精品2019年八年级数学下册9微专题一次函数的实际应用—利润、方案问题习题(新版)冀教版
(完整word版)最新人教版八年级下册一次函数实际应用问题练习题及答案

最新人教版八年级下册一次函数实际应用问题练习题及答案1、一次时装表演会预算中票价定位每张100元,容纳观众人数不超过2000人,毛利润y (百元)关于观众人数x (百人)之间的函数图象如图所示,当观众人数超过1000人时,表演会组织者需向保险公司交纳定额平安保险费5000元(不列入成本费用)请解答下列问题:⑴求当观众人数不超过1000人时,毛利润y (百元)关于观众人数x (百人)的函数解析式和成本费用s (百元)关于观众人数x (百人)的函数解析式;⑵若要使这次表演会获得36000元的毛利润,那么要售出多少张门票?需支付成本费用多少元?(注:当观众人数不超过1000人时,表演会的毛利润=门票收入—成本费用;当观众人数超过1000人时,表演会的毛利润=门票收入—成本费用—平安保险费)12623S(千米)t(小时)CD EF B甲乙O 21281718y(升)x(分钟)第1题图 第2题图 第3题图2、甲乙两名同学进行登山比赛,图中表示甲乙沿相同的路线同时从山脚出发到达山顶过程中,个自行进的路程随时间变化的图象,根据图象中的有关数据回答下列问题:⑴分别求出表示甲、乙两同学登山过程中路程s (千米)与时间t (时)的函数解析式;(不要求写出自变量的取值范围) ⑵当甲到达山顶时,乙行进到山路上的某点A 处,求A 点距山顶的距离;⑶在⑵的条件下,设乙同学从A 点继续登山,甲同学到达山顶后休息1小时,沿原路下山,在点B 处与乙同学相遇,此时点B 与山顶距离为1.5千米,相遇后甲、乙各自沿原路下山和上山,求乙到大山顶时,甲离山脚的距离是多少千米?3、教室里放有一台饮水机,饮水机上有两个放水管。
课间同学们到饮水机前用茶杯接水。
假设接水过程中水不发生泼洒,每个学声所接的水量是相等的。
两个放水管同时打开时,它们的流量相同。
放水时先打开一个水管,过一会再打开第二个水管,放水过程中阀门一直开着。
饮水机的存水量y (升)与放水时间x(分钟)的函数关系如上图所示:⑴求出饮水机的存水量y (升)与放水时间x(分钟)(x ≥2)的函数关系式;⑵如果打开第一个水管后,2分钟时恰好有4个同学接水接束,则前22个同学接水结束共需要几分钟? ⑶按⑵的放法,求出在课间10分钟内最多有多少个同学能及时接完水?4、 甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度()m y 与挖掘时间()h x 之间的关系如图1所示,请根据图象所提供的信息解答下列问题:⑴乙队开挖到30m 时,用了 h . 开挖6h 时甲队比乙队多挖了 m ;⑵请你求出:①甲队在06x ≤≤的时段内,y 与x 之间的函数关系式;②乙队在26x ≤≤的时段内,y 与x 之间的函数关系式; ⑶当x 为何值时,甲、乙两队在施工过程中所挖河渠的长度相等?5、小明受《乌鸦喝水》故事的启发,利用量桶和体积相同的小球进行了如下操作:请根据图2中给出的信息,解答下列问题:(1)放入一个小球量桶中水面升高___________cm ;(2)求放入小球后量桶中水面的高度y (cm )与小球个数x (个)之间的一次函数关系式(不要求写出自变量的取值范围); (3)量桶中至少放入几个小球时有水溢出?6、日照市是中国北方最大的对虾养殖产区,被国家农业部列为对虾养殖重点区域;贝类产品西施舌是日照特产.沿海某养殖场计划今年养殖无公害标准化对虾和西施舌,由于受养殖水面的制约,这两个品种的苗种的总投放量只有50吨.根据经验测算,这两个品种的种苗每投放一吨的先期投资、养殖期间的投资以及产值如下表:养殖场受经济条件的影响,先期投资不超过360千元,养殖期间的投资不超过290千元.设西施舌种苗的投放量为x 吨 (1)求x 的取值范围; (2)设这两个品种产出后的总产值为y (千元),试写出y 与x 之间的函数关系式,并求出当x 等于多少时,y 有最大值?最大值是多少? 49cm 30cm36cm 3个球有水溢出(第23题) 图27、 元旦联欢会前某班布置教室,同学们利用彩纸条粘成一环套一环的彩纸链,小相应的点,猜想y 与x 的函数关系,并求出函数关系式;(2)教室天花板对角线长10m ,现需沿天花板对角线各拉一根彩纸链,则每根彩纸链至少要用多少个纸环?8、某软件公司开发出一种图书管理软件,前期投入的开发广告宣传费用共50000元,且每售出一套软件,软件公司还需支付安装调试费用200元。
初中八年级一次函数实际常用的应用题__有答案

一次函数实际常用应用类问题 答案1、解:⑴由图象可知:当0≤x ≤10时,设y 关于x 的函数解析y=kx-100,∵(10,400)在y=kx-100上,∴400=10k-100,解得k=50 ∴y=50x-100,s=100x-(50x-100),∴s=50x+100⑵当10<x ≤20时,设y 关于x 的函数解析式为y=mx+b , ∵(10,350),(20,850)在y=mx+b 上, ∴ 10m+b=350 解得 m=5020m+b=850 b=-150∴y=50x-150 ∴s=100x-(50x-150)-50∴s=50x+100 ∴y= 50x-100 (0≤x ≤10)50x-150 (10<x ≤20) 令y=360 当0≤x ≤10时,50x-100=360 解得x=9.2 s=50x+100=50×9.2+100=560 当10<x ≤20时,50x-150=360解得x=10.2 s=50x+100=50×10.2+100=610。
要使这次表演会获得36000元的毛利润. 要售出920张或1020张门票,相应支付的成本费用分别为56000元或61000元。
2、解:⑴设甲、乙两同学登山过程中,路程s (千米)与时间t (时)的函数解析式分别为s 甲=k 1t ,s 乙=k 2t 。
由题意得:6=2 k 1,6=3 k 2,解得:k 1=3,k 2=2 ∴s 甲=3t ,s 乙=2t ⑵当甲到达山顶时,s 甲=12(千米),∴12=3t 解得:t=4∴s 乙=2t=8(千米) ⑶由图象可知:甲到达山顶宾并休息1小时后点D 的坐标为(5,12) 由题意得:点B 的纵坐标为12-23=221,代入s 乙=2t ,解得:t=421∴点B (421,221)。
设过B 、D 两点的直线解析式为s=kx+b ,由题意得 421t+b=221 解得: k=-65t+b=12 b=42 ∴直线BD 的解析式为s=-6t+42 ∴当乙到达山顶时,s 乙=12,得t=6,把t=6代入s=-6t+42得s=6(千米)3、解:⑴设存水量y 与放水时间x 的函数解析式为y=kx+b, 把(2,17)、(12,8)代入y=kx+b,得 17=2k+b 解得 k=-109 b =5948=12k+b∴y=-109x+594 (2≤x ≤9188) ⑵由图象可得每个同学接水量为0.25升,则前22个同学需接水0.25×22=5.5(升),存水量y=18-5.5=12.5(升)∴12.5=-109x+594解得 x=7 ∴前22个同学接水共需要7分钟。
专题17.4 一次函数实际应用-最大利润问题专练(30道)-原卷版

2023-2024年数学八年级下册重难点专题提升【华师大版】专题17.4 一次函数实际应用-最大利润问题专练(30道)一、解答题(本卷共30道,总分120分)1.(八年级下·黑龙江双鸭山·期末)某网店直接从工厂购进A、B两款自拍杆,进货价和销售价如表:(1)网店第一次用850元购进A、B两款自拍杆共30个,求这两款自拍杆分别购进多少个?(2)第一次购进的自拍杆售完后,该网店计划再次购进A、B两款自拍杆共80个(进货价和销售价都不变),且进货总价不高于2200元.如何购进A、B两款自拍杆,才能使所获得的销售利润最大?最大利润值为多少?2.(八年级上·江西九江·期中)已知某服装厂现有布料70米,现计划用这种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用布料1.6米,可获利100元;做一套N型号的时装需用布料0.6米,可获利45元.设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元.(1)求y(元)与x(套)之间的函数表达式.(2)当生产M型号的时装多少套时,能使该厂所获利润最大?最大利润是多少?3.(九年级下·内蒙古鄂尔多斯·阶段练习)小明家今年种植的草莓喜获丰收,该草莓上市的成本价为10元/斤,售价为16元/斤,小明对该草莓一个月(30天)销售情况进行记录并绘成如图所示的图像.图中的折线OAB表示日销量y(斤)与销售时间x(天)之间的函数关系,若线段AB表示的函数关系中,时间每增加1天,日销量减少20斤.(1)第25天的日销量是________斤,这天销售利润是________元;(2)求y与x之间的函数关系式,并写出x的取值范围;(3)日销售利润不低于1080元的天数共有多少天?销售期间日销售最大利润是多少元?4.(2022·广东深圳·一模)某超市计划购进甲、乙两种水果进行销售.经了解,甲种水果和乙种水果的进价与售价如下表所示:已知用1200元购进甲种水果的重量与用1500元购进乙种水果的重量相同.