. 24 15. 5 16. 14 17.1360 18. 419. (2,4)、(3,4)、 (8,4) 20. 6, n ²三、解答题21. (1) 23±-=x (2) 121616x x =-+=-- (3)9)7)(3(-=+-x x ; 解:92142-=-+x x 01242=-+x x …… 2分 0)2)(6(=-+x x ∴2,621=-=x x …… 4分(4)333±=x 22. 证明:连接BD 交AC 于点O .......1分□ ABCD ,A O C O B O DO ∴==.......3分 又 AE CF =EO FO ∴=且BO DO = .......4分 ∴□ BFDE .......5分 (其他证法相应给分)23. 解:如图,过A 作AE ⊥BC 于E, 连接AC.∴ ∠AEB=∠AEC=90︒.∵ ∠ABC=45︒,AB=22,∴ AE=BE =2. ………………1分1ADOF EDCBA∵ AD//BC, ∠ADC=120︒,∴ ∠1=∠2, ∠D+∠DCB=180︒.∴ ∠DCB=60︒. ………………………………………………………………………2分 ∵ AD=DC, ∴ ∠1=∠3.∴ ∠2=∠3=21∠DCB=30︒. ……………………………………………………3分 在Rt △AEC 中,∠AEC=90︒, ∴ AC=2AE=4 ∴EC=22AE AC -=32.…………………………………………………4分∴ BC= BE+EC=2+32. …………………………………………………5分 24. 解:设该公司二、三月份营业额平均增长率为x . 则依题意得:21010(1)10(1)x x ++++=33.1 把(1+x )看成一个整体,配方得:21(1)2x ++=2.56,即23()2x +=2.56,∴x +32=±1.6,即x +32=1.6或x +32=-1.6. ∴1x =0.1=10%,2x =-3.1∵因为增长率为正数,∴取x =10%.答:该公司二、三月份营业额平均增长率为10%.25. (1)12344321(2)526. 解:(1)由题意有22[(21)]4()1m m m ∆=----=>0.∴ 不论m 取何值时,方程总有两个不相等的实数根. ---------------------2分 (2)方程的两个实数根分别为1x ,2x (其中1x >2x ), 解关于x 的一元二次方程22(21)0x m x m m --+-=可得1x m =,21x m =-. ---------------------4分∴mm m x x y 111112=--=-=. --------------5分 27. (1) 3 ……2分(2)答:2AM +2BN =2MN ……… 3分 证明:过点B 作BP ∥AC 交MH 延长线于点P , ∴∠A=∠PBH 在△AMH 和△BPH 中 ∠A=∠PBH AH=BH ∠AHM=∠BHP ∴△AMH ≌△BPH ∴AM=BP ,MH=PH 又∵NH ⊥MP ∴MN=NP∵BP ∥AC ,∠C=90︒∴∠NBP=90︒∴222NP BN BP =+∴2AM +2BN =2MN ……… 5分 28. 解:(1)5. ………… 1分(2)EF=DF -BE . ………… 2分证明:在DF 上截取DM=BE ,连接AM .如图, ∵∠D+∠ABC=∠ABE+∠ABC=180°,∴∠D=∠ABE . ∵AD=AB , ∴△ADM ≌△ABE .∴AM=AE ,∠DAM=∠BAE .∵∠EAF=∠BAE+∠BAF=21∠BAD , ∴∠DAM+∠BAF=21∠BAD . ∴∠MAF=21∠BAD . ∴∠EAF=∠MAF .∵AF 是△EAF 与△MAF 的公共边, ∴△EAF ≌△MAF . ∴EF=MF .∵MF=DF -DM=DF -BE,∴EF=DF -BE . ……… 4分 (3) △CEF 的周长为15. ……… 5分29.(1)3倍根号2 ………2分 (2)5 ………2分 (3)根号34 ………1分 30.(1)略(2)略(3)CE=2EF取AD 、AB 的中点分别为M 、N ,证明△EMF 与△FNC 全等,进而证明△CEF 是等腰直角三角形即可。
2014最新北师大版数学第二次月考试卷(含答题卡,参考答案)

2014-2015学年度第一学期第二次月考试卷九年级数学2014.10.30温馨提示:1.数学试卷共4页,八大题,共23小题,请你仔细核对每页试卷下方页码和题数,核实无误后再答题,考试时间共100分钟,满分为150分,请合理分配时间.2.请把答案写在答题卷上,否则不予评分。