(1)求甲、乙两种水果的进价;(2)若该超市购进这两种水果共100千克,其中甲种水果的重量不低于乙种水果重量的3倍,若全部卖完所购进的这两种水果,则超市应如何进货才能获得最大利润,最大利润是多少?5.(八年级上·安徽亳州·阶段练习)夏季来临,某商场准备购进甲、乙两种空调,其中甲种空调比乙种空调进价每台少500元,用40000元购进甲种空调数量与用50000元购进乙种空调数量相同.该商场计划一次性从空调生产厂家购进甲、乙两种空调共100台,其中乙种空调的数量不超过甲种空调的2倍.若甲种空调每台售价2400元,乙种空调每台售价3000元.请解答下列问题:(1)求甲、乙两种空调每台的进价分别是多少元?(2)设购进甲种空调x台,100台空调的销售总利润为y元,求出y与x之间的函数关系式及自变量x 的取值范围;(3)该商店购进甲、乙两种空调各多少台才能使销售总利润最大,最大利润是多少?6.(八年级下·山东临沂·期末)受新冠肺炎疫情影响,一水果种植专业户有大量成熟水果无法出售.“一方有难,八方支援.”某水果经销商主动从该种植专业户购进甲,乙两种水果进行销售.专业户为了感谢经销商的援助,对甲种水果的出售价格根据购买量给予优惠,对乙种水果按25元/千克的价格出售.设经销商购进甲种水果x千克,付款y元,y与x之间的函数关系如图所示.(1)求出当0≤x≤50和x>50时,y与x之间的函数关系式;(2)若经销商计划一次性购进甲,乙两种水果共100千克,且甲种水果不少于50千克,但又不超过60千克.如何分配甲,乙两种水果的购进量,才能使经销商付款总金额w(元)最少?最少是多少元?7.(2022·福建福州·模拟预测)某水果商计划购进甲、乙两种水果进行销售,经了解,甲种水果的进价比乙种水果的进价每千克少4元,且用600元购进甲种水果的数量与用750元购进乙种水果的数量相同.(1)求甲、乙两种水果的单价分别是多少元?(2)该水果商根据本店平常的销售情况,决定购进两种水果共100千克.其中甲种水果的数量不超过乙种水果数量的3倍,且购买资金不超过1710元.购回后,水果商决定甲种水果的销售价定为每千克20元,乙种水果的销售价定为每千克25元,那么水果商应如何进货,才能获得最大利润,最大利润是多少?8.(八年级下·上海·期中)某年,埃博拉病毒在非洲肆虐,某制药厂研制出一种提高免疫力的药品,为赶制这批紧销药品投放市场,立即组织100名工人进行生产,已知生产这种药品有两道工序:一是由原材料生产半产品,二是由半产品生产出药品.由于半产品不易保存,剩余半成品当天必须卖给附近大厂,每名工人每天可生产半成品30千克或由半成品生产药品4千克(两项选一项),每2千克半成品只能生产1千克药品.若药品出厂价为30元/千克,半成品价格为3元/千克.(1)设厂长每天安排x名工人生产半成品,销售药品收入y1元,请用x的代数式表示销售药品收入y1;设当天剩余半成品全部卖出收入为y2元,请用x的代数式表示y2,并求出这个问题中x的取值范围.(2)为了使每天收益最大,请你帮厂长策划:每天安排多少名工人生产半产品?并求出这个最大收益.9.(2022·福建厦门·一模)某超市经销甲、乙两种品牌的洗衣液,甲品牌洗衣液每瓶的进价比乙品牌高6元,用1800元购进甲品牌洗衣液的数量是用1800元购进乙品牌洗衣液数量的45.销售时,甲品牌洗衣液的售价为36元/瓶,乙品牌洗衣液的售价为28元/瓶.(1)求两种品牌洗衣液的进价;(2)若超市需要购进甲、乙两种品牌的洗衣液共120瓶,且购进两种洗衣液的总成本不超过3120元,求超市在两种洗衣液完全售出后所获的最大利润是多少元?10.(2021·广东·一模)为了做好学校疫情防控工作.某校从药店购进一批甲、乙两种型号的口罩,已知乙种型号的口罩每袋单价比甲种型号的口罩每袋单价少5元,购买2500元的甲种口罩的数量和购买2000元的乙种口罩的数量相同.(1)求甲、乙两种口罩每袋的售价;(2)该药店决定用不超过15200元购进甲、乙两种型号口罩共800袋,已知甲种型号口罩每袋的进价为21元,乙种型号口罩每袋的进价为17元,求药店售出该批口罩的最大利润.11.(2021·河南南阳·一模)民族要复兴,乡村必振兴2月21日发布的2021年中央一号文件,主题是全面推进乡村振兴加快农业农村现代化.乡村振兴战略的实施效果要用农民生活富裕水平来评价,某合作社为尽快打开市场,对本地新产品进行线上和线下销售相结合的模式,具体费用标准如下:线下销售模式:标价5元/千克,八折出售;线上销售模式:标价5元/千克,九折出售,超过6千克时,超出部分每千克再让利1.5元.购买这种新产品x千克,所需费用为y元,y与x之间的函数关系如图所示.根据以上信息回答下列问题:(1)请求出两种销售模式对应的函数解析式;(2)说明图中点C坐标的实际意义;(3)若想购买这种产品10千克,请问选择哪种模式购买最省钱?12.(2021·陕西·三模)由于疫情的影响,“地摊经济”成为了很多人经济来源的一种形式.李叔叔从市场得知如下信息:李叔叔计划购进A、B商品共100件进行销售.设购进A商品x件,A、B商品全部销售完后获得利润为y元.(1)求出y与x之间的函数关系式;(2)若李叔叔用不超过2000元资金一次性购进A,B两种商品,则如何进货,才能使得获利最大?并求出最大利润.13.(2021九年级·浙江·专题练习)新冠肺炎疫情牵动人民的心,为打赢这场没有硝烟的战“疫”,甲,乙两公司向A,B两城市运送防疫物资,已知甲,乙两公司共有防疫物资400吨,其中甲公司防疫物资比乙公司防疫物资多80吨,(1)求甲,乙两公司分别有多少吨防疫物资.(2)现A城市急需防疫物资220吨,B城市急需防疫物资180吨.甲,乙两公司到A,B两城市的防疫物资运费如表:①若总运费不超过10800元,求甲公司运往A城市防疫物资至多为多少吨?①国家出台支持每吨防控政策,对甲公司运往A城市的防疫物资的运费每吨财政补贴a元,乙公司运往B城市的运费每吨财政补贴b元,其余路线运费不变,已知a+b<6,若总运费的最小值为10080元,求a的值.14.(八年级上·广西百色·期末)新冠肺炎肆虐全球,但病毒无情人有情,最美逆行者不顾个人安危奔赴疫情前线.某公司前往慰问医护人员,欲购进甲,乙两种呼吸机捐赠给医院.若购进甲、乙两种呼吸机共90台,甲种呼吸机每台单价4000元,乙种呼吸机每台单价比甲种少1000元.(1)求购买甲,乙两种呼吸机的总费用y元与甲种呼吸机台数x台之间的函数关系式.(2)若该公司购进甲种呼吸机台数不低于乙种台数的一半,则如何购买两种机器能使花费最少?最少费用为多少元?15.(八年级上·浙江绍兴·期末)某商店销售A型和B型两种型号的平板,销售一台A型平板可获利120元,销售一台B型平板可获利140元.该商店计划一次购进两种型号的平板共100 台,其中B 型平板的进货量不超过A型平板的3倍.设购进A型平板x台,这100台平板的销售总利润为y 元.(1)求A型平板至少多少台?(2)该商店购进A型、B型平板各多少台,才能使销售利润最大?(3)若限定商店最多购进A型平板60台,则这100台平板的销售总利润能否为13600元?若能,请求出此时该商店购进A型平板的台数;若不能,请求出这100台平板销售总利润的范围.16.(八年级上·安徽亳州·期末)立仓稻虾养殖龙虾到了收获的季节,现有22吨龙虾等待出售,有两种销售渠道,一是运往省城直接批发给零售商,二是在本地市场零售,受客观因素影响,每天只能采用一种销售渠道,而且龙虾必须在10天内售出(含10天),经过调查分析,这两种渠道每天的销量及每吨的利润见下表:(1)若一部分龙虾运往省城批发,其余本地销售,请写出销售22吨龙虾所获利润y(元)与运往省城批发零售商的龙虾量x(吨)之间的函数表达式;(2)怎样安排这22吨龙虾的销售渠道,才能使所获利润最大?并求出最大利润.17.(2020·贵州遵义·中考真题)为倡导健康环保,自带水杯已成为一种好习惯,某超市销售甲,乙两种型号水杯,进价和售价均保持不变,其中甲种型号水杯进价为25元/个,乙种型号水杯进价为45元/个,下表是前两月两种型号水杯的销售情况:(1)求甲、乙两种型号水杯的售价;(2)第三月超市计划再购进甲、乙两种型号水杯共80个,这批水杯进货的预算成本不超过2600元,且甲种型号水杯最多购进55个,在80个水杯全部售完的情况下设购进甲种号水杯a个,利润为w 元,写出w与a的函数关系式,并求出第三月的最大利润.18.(2020·浙江台州·模拟预测)某商场计划购进A,B两种新型节能台灯共120盏,这两种台灯的进价和售价如表所示:(1)若商场恰好用完预计进货款5500元,则应这购进两种台灯各多少盏?(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这两种台灯时获得的毛利润最多?最多毛利润为多少元?(毛利润=销售收入-进货成本).19.(八年级上·陕西渭南·期末)在“一带一路”战略的影响下,某茶叶经销商准备把“茶路”融入“丝路”,经计算,他销售10斤A级别和20斤B级别茶叶的利润为4000元,销售20斤A级别和10斤B级别茶叶的利润为3500元(1)分别求出每斤A级别茶叶和每斤B级别茶叶的销售利润;(2)若该经销商一次购进两种级别的茶叶共200斤用于出口.设购买A级别茶叶a斤(70≤a≤120),销售完A、B两种级别茶叶后获利w元.①求出w与a之间的函数关系式;①该经销商购进A、B两种级别茶叶各多少斤时,才能获取最大的利润,最大利润是多少?20.(八年级下·湖南长沙·阶段练习)近段时间共享单车风靡全国,刺激了自行车生产厂家,某厂家、两种型号的共享单车,已知生产6辆A型单车与5辆B型单车的成本相同,生产3辆A 准备生产A B型单车与2辆B型单车共需1080元.(1)求生产一辆A型车和生产一辆B型单车的成本各为多少元?、两种型号的单车共10000辆,恰逢原(2)由于共享单车公司需求量加大,生产厂家需要再生产A B料商对基本原料的价格进行调整,调整后,A型单车每辆成本价比原来降低10%,B型单车每辆的成本价不变,如果厂家准备投入的总成本不超过216万元,那么至少要生产多少辆A型单车?(3)在(2)的条件下,该生产厂家发现,销售过程中每辆A型单车可获利100元,每辆B型单车可获利120元,求全部销售完这批单车获得的利润z与A型单车辆数m之间的函数关系式,并求获利最大的方案及最大利润.21.(八年级下·四川成都·阶段练习)某超市决定购进甲、乙两种取暖器,已知甲种取暖器每台进价比乙种取暖器多500元,用40000元购进甲种取暖器的数量与用30000元购进乙种取暖器的数量相同.请解答下列问题:(1)求甲、乙两种取暖器每台的进价;(2)若甲种取暖器每台售价2500元,乙种取暖器每台售价1800元,超市欲同时购进两种取暖器20台,且全部售出.设购进甲种取暖器x(台),所获利润为y(元),试用关于x的式子表示y;(3)在(2)的条件下,若超市计划用不超过36000元购进取暖器,且甲种取暖器至少购进10台,并将所获得的最大利润全部用于为某敬老院购买1100元/台的A型按摩器和700元/台的B型按摩器.求购买按摩器的方案.22.(八年级下·山东潍坊·期末)某销售商计划购进甲、乙两种商品共1000件进行销售.已知甲种商品每件进价20元,乙种商品每件进价80元;通过市场考察,销售商决定甲种商品以每件30元的价格出售,乙种商品以每件100元的价格出售.设销售商购进的甲种商品有x件,销售完甲、乙两种商品后获得的总利润为y元()1求y与x的函数关系式;()2如果销售商购进的甲种商品的数量不少于乙种商品数量的4倍,请求出获利最大的进货方案,所获得的最大利润是多少元?23.(八年级下·山东临沂·阶段练习)我市某乡A、B两村盛产柑橘,A①村有柑橘200 吨,B村有柑橘300吨.现将这些柑橘运到C、D两个冷藏仓库,已知C仓库可储存240 吨,D仓库可储存260吨;从A村运往C、D两处的费用分别为每吨20元和25元,从B村运往C、D两处的费用分别为每吨15元和18元,设从A村运往C仓库的柑橘重量为x吨,A、B①两村运往两仓库的柑橘运输费用分别为y A元和y B元.(1)求出y A、y B与x之间的函数关系式;y A = ________________________,y B = ________________________.(2)试讨论A、B两村中,哪个村的运费较少;(3)考虑到B村的经济承受能力,B村的柑橘运费不得超过4830元.在这种情况下,请问怎样调运,才能使两村运费之和最小?求出这个最小值.24.(八年级上·四川成都·期末)寒假即将到来,外出旅游的人数逐渐增多,对旅行包的需求也将增多,某店准备到生产厂家购买旅行包,该厂有甲、乙两种新型旅行包.若购进10个甲种旅行包和20个乙种旅行包共需5600元,若购进20个甲种旅行包和10个乙种旅行包共需5200元.(1)甲、乙两种旅行包的进价分别是多少元?(2)若该店恰好用了7000元购买旅行包;①设该店购买了m个甲种旅行包,求该店购买乙种旅行包的个数;①若该店将甲种旅行包的售价定为298元,乙种旅行包的售价定为325元,则当该店怎么样进货,才能获得最大利润,并求出最大利润.25.(八年级下·湖北黄冈·期末)某公司开发出一款新的节能产品,该产品的成本价为8元/件,该产品在正式投放市场前通过代销点进行了为期一个月30天的试销售,售价为13元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘制成如图所示的图象,图中的折线ABC表示日销量y(件)与销售时间x(天)之间的函数关系.(1)直接写出y 与x 之间的函数解析式,并写出x 的取值范围.(2)若该节能产品的日销售利润为w (元),求w 与x 之间的函数解析式.日销售利润不超过1950元的共有多少天?(3)若517x ≤≤,求第几天的日销售利润最大,最大的日销售利润是多少元?26.(八年级下·湖北·阶段练习)某公司计划购买A 、B 两种计算器共100个,要求A 种计算器数量不低于B 种的14,且不高于B 种的13.已知买1个A 种计算器和1个B 种计算器共需250元,买2个A 种计算器和3个B 种计算器的费用相等.(1)求两种计算器的单价.(2)求如何购买可使总费用最低.(3)由于市场行情波动,实际购买时,A 种计算器单价下调m 元(m>0),同时B 种计算器单价上调了m 元,此时购买这两种计算器所需最少费用为12200元,求m 的值.27.(八年级下·浙江温州·阶段练习)某商场计划购进甲、乙两种运动鞋,其中甲、乙两种运动鞋的进价和售价如表(进价大于50元)已知:用3000元购进甲种运动鞋的数量比用2400元购进乙种运动鞋的数量多5.(1)求m的值;(2)设该商场应购进甲种运动鞋t双,两种鞋共200双,商场销售完这批鞋可获利y元,请求出y 关于t的函数解析式;(3)商场计划在(2)的条件下,总进价不低于19520元,且不超过19532元,问该专卖店有哪几种进货方案?(4)求该专卖店要获得最大利润的进货方案及最大利润.28.(九年级下·湖南长沙·阶段练习)在紧张的中考复习之际,为确保学生的饮食健康与安全,部分家长组织成立中考护卫小分队,每天不辞辛劳从城区进购正规检疫菜品.某甲、乙两种菜品每份进价分别为14 元、16 元,售价均为每份18 元,这两种菜品每天的进价总额为1480 元,全部销售完每天总利润为320 元.(1)该甲、乙两种菜品每天各卖出多少份?(2)因受气温变化的影响,甲种菜品进价每份上涨a (0 <a < 4)元,为确保学生的营养,在每天两种菜品的进购总量不变的情况下,要求甲种菜品的数量不得低于10 份,也不超过乙种菜品的3 倍,则进购甲种菜品多少份才能使每天的总利润最大.29.(八年级·全国·课时练习)某花卉基地出售两种花卉,其中马蹄莲每株3.5元,康乃馨每株5元.如果同一客户所购买的马蹄莲数量多于1000株,那么所有的马蹄莲每株还可优惠0.5元.现某鲜花店向该花卉基地采购马蹄莲8001200株、康乃馨若干株,本次采购共用了7000元,然后再以马蹄莲每株4.5元、康乃馨每株7元的价格卖出.问该鲜花店应如何采购这两种鲜花才能使获得的利润最大?(注:8001200株表示采购株数大于等于800株,且小于等于1200株;利润=销售所得金额-进货所需金额)30.(2019·江苏镇江·二模)某超市购进一批牛肉销售,经过还价,实际价格每千克比原来少2元,发现原来买这批牛肉32千克的钱,现在可买33千克.(1)现在实际购进这批牛肉每千克多少元?(2)若这批牛肉的销售量y(千克)与销售单价x(元/千克)满足如图所示的一次函数关系.求y与x之间的函数关系式;(3)这批牛肉的销售单价定为多少时,能获得最大利润?最大利润是多少?(利润=销售收入﹣进货金额)。
人教版八年级数学下册一次函数的实际应用解答题专项练习(word版含解析)

八年级数学下册一次函数的实际应用解答题专项练习1.甲、乙两台机器共同加工一批零件,一共用了6小时,在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工,甲机器在加工过程中工作效率保持不变,甲、乙两台机器加工零件的总数y(个)与甲加工时间x(h)之间的函数图象为折线OA﹣AB﹣BC.如图所示.(1)这批零件一共有个,甲机器每小时加工个零件;(2)在整个加工过程中,求y与x之间的函数解析式;(3)乙机器排除故障后,求甲加工多长时间时,甲与乙加工的零件个数相差10个.2.某企业计划通过扩大生产能力来消化第一季度积累的订单,决定增加一条新的生产线并招收工人.根据以往经验,一名熟练工人每小时完成的工件数量比一名普通工人每小时完成的工件数量多10个,且一名熟练工人完成160个工件与一名普通工人完成80个工件所用的时间相同.(1)求一名熟练工人和一名普通工人每小时分别能完成多少个工件?(2)新生产线的目标产能是每小时生产200个工件,计划招聘n名普通工人与m名熟练工人共同完成这项任务,请写出m与n的函数关系式(不需要写自变量n的取值范围);(3)该企业在做市场调研时发现,一名普通工人每天工资为120元,一名熟练工人每天工资为150元,而且本地区现有熟练工人不超过8人.在(2)的条件下,该企业如何招聘工人,使得工人工资的总费用最少?3.某电信公司推出如下A,B两种通话收费方式,记通话时间为x分钟,总费用为y元.根据表格内信息完成以下问题:(1)分别求出A,B两种通话收费方式对应的函数表达式;(2)在给出的坐标系中作出收费方式A对应的函数图象,并求出;①通话时间为多少分钟时,两种收费方式费用相同;②结合图象,直接写出选择哪种通话方式能节省费用?4.如图(1)是某手机专卖店每周收支差额y(元)(手机总利润减去运营成本)与手机台数x(台)的函数图象,由于疫情影响目前这个专卖店亏损,店家决定采取措施扭亏.方式一:改善管理,降低运营成本,以此举实现扭亏.方式二:运营成本不变,提高每台手机利润实现扭亏(假设每台手机的利润都相同).解决以下问题:(1)说明图(1)中点A和点B的实际意义;(2)若店家决定采用方式一如图(2),要使每周卖出70台时就能实现扭亏(收支平衡),求节约了多少运营成本?