3.请你仔细思考、认真答题,不要过于紧张,祝考试顺利!一.选择题(本大题共10小题,每小题4分,满分40分)22,2.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()第2题图第4题图第6题图3.某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x,则可列方程为()4.如图,电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A、B、C D5.若===k,则k的值为()7.如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为()8.如图,在△ABC中,点D ,E,F分别在边AB,AC,BC上,且DE∥BC,EF∥AB.若AD=2BD,则的值为().第7题图第8题图第9题图.11.若α、β是方程x2﹣2x﹣3=0的两个实数根,则α2+β2=_________.12.如图,要使△ADB∽△ABC,还需增添的条件是_________(写一个即可).13.一元二次方程x2+x﹣2=0的两根之积是_________.第12题图第14题图14.如图,在矩形ABCD中,点E为AB的中点,EF⊥EC交AD于点F,连接CF(AD>AE),下列结论:①∠AEF=∠BCE;②AF+BC>CF;③S△CEF=S△EAF+S△CBE;④若=,则△CEF≌△CDF.其中正确的结论是_________.(填写所有正确结论的序号)三.(本大题共2小题,每小题8分,满分16分)15.解方程:3x(x﹣2)=2(2﹣x)16.已知,求的值.九年级第一次月考试题卷第1页,共12页九年级第一次月考试题卷第2页,共12页九年级第一次月考试题卷 第 3 页 共 4 页九年级第一次月考试题卷 第4页,共12页四、(本大题共2小题,每小题8分,满分16分)17.如图,已知△ABC 中,点D 在AC 上且∠ABD=∠C , 求证:AB 2=AD •AC .18.已知:△ABC 在直角坐标平面内,三个顶点的坐标分别为A (0,3)、B (3,4)、C (2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC 向下平移4个单位长度得到的△A 1B 1C 1,点C 1的坐标是 _________ ;(2)以点B 为位似中心,在网格内画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 位似,且位似比为2:1,点C 2的坐标是 _________ ; (3)△A 2B 2C 2的面积是 _________ 平方单位.五、(本大题共2小题,每小题10分,满分20分)19.九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度CD=3m 与旗杆的水平距离BD=15m ,人的眼睛与地面的高度EF=1.6m ,人与标杆CD 的水平距离求旗杆AB 的高度.20(1)随机地从箱子里取出1个球,则取出红球的概率是多少?(2)随机地从箱子里取出1所有等可能的结果,并求两次取出相同颜色球的概率.六、(本题满分12分)21.已知关于x 的方程x 2+ax+a ﹣2=0(1)若该方程的一个根为1,求a 的值及该方程的另一根; (2)求证:不论a 取何实数,该方程都有两个不相等的实数根.七、(本题满分12分)22.某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?八、(本题满分14分)23.在Rt △ABC 中,∠C=90°,AC=20cm ,BC=15cm .现有动点P 从点A 出发,沿AC 向点C 方向运动,动点Q 从点C 出发,沿线段CB 也向点B 方向运动.如果点P 的速度是4cm/秒,点Q 的速度是2cm/秒,它们同时出发,当有一点到达所在线段的端点时,就停止运动,设运动的时间为t 秒.求:(1)用含t 的代数式表示Rt △CPQ 的面积S ;(2)当t=3秒时,P 、Q 两点之间的距离是多少?(3)当t 为多少秒时,以点C 、P 、Q 为顶点的三角形与△ABC 相似?2014-2015学年度第二学期月考试卷九年级数学(答题卷) 2014.10.30温馨提示:请在指定区域内答题,否则不予评分。