(3)若店家决定两种方式都采用,降低运营成本为m元,提高每台手机利润n元,当5000≤m≤7000,50≤n≤100时,求店家每周销售100台手机时可获得的收支差额范围,并在图(3)中画出取得最大收支差额时y与x的关系的大致图象,要求描出反映关键数据的点.5.如图,l A、l B分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.(1)B出发时与A相距千米.(2)B走了一段路后,自行车发生故障,B进行修理,所用的时间是小时.(3)B第二次出发后小时与A相遇.(4)若B的自行车不发生故障,保持出发时的速度前进,则出发多长时间与A相遇?(写出过程)6.甲、乙两人相约周末登崂山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,且当乙提速后,乙的登山上升速度是甲登山上升速度的3倍,且根据图象所提供的信息解答下列问题:(1)乙在A地时距地面的高度b为米;t的值为;(2)请求出甲在登山全程中,距离地面高度y(米)与登山时间x(分)之间的函数关系式;(3)已知AB段对应的函数关系式为y=30x﹣30,则登山多长时间时,甲、乙两人距地面的高度差为70米?(直接写出答案)7.某水果店11月份购进甲、乙两种水果共花费1800元,其中甲种水果10元/千克,乙种水果16元/千克.12月份,这两种水果的进价上调为:甲种水果13元/千克,乙种水果18元/千克.(1)若该店12月份购进这两种水果的数量与11月份都相同,将多支付货款400元,求该店11月份购进甲、乙两种水果分别是多少千克?(2)若12月份将这两种水果进货总量减少到130千克,设购进甲种水果a千克,需要支付的货款为w元,求w与a的函数关系式;(3)在(2)的条件下,若甲种水果不超过80千克,则12月份该店需要支付这两种水果的货款最少应是多少元?8.甲骑电动车,乙骑自行车从深圳湾公园门口出发沿同一路线匀速游玩,设乙行驶的时间为x(h),甲、乙两人距出发点的路程S甲、S乙关于x的函数图象如图①所示,甲、乙两人之间的路程差y关于x的函数图象如图②所示,请你解决以下问题:(1)甲的速度是km/h,乙的速度是km/h;(2)对比图①、图②可知:a=,b=;(3)乙出发多少时间,甲、乙两人路程差为7.5km?9.某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费,月用电量不超过200度时,按0.55元/度计费,月用电量超过200度时,其中的200度仍按0.55元/度计费,超过部分按0.70元/度计费,设每户家庭月用电量为x度时,应交电费y元.(1)分别求出0≤x≤200和x>200时,y与x的函数解析式.(2)小明家4月份用电250度,应交电费多少元?(3)小明家6月份交纳电费117元,小明家这个月用电多少度?10.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)乙队开挖到30m时,用了小时,甲队在开挖后6小时内,每小时挖m;(2)分别求出y甲、y乙与x的函数解析式,并写出自变量x的取值范围;(3)开挖2小时,甲、乙两队挖的河渠的长度相差m,开挖6小时,甲、乙两队挖的河渠的长度相差m;(4)求开挖后几小时,甲、乙两队挖的河渠的长度相差5m.11.新冠肺炎疫情爆发后,口罩成为了最紧缺的防护物资之一,比亚迪,长安,格力等企业响应国家号召,纷纷开设口罩生产线.2月1日,重庆东升公司复工,利用原有的A生产线开始生产口罩,8天后,采用最新技术的B生产线建成投产同时,为加大口罩产能,公司耗时2天对A 生产线进行技术升级,升级期间A生产线暂停生产,升级后,产能提高20%.如图反映了每条A,B生产线的口罩总产量y(万个)与时间x(天)之间的关系,根据图象,解答下列问题:(1)技术升级后,每条A生产线每天生产口罩万个;(2)每条B生产线每天生产口罩万个;(3)技术升级后,东升公司的口罩日总产量为136万个,已知公司有15条A生产线,则B 生产线有条;(4)在(3)的条件下,东升公司进一步扩大产能,两生产线在原每日工作时长8小时的基础上,增加m小时(m为正整数),同时新增k条B生产线,此时公司口罩日总产量达到260万个,求正整数k的值.12.某校开展“文明在行动”的志愿者活动,准备购买某一品牌书包送到希望学校.在A商店,无论一次购买多少,价格均为每个50元,在B商店,一次购买数量不超过10个时,价格为每个60元;一次购买数量超过10个时,超出10个部分打八折.设一次购买该品牌书包的数量为x个(x>0).(Ⅰ)根据题意填表:(Ⅱ)设在A商店花费y1元,在B商店花费y2元,分别求出y1,y2关于x的函数解析式;(Ⅲ)根据题意填空:①若小丽在A商店和在B商店一次购买书包的数量相同,且花费相同,则她在同一商店一次购买书包的数量为个.②若小丽在同一商店一次购买书包的数量为50个,则她在A,B两个商店中的商店购买花费少;③若小丽在同一商店一次购买书包花费了1800元,则她在A,B两个商店中商店购买数量多.13.小明和妈妈元旦假期去看望外婆,返回时,他们先搭乘顺路车到A地,约定小明爸爸驾车到A地接他们回家.一家人在A地见面,休息半小时后,小明爸爸驾车返回家中.已知小明他们与外婆家的距离s(km)和小明从外婆家出发的时间t(h)之间的函数关系如图所示.(1)小明家与外婆家的距离是km,小明爸爸驾车返回时平均速度是km/h:(2)点P的实际意义是什么?(3)求他们从A地驾车返回家的过程中,s与t之间的函数关系式.14.新冠疫情期间,口罩的需求量增大,某口罩加工厂承揽生产1600万个口罩的任务,每天生产的口罩数量相同,计划用x天(x>4)完成.(1)求每天生产口罩y(万个)与生产时间x(天)之间的函数表达式;(2)由于疫情形势严峻,卫生管理部门要求厂家提前4天交货,那么加工厂每天要多做20万个口罩才能完成任务,求实际生产时间.15.某公司销售玉米种子,价格为5元/千克,如果一次性购买10千克以上的种子,超过10千克部分的种子的价格打8折,部分表格如下:(1)直接写出表格中a,b的值;(2)设购买种子数量为x(x>10)千克,付款金额为y元,求y与x的函数关系式;(3)小李第一次购买种子35千克,第二次又购买了8千克,若两次购买种子的数量合在一起购买可省多少钱?参考答案1.解:(1)由函数图象可知,共用6小时加工完这批零件,一共有270个.AB段为甲机器单独加工,每小时加工个数为(90﹣50)÷(3﹣1)=20(个),故答案为:270,20;(2)设y OA=k1x,当x=1时,y=50,则50=k1,∴y OA=50x;设y AB=k2x+b2,,解得,∴y AB=20x+30;设y BC=k3x+b3,,解得,∴y BC=60x﹣90;综上所述,在整个加工过程中,y与x之间的函数解析式是y=;(3)乙开始的加工速度为:50÷1﹣20=30(个/小时),乙后来的加工速度为:(270﹣90)÷(6﹣3)﹣20=40(个/小时),设乙机器排除故障后,甲加工a小时时,甲与乙加工的零件个数相差10个,20a﹣[30×1+40(a﹣3)]=±10,解得a=4或a=5,答:排除故障后,甲加工4小时或5小时时,甲与乙加工个数相差10.2.解:(1)设一名普通工人每小时完成x个工件,则一名熟练工人每小时完成(x+10)个工件,,解得x=10,经检验,x=10是原分式方程的解,∴x+10=20,即一名熟练工人和一名普通工人每小时分别能完成20个工件、10个工件;(2)由题意可得,10n+20m=200,则m=﹣0.5n+10,即m与n的函数关系式是m=﹣0.5n+10;(3)设工人工资的总费用为w元,w=120n+150m=120n+150(﹣0.5m+10)=45n+1500,∴w随n的增大而增大,∵本地区现有熟练工人不超过8人,∴m≤8,即﹣0.5n+10≤8,解得n≥4,∴当n=4时,w取得最小值,此时w=1680,m=﹣0.5n+10=8,答:招聘普通工人4人,熟练工人8人时,工人工资的总费用最少.3.解:(1)由表格可得,收费方式A对应的函数表达式是y=0.2x+12,收费方式B对应的函数表达式是:当0≤x≤40时,y=18,当x>40时,y=0.3(x﹣40)+18=0.3x+6,由上可得,收费方式A对应的函数表达式是y=0.2x+12,收费方式B对应的函数表达式是y =;(2)∵收费方式A对应的函数表达式是y=0.2x+12,∴当x=0时,y=12,当x=40时,y=20,收费方式A对应的函数图象如右图所示;①设通话时间为a分钟时,两种收费方式费用相同,0.2a+12=18或0.2a+12=0.3a+6,解得a=30或a=60,即通话时间为30分钟或60分钟时,两种收费方式费用相同;②由图象可得,当0≤x<30或x>60时,选择A种通话方式能节省费用;当x=30或x=60时,两种通话方式一样;当30<x<60时,选择B种通话方式能节省费用.4.解:(1)由图像可知A点是函数图象与x轴的交点,所以点A的实际意义表示当卖出100台手机时,该专卖店每周收支差额为0;B点是函数图象与y轴的交点,所以点B的实际意义表示当手机店一台手机都没有卖出时,该专卖店亏损20000元;(2)由图(1)可求出以前的函数为y=200x﹣20000,若店家决定采用方式一,降低运营成本,即将函数图象上下平移,所以可以设新函数为y=200x+b,∵函数图象经过点(70,0),代入可得200×70+b=0,解得:b=﹣14000,∴要使每周卖出70台时就能实现扭亏(收支平衡),运营成本为14000元,节约了6000元运营成本;(3)设新函数为y=(200+n)x﹣(20000﹣n),∵50≤n≤100,∴250≤200+n≤300,当店家每周售出100台手机,收支差额最小时y=250×100﹣7000=18000,收支差额最大时y=300×100﹣5000=25000,∴收支差额范围为18000≤y≤25000,图象为:.5.解:(1)∵当t=0时,S=10,∴B出发时与A相距10千米.故答案为:10.(2)1.5﹣0.5=1(小时).故答案为:1.(3)观察函数图象,可知:B第二次出发后1.5小时与A相遇.(4)设A行走的路程S与时间t的函数关系式为S=kt+b(k≠0),将(0,10),(3,22.5)代入S=kt+b,得:,解得:,∴A行走的路程S与时间t的函数关系式为S=x+10.设若B的自行车不发生故障,则B行走的路程S与时间t的函数关系式为S=mt.∵点(0.5,7.5)在该函数图象上,∴7.5=0.5m,解得:m=15,∴设若B的自行车不发生故障,则B行走的路程S与时间t的函数关系式为S=15t.联立两函数解析式成方程组,得:,解得:,∴若B的自行车不发生故障,保持出发时的速度前进,小时与A相遇.6.解:(1)甲登山上升的速度是:(300﹣100)÷20=10(米/分钟), 乙提速后的速度为:10×3=30(米/分钟),b=15÷1×2=30;t=2+(300﹣30)÷30=11,故答案为:30;11;(2)设甲在登山全程中,距离地面高度y(米)与登山时间x(分)之间的函数关系式为y=kx+100,根据题意,得20k+100=300,解得k=10,故y=10x+100(0≤x≤20);(3)根据题意,得:当10x+100﹣(30x﹣30)=70时,解得:x=3;当30x﹣30﹣(10x+100)=70时,解得:x=10;当300﹣(10x+100)=70时,解得:x=13.答:登山3分钟、10分钟或13分钟时,甲、乙两人距地面的高度差为70米.7.解:(1)设该店11月份购进甲种水果x千克,购进乙种水果y千克, 根据题意得:,解得,答:该店11月份购进甲种水果100千克,购进乙种水果50千克;(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(130﹣a)千克, 根据题意得:w=10a+20(130﹣a)=﹣10a+2600;(3)根据题意得,a≤80,由(2)得,w=﹣10a+2600,∵﹣10<0,w随a的增大而减小,∴a=80时,w有最小值w最小=﹣10×80+2600=1600(元).答:12月份该店需要支付这两种水果的货款最少应是1600元.8.解:(1)由图可得,甲的速度为:25÷(1.5﹣0.5)=25÷1=25(km/h),乙的速度为:25÷2.5=10(km/h), 故答案为:25,10;(2)由图可得,a=25×(1.5﹣0.5)﹣10×1.5=10,b=1.5,故答案为:10;1.5;(3)由题意可得,前0.5h,乙行驶的路程为:10×0.5=5<7.5,则甲、乙两人路程差为7.5km是在甲乙相遇之后,设乙出发xh时,甲、乙两人路程差为7.5km,25(x﹣0.5)﹣10x=7.5,解得,x=,25﹣10x=7.5,得x=;即乙出发或时,甲、乙两人路程差为7.5km.9.解:(1)当0≤x≤200时,y与x的函数解析式是y=0.55x;当x>200时,y与x的函数解析式是y=0.55×200+0.7(x﹣200),即y=0.7x﹣30;(2)小明家4月份用电250度,月用电量超过200度,所以应交电费为:0.7×250﹣30=145(元),(3)因为小明家6月份的电费超过110元,所以把y=117代入y=0.7x﹣30中,得x=210.答:小明家6月份用电210度.10.解:(1)依题意得,乙队开挖到30m时,用了2h,开挖6h时甲队比乙队多挖了60﹣50=10(m);故答案为:2;10;=k1x, (2)设甲队在0≤x≤6的时段内y与x之间的函数关系式y甲由图可知,函数图象过点(6,60),∴6k1=60,解得k1=10,∴y甲=10x,设乙队在2≤x≤6的时段内y与x之间的函数关系式为y=k2x+b,乙由图可知,函数图象过点(2,30)、(6,50),∴,解得,∴y 乙=5x +20;当0≤x ≤2时,设y 乙与x 的函数解析式为y 乙=kx ,可得2k =30,解得k =15,即y 乙=15x ; ∴y 乙=,(3)依题意得,开挖2小时,甲、乙两队挖的河渠的长度相差10m ,开挖6小时,甲、乙两队挖的河渠的长度相差10m ;故答案为:10;10;(4)当0≤x ≤2时,15x ﹣10x =5,解得x =1.当2<x ≤4时,5x +20﹣10x =5,解得x =3,当4<x ≤6时,10x ﹣(5x +20)=5,解得x =5.答:当两队所挖的河渠长度之差为5m 时,x 的值为1h 或3h 或5h .11.解:(1)由图可知,升级前A 生产线的日产量为:32÷8=4(万个),∵升级后,日产能提高20%,∴技术升级后,每条A 生产线每天生产口罩4×(1+20%)=4.8(万个), 故答案为:4.8;(2)A 生产线技术升级后,A 生产线的产量由32万到56万,所用的时间为(56﹣32)÷4.8=5(天),故B 生产线从第8天开始生产到第15天的产能为56万个,所以每条B 生产线每天生产口罩:56÷(15﹣8)=8(万个),故答案为:8;(3)设B 生产线有x 条,根据题意得:15×4.8+8x =136,解得:x =8,故答案为:8;(4)A生产线升级后每小时产能为:4.8÷8=0.6(万个),B生产线的每小时产能为:8÷8=1(万个),根据题意得:0.6×(8+m)×15+(8+m)(8+k)=260,整理得:(8+m)(17+k)=260,∵m、k为正整数,∴8+m为大于8的正整数,17+k为大于17的正整数,∴(8+m)(17+k)=260=10×26=13×20,∴8+m=10,17+k=26或8+m=13,17+k=20,∴m=2,k=9或m=5,k=3,∴每日工作时长增加2小时,B生产线增加9条或每日工作时长增加5小时,B生产线增加3条即可使公司口罩日总产量达到260万个,∴正整数k的值为9或3.答:正整数k的值为9或3.12.解:(Ⅰ)在A商店,购买5个费用=5×50=250(元),购买15个费用为15×50=750(元),在B商店,购买5个费用=5×60=300(元),购买15个费用为10×60+60×0.8(15﹣10)=840(元),故答案为:250,750,300,840;(Ⅱ)由题意可得:y1=50x(x≥0),当0≤x≤10时,y2=60x,当x>10时,y2=60×10+60×0.8×(x﹣10)=48x+120(x>10),∴y2=;(Ⅲ)①由题意可得:50x=48x+120,解得x=60,故答案为:60;②∵50×50<48×50+120,∴在A商店购买花费少,故答案为:A;③若在A商店,=36(个),若在B商店,=35(个),∵36>35,∴在A商店购买的数量多,故答案为:A.13.解:(1)由图象可得小明家与外婆家的距离为300km,小明经过2小时到达点A,点A到小明外婆家的距离=(300﹣2×90)=120(km),∴小明爸爸驾车返回时平均速度==60(km/h),故答案为:300,60;(2)点P表示小明出发2小时到达A地与小明爸爸相遇;(3)设s与t之间的函数关系式为s=kt+b,且过点(2.5,180),(4.5,300),∴,解得,∴s与t之间的函数关系式为s=60t+30(2.5≤t≤4.5).14.解:(1)每天生产口罩y(万个)与生产时间x(天)之间的函数表达式为:y=(x>4);(2)由题意可得:+20=,解得:x1=20,x2=﹣16,经检验,x1=20,x2=﹣16是原分式方程的解,但x=﹣16不合题意舍去,∴20﹣4=16(天),答:实际生产时间为16天.15.解:(1)a=5×5=25,b=5×10+(20﹣10)×0.8×5=90;(2)y=5×10+5×0.8(x﹣10)=4x+10;(3)购买35千克付款金额=4×35+10=150(元),购买8千克付款金额=5×8=40(元),一起购买付款金额=4×(35+8)+10=182(元), ∴150+40﹣182=8(元),答:一起购买可省8元.。
八年级数学下册 微专题:一次函数的实际应用——利润、方案问题

微专题:一次函数的实际应用——利润、方案问题◆类型一利润问题1.如图,直线l1,l2分别表示某产品一天的销售收入y1,销售成本y2与销售量x的函数关系图像.则y1与x的函数关系式为________,y2与x的函数关系式为________,当一天的销售量x________时,生产该产品才能获利.2.(2017·河北期末)某商场欲购进果汁饮料和碳酸饮料共50箱,两种饮料每箱的进价和售价如下表所示.设购进果汁饮料x箱(x为正整数),且所购进的两种饮料能全部卖出,获得的总利润为W元(注:总利润=总售价-总进价).饮料果汁饮料碳酸饮料进价(元/箱)5136售价(元/箱)6143(1)(2)求总利润W关于x的函数关系式;(3)如果购进两种饮料的总费用不超过2100元,那么该商场如何进货才能获利最多?并求出最大利润.3.(2017·长沙中考)自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁.某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元.(1)求一件A,B型商品的进价;(2)若该欧洲客商购进A,B型商品共250件进行试销,其中A型商品的件数不多于B 型的件数,且不少于80件.已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出.设购进A型商品m件,求该客商销售这批商品的利润v与m之间的函数关系式,并写出m的取值范围;(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该客商售完所有商品并捐献慈善资金后获得的最大收益.◆类型二方案问题4.(2017·邯郸丛台区期末)某校实行学案式教学,需印制若干份数学学案.印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示.(1)填空:甲种收费方式的函数关系式是____________,乙种收费方式的函数关系式是____________.(2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算?5.(2017·承德围场县期末)现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?6.(2017·保定徐水县模拟)为了贯彻落实市委市政府提出的“精准扶贫”精神,某校特制定了一系列关于帮扶A,B两贫困村的计划.现决定从某地运送152箱鱼苗到A,B两村养殖,若用大、小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大、小货车的载货能力分别为(1)求这15(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数表达式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.参考答案与解析1.y 1=x y 2=12x +2 >42.解:(1)y 与x 的函数关系式为y =50-x .(2)总利润W 关于x 的函数关系式为W =(61-51)x +(43-36)(50-x )=3x +350.(3)由题意得51x +36(50-x )≤2100,解得x ≤20.∵W =3x +350,W 随x 的增大而增大,∴当x =20时,W 最大=3×20+350=410,此时购进碳酸饮料50-20=30(箱),∴该商场购进果汁、碳酸饮料分别为20箱、30箱时,能获得最大利润410元.3.解:(1)设一件B 型商品的进价为x 元,则一件A 型商品的进价为(x +10)元.由题意16000x +10=7500x ×2,解得x =150,经检验,x =150是分式方程的解.150+10=160(元).答:一件B 型商品的进价为150元,一件A 型商品的进价为160元. (2)由题知客商购进A 型商品m 件,则客商购进B 型商品(250-m )件.由题意得v =(240-160)m +(220-150)(250-m )=10m +17500.∵80≤m ≤250-m ,∴80≤m ≤125.(3)设利润为w 元.则w =(80-a )m +70(250-m )=(10-a )m +17500.当10-a >0时,w 随m 的增大而增大,m =125时,最大利润为(18750-125a )元.当10-a =0时,最大利润为17500元.当10-a <0时,w 随m 的增大而减小,∴m =80时,最大利润为(18300-80a )元.4.解:(1)y 1=0.1x +6 y 2=0.12x(2)当y 1>y 2时,0.1x +6>0.12x ,得x <300.当y 1=y 2时,0.1x +6=0.12x ,得x =300;当y 1<y 2时,0.1x +6<0.12x ,得x >300;∴当100≤x <300时,选择乙种收费方式合算;当x =300时,甲、乙两种收费方式一样合算;当300<x ≤450时,选择甲种收费方式合算.答:印制100~300(含100)份学案,选择乙种印刷方式较合算,印制300份学案,甲、乙两种印刷方式都一样合算,印制300~450(含450)份学案,选择甲种印刷方式较合算.5.解:(1)由题意知,当0<x ≤1时,y 甲=22x ;当x >1时,y 甲=22+15(x -1)=15x +7.y 乙=16x +3.(2)①当0<x ≤1时,令y 甲<y 乙,即22x <16x +3,解得0<x <12;令y 甲=y 乙,即22x=16x +3,解得x =12;令y 甲>y 乙,即22x >16x +3,解得12<x ≤1.②当x >1时,令y 甲<y乙,即15x +7<16x +3,解得x >4;令y 甲=y 乙,即15x +7=16x +3,解得x =4;令y 甲>y 乙,即15x +7>16x +3,解得1<x <4.综上可知,当12<x <4时,选乙快递公司省钱;当x=4或x =12时,选甲、乙两家快递公司快递费一样多;当0<x <12或x >4时,选甲快递公司省钱.6.解:(1)设大货车用x 辆,小货车用y 辆,根据题意得⎩⎪⎨⎪⎧x +y =15,12x +8y =152,解得⎩⎪⎨⎪⎧x =8,y =7. 答:大货车用8辆,小货车用7辆.(2)y =800x +900(8-x )+400(10-x )+600[7-(10-x )]=100x +9400(3≤x ≤8,且x 为整数).(3)由题意得12x +8(10-x )≥100,解得x ≥5.又∵3≤x ≤8,∴5≤x ≤8且为整数.∵y =100x +9400,k =100>0,∴y 随x 的增大而增大,∴当x =5时,y 最小,y 最小=100×5+9400=9900.答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村;3辆大货车、2辆小货车前往B村.最少运费为9900元.。
函数的实际应用-- 利润最值问题(专题训练)(解析版)-中考数学重难点题型专题汇总

函数的实际应用-中考数学重难点题型专题汇总利润最值问题(专题训练)1.某种商品每件的进价为10元,若每件按20元的价格销售,则每月能卖出360件;若每件按30元的价格销售,则每月能卖出60件.假定每月的销售件数y 是销售价格x (单位:元)的一次函数.(1)求y 关于x 的一次函数解析式;(2)当销售价格定为多少元时,每月获得的利润最大?并求此最大利润.【答案】(1)()y 309601032x x =-+≤≤(2)价格为21元时,才能使每月获得最大利润,最大利润为3630元【分析】(1)设()0y kx b k =+≠,把20x =,360y =和30x =,60y =代入求出k 、b 的值,从而得出答案;(2)根据总利润=每件利润×每月销售量列出函数解析式,配方成顶点式,利用二次函数的性质求解可得答案.(1)解:设()0y kx b k =+≠,把20x =,360y =和30x =,60y =代入可得203603060k b k b +⎧⎨+⎩==,解得30960k b =-⎧⎨=⎩,则()y 309601032x x =-+≤≤;(2)解:每月获得利润()()3096010P x x =-+-()()303210x x =-+-()23042320x x =-+-()230213630x =--+.∵300-<,∴当21x =时,P 有最大值,最大值为3630.答:当价格为21元时,才能使每月获得最大利润,最大利润为3630元.【点睛】本题主要考查了一次函数解析式的求法和二次函数的应用,解题的关键是理解题意找到其中蕴含的相等关系,并据此得出函数解析式及二次函数的性质,然后再利用二次函数求最值.2.某服装店以每件30元的价格购进一批T 恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T 恤的销售单价提高x 元.(1)服装店希望一个月内销售该种T 恤能获得利润3360元,并且尽可能减少库存,问T 恤的销售单价应提高多少元?(2)当销售单价定为多少元时,该服装店一个月内销售这种T 恤获得的利润最大?最大利润是多少元?【答案】(1)2元;(2)当服装店将销售单价50元时,得到最大利润是4000元【分析】(1)根据题意,通过列一元二次方程并求解,即可得到答案;(2)设利润为M 元,结合题意,根据二次函数的性质,计算得利润最大值对应的x 的值,从而得到答案.【详解】(1)由题意列方程得:(x +40-30)(300-10x )=3360解得:x 1=2,x 2=18∵要尽可能减少库存,∴x 2=18不合题意,故舍去∴T 恤的销售单价应提高2元;(2)设利润为M 元,由题意可得:M =(x +40-30)(300-10x )=-10x 2+200x +3000=()210104000x --+∴当x =10时,M 最大值=4000元∴销售单价:40+10=50元∴当服装店将销售单价50元时,得到最大利润是4000元.【点睛】本题考查了一元二次方程、二次函数的知识;解题的关键是熟练掌握一元二次方程、二次函数的性质,从而完成求解.3.某企业投入60万元(只计入第一年成本)生产某种产品,按网上订单生产并销售(生产量等于销售量).经测算,该产品网上每年的销售量y (万件)与售价x (元/件)之间满足函数关系式y =24-x ,第一年除60万元外其他成本为8元/件.(1)求该产品第一年的利润w (万元)与售价x 之间的函数关系式;(2)该产品第一年利润为4万元,第二年将它全部作为技改资金再次投入(只计入第二年成本)后,其他成本下降2元/件.①求该产品第一年的售价;②若第二年售价不高于第一年,销售量不超过13万件,则第二年利润最少是多少万元?【答案】(1)232252w x x =-+-(2)①第一年的售价为每件16元,②第二年的最低利润为61万元.【分析】(1)由总利润等于每件产品的利润乘以销售的数量,再减去投资成本,从而可得答案;(2)①把4w =代入(1)的函数解析式,再解方程即可,②由总利润等于每件产品的利润乘以销售的数量,再减去投资成本,列函数关系式,再利用二次函数的性质求解利润范围即可得到答案.(1)解:由题意得:()860w x y =--()()82460x x =---232252,x x =-+-(2)①由(1)得:当4w =时,则2322524,x x -+-=即2322560,x x -+=解得:1216,x x ==即第一年的售价为每件16元,② 第二年售价不高于第一年,销售量不超过13万件,16,2413x x ì£ï\í-£ïî解得:1116,x # 其他成本下降2元/件,∴()()2624430148,w x x x x =---=-+- 对称轴为()3015,21x =-=´-10,a =-<∴当15x =时,利润最高,为77万元,而1116,x #当11x =时,513461w =´-=(万元)当16x =时,108476w =´-=(万元)6177,w \#所以第二年的最低利润为61万元.【点睛】本题考查的是二次函数的实际应用,二次函数的性质,理解题意,列出函数关系式,再利用二次函数的性质解题是关键.4.某水果店将标价为10元/斤的某种水果.经过两次降价后,价格为8.1元/斤,并且两次降价的百分率相同.(1)求该水果每次降价的百分率;(2)从第二次降价的第1天算起,第x 天(x 为整数)的销量及储藏和损耗费用的相关信息如下表所示:时间(天)x 销量(斤)120﹣x 储藏和损耗费用(元)3x 2﹣64x+400已知该水果的进价为4.1元/斤,设销售该水果第x (天)的利润为y (元),求y 与x (1≤x <10)之间的函数解析式,并求出第几天时销售利润最大,最大利润是多少?【答案】(1)10%;(2)y =﹣3x 2+60x+80,第9天时销售利润最大,最大利润是377元【解析】【分析】(1)根据题意,可以列出相应的方程,从而可以求得相应的百分率;(2)根据题意和表格中的数据,可以求得y 与x (1≤x <10)之间的函数解析式,然后利用二次函数的性质可以求出第几天时销售利润最大,最大利润是多少.【详解】解:(1)设该水果每次降价的百分率为x ,10(1﹣x )2=8.1,解得,x 1=0.1,x 2=1.9(舍去),答:该水果每次降价的百分率是10%;(2)由题意可得,y =(8.1﹣4.1)×(120﹣x )﹣(3x 2﹣64x+400)=﹣3x 2+60x+80=﹣3(x ﹣10)2+380,∵1≤x <10,∴当x =9时,y 取得最大值,此时y =377,由上可得,y 与x (1≤x <10)之间的函数解析式是y =﹣3x 2+60x+80,第9天时销售利润最大,最大利润是377元.【点睛】本题考查二次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,利用二次函数的性质和方程的知识解答.5.国庆节前,某超市为了满足人们的购物需求,计划购进甲、乙两种水果进行销售.经了解,甲种水果和乙种水果的进价与售价如下表所示:水果单价甲乙进价(元/千克)x 4x +售价(元/千克)2025已知用1200元购进甲种水果的重量与用1500元购进乙种水果的重量相同.(1)求x 的值;(2)若超市购进这两种水果共100千克,其中甲种水果的重量不低于乙种水果重量的3倍,则超市应如何进货才能获得最大利润,最大利润是多少?【答案】(1)16;(2)购进甲种水果75千克,则乙种水果25千克,获得最大利润425元【分析】(1)根据用1200元购进甲种水果的重量与用1500元购进乙种水果的重量相同列出分式方程,解之即可;(2)设购进甲种水果m 千克,则乙种水果100-m 千克,利润为y ,列出y 关于m 的表达式,根据甲种水果的重量不低于乙种水果重量的3倍,求出m 的范围,再利用一次函数的性质求出最大值.【详解】解:(1)由题意可知:120015004x x =+,解得:x=16,经检验:x=16是原方程的解;(2)设购进甲种水果m千克,则乙种水果100-m千克,利润为y,由题意可知:y=(20-16)m+(25-16-4)(100-m)=-m+500,∵甲种水果的重量不低于乙种水果重量的3倍,∴m≥3(100-m),解得:m≥75,即75≤m<100,在y=-m+500中,-1<0,则y随m的增大而减小,∴当m=75时,y最大,且为-75+500=425元,∴购进甲种水果75千克,则乙种水果25千克,获得最大利润425元.【点睛】本题考查了分式方程和一次函数的实际应用,解题的关键是读懂题意,列出方程和函数表达式.6.某公司生产的一种营养品信息如下表.已知甲食材每千克的进价是乙食材的2倍,用80元购买的甲食材比用20元购买的乙食材多1千克.(1)问甲、乙两种食材每千克进价分别是多少元?(2)该公司每日用18000元购进甲、乙两种食材并恰好全部用完.①问每日购进甲、乙两种食材各多少千克?②已知每日其他费用为2000元,且生产的营养品当日全部售出.若A 的数量不低于B 的数量,则A 为多少包时,每日所获总利润最大?最大总利润为多少元?【答案】(1)甲、乙两种食材每千克进价分别为40元、20元;(2)①每日购进甲食材400千克,乙食材100千克;②当A 为400包时,总利润最大.最大总利润为2800元【分析】(1)设乙食材每千克进价为a 元,根据用80元购买的甲食材比用20元购买的乙食材多1千克列分式方程即可求解;(2)①设每日购进甲食材x 千克,乙食材y 千克.根据每日用18000元购进甲、乙两种食材并恰好全部用完,利用进货总金额为180000元,含铁量一定列出二元一次方程组即可求解;②设A 为m 包,根据题意,可以得到每日所获总利润与m 的函数关系式,再根据A 的数量不低于B 的数量,可以得到m 的取值范围,从而可以求得总利润的最大值.【详解】解:(1)设乙食材每千克进价为a 元,则甲食材每千克进价为2a 元,由题意得802012a a-=,解得20a =.经检验,20a =是所列方程的根,且符合题意.∴240a =(元).答:甲、乙两种食材每千克进价分别为40元、20元.(2)①设每日购进甲食材x 千克,乙食材y 千克.由题意得()402018000501042x y x y x y +=⎧⎨+=+⎩,解得400100x y =⎧⎨=⎩答:每日购进甲食材400千克,乙食材100千克.②设A 为m 包,则B 为()500200040.25m m -=-包.记总利润为W 元,则()45122000418000200034000W m m m =+---=-+.A 的数量不低于B 的数量,∴20004m m ≥-,400m ≥.30k =-<,∴W 随m 的增大而减小。
一次函数利润问题解题思路

一次函数利润问题解题思路一次函数利润问题是关于经济学和数学的交叉问题,其中涉及到数学中一次函数的概念和经济学中利润的概念。
解决这类问题需要结合数学和经济学的知识,分析问题的背景,确定问题的目标,建立数学模型,进行数学计算,最后对结果进行经济学分析。
一次函数利润问题通常以一家公司的生产和销售情况为背景,目标是确定公司在不同情况下的利润情况。
一般而言,利润是销售额减去成本的差额,所以一次函数利润问题的关键是建立销售额和成本之间的函数关系。
首先,我们需要了解一次函数的定义。
一次函数是形如y = ax +b的函数,其中x是自变量,y是因变量,a是斜率,b是截距。
在利润问题中,x通常表示销售量,y表示利润。
斜率a表示单位销售量的利润变化量,截距b表示销售量为零时的利润。
其次,我们需要确定销售额和成本之间的函数关系。
一般情况下,销售额是销售量和售价的乘积,成本是销售量和单位成本的乘积。
所以销售额和成本可以表示为以下函数关系:销售额:S(x) = px成本:C(x) = cx其中p表示售价,c表示单位成本。
接下来,我们可以得到利润函数。
利润是销售额减去成本的差额,所以利润可以表示为以下函数关系:利润:P(x) = S(x) - C(x) = (p - c)x - b在求解利润函数时,需要给定p、c和b的具体数值。
这些数值通常可以通过实际的经济数据获得,例如市场调研结果、成本统计数据等等。
然后,我们可以根据具体的利润函数进行数学计算。
通过计算函数的值,我们可以得到不同销售量下的利润值。
这些计算结果可以用来评估不同销售策略的效果,确定最优的经营策略。
最后,我们还可以对利润函数进行经济学分析。
利润函数的斜率表示单位销售量的利润变化量,可以用来评估市场的竞争程度。
斜率越大,表示单位销售量的利润变化越大,市场竞争越激烈。
而截距表示销售量为零时的利润,可以用来评估初始投资和固定成本。
总结起来,一次函数利润问题的解题思路可以归纳为以下几个步骤:了解一次函数的定义,确定销售额和成本之间的函数关系,建立利润函数,进行数学计算,最后进行经济学分析。
《一次函数利润问题》典型例题及答案解析

《一次函数利润问题》典型例题及答案解析1.某电视台在每天晚上的黄金时段的3分钟内插播长度为20秒和40秒的两种广告,20秒广告每次收费6000元,40秒广告每次收费10000元.若要求每种广告播放不少于2次,且电视台选择收益最大的播放方式,则在这一天黄金时段3分钟内插播广告的最大收益是__________元.【来源】2005年初中毕业升学考试(山东潍坊卷)数学(带解析)【答案】50000【解析】设20秒的广告播x秒,40秒的广告播y秒.则:20x+40y=180,∵每种广告播放不少于2次,∴x=3,y=3,或x=5,y=2.当x=3,y=3时,收益为:3×6000+3×10000=48000;当x=5,y=2时,收益为:5×6000+2×10000=50000;∴这一天黄金时段3分钟内插播广告的最大收益是50000元.2.如图是本地区一种产品30天的销售图象,图①是产品日销售量(单位:件)与时间(单位:天)的函数关系,图②是一件产品的销售利润(单位:元)与时间(单位:天)的函数关系,第27天的日销售利润是__________元.【来源】山东省济南市市中区2019届九年级一模考试数学试题【答案】875【解析】【分析】先根据图①求出24-30天的日销售量与时间的函数关系,再求出第27天的日销售量,再乘以一件产品的销售利润即可求解.【详解】∵24-30天的日销售量与时间的函数经过(24,200),(30,150)设函数为y=kx+b,可求得k=-,b=400,∴y=-x+400,∴第27天的日销售量为175,由图②得第27天的一件产品的销售利润=5∴第27天的日销售利润是175×5=875元.【点睛】此题主要考查一次函数的应用,解题的关键是熟知一次函数的求法.3.某销售商准备在南充采购一批丝绸,经调查,用10000元采购A型丝绸的件数与用8000元采购B型丝绸的件数相等,一件A型丝绸进价比一件B型丝绸进价多100元.(1)求一件A型、B型丝绸的进价分别为多少元?(2)若销售商购进A型、B型丝绸共50件,其中A型的件数不大于B型的件数,且不少于16件,设购进A型丝绸m件.①求m的取值范围.②已知A型的售价是800元/件,销售成本为2n元/件;B型的售价为600元/件,销售成本为n元/件.如果50≤n≤150,求销售这批丝绸的最大利润w(元)与n(元)的函数关系式.【来源】四川省南充市2018届中考数学试卷【答案】(1)一件A型、B型丝绸的进价分别为500元,400元;(2)①,②.【解析】【分析】(1)根据题意应用分式方程即可;(2)①根据条件中可以列出关于m的不等式组,求m的取值范围;②本问中,首先根据题意,可以先列出销售利润y与m的函数关系,通过讨论所含字母n的取值范围,得到w与n的函数关系.【详解】(1)设型丝绸的进价为元,则型丝绸的进价为元,根据题意得:,解得,经检验,为原方程的解,,答:一件型、型丝绸的进价分别为500元,400元.(2)①根据题意得:,的取值范围为:,②设销售这批丝绸的利润为,根据题意得:,,(Ⅰ)当时,,时,销售这批丝绸的最大利润;(Ⅱ)当时,,销售这批丝绸的最大利润;(Ⅲ)当时,当时,销售这批丝绸的最大利润.综上所述:.【点睛】本题综合考察了分式方程、不等式组以及一次函数的相关知识.在第(2)问②中,进一步考查了,如何解决含有字母系数的一次函数最值问题.4.益马高速通车后,将桃江马迹塘的农产品运往益阳的运输成本大大降低。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微专题:一次函数的实际应用—利润、方案问题
◆类型一利润问题
1.如图,直线l1,l2分别表示某产品一天的销售收入y1,销售成本y2与销售量x的函数关系图像.则y1与x 的函数关系式为________,y2与x的函数关系式为________,当一天的销售量x________时,生产该产品才能获利.
2.(2017·河北期末)某商场欲购进果汁饮料和碳酸饮料共50箱,两种饮料每箱的进价和售价如下表所示.设购进果汁饮料x箱(x为正整数),且所购进的两种饮料能全部卖出,获得的总利润为W元(注:总利润=总售价-总进价).
(1)设商场购进碳酸饮料y箱,直接写出与的函数关系式;
(2)求总利润W关于x的函数关系式;
(3)如果购进两种饮料的总费用不超过2100元,那么该商场如何进货才能获利最多?并求出最大利润.
3.(2017·长沙中考)自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁.某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元.
(1)求一件A,B型商品的进价;
(2)若该欧洲客商购进A,B型商品共250件进行试销,其中A型商品的件数不多于B型的件数,且不少于80件.已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出.设购进A型商品m件,求该客商销售这批商品的利润v与m之间的函数关系式,并写出m的取值范围;
(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资
金a元,求该客商售完所有商品并捐献慈善资金后获得的最大收益.
◆类型二方案问题
4.(2017·邯郸丛台区期末)某校实行学案式教学,需印制若干份数学学案.印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示.
(1)填空:甲种收费方式的函数关系式是____________,乙种收费方式的函数关系式是____________.
(2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算?
5.(2017·承德围场县期末)现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.
(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;
(2)小明选择哪家快递公司更省钱?
6.(2017·保定徐水县模拟)为了贯彻落实市委市政府提出的“精准扶贫”精神,某校特制定了一系列关于帮扶A,B两贫困村的计划.现决定从某地运送152箱鱼苗到A,B两村养殖,若用大、小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大、小货车的载货能力分别为12箱/辆和8箱/辆,其运往A,B两村的运费如下表:
(1)求这15辆车中大、小货车各用多少辆;
(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数表达式.
(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.
参考答案与解析
1.y 1=x y 2=1
2
x +2 >4
2.解:(1)y 与x 的函数关系式为y =50-x .
(2)总利润W 关于x 的函数关系式为W =(61-51)x +(43-36)(50-x )=3x +350.
(3)由题意得51x +36(50-x )≤2100,解得x ≤20.∵W =3x +350,W 随x 的增大而增大,∴当x =20时,W 最大
=3×20+350=410,此时购进碳酸饮料50-20=30(箱),∴该商场购进果汁、碳酸饮料分别为20箱、30箱时,能获得最大利润410元.
3.解:(1)设一件B 型商品的进价为x 元,则一件A 型商品的进价为(x +10)元.由题意16000x +10=7500
x ×2,解
得x =150,经检验,x =150是分式方程的解.150+10=160(元).
答:一件B 型商品的进价为150元,一件A 型商品的进价为160元.
(2)由题知客商购进A 型商品m 件,则客商购进B 型商品(250-m )件.由题意得v =(240-160)m +(220-150)(250-m )=10m +17500.∵80≤m ≤250-m ,∴80≤m ≤125.
(3)设利润为w 元.则w =(80-a )m +70(250-m )=(10-a )m +17500.当10-a >0时,w 随m 的增大而增大,m =125时,最大利润为(18750-125a )元.当10-a =0时,最大利润为17500元.当10-a <0时,w 随m 的增大而减小,∴m =80时,最大利润为(18300-80a )元.
4.解:(1)y 1=0.1x +6 y 2=0.12x
(2)当y 1>y 2时,0.1x +6>0.12x ,得x <300.当y 1=y 2时,0.1x +6=0.12x ,得x =300;当y 1<y 2时,0.1x +6<0.12x ,得x >300;∴当100≤x <300时,选择乙种收费方式合算;当x =300时,甲、乙两种收费方式一样合算;当300<x ≤450时,选择甲种收费方式合算.
答:印制100~300(含100)份学案,选择乙种印刷方式较合算,印制300份学案,甲、乙两种印刷方式都一样合算,印制300~450(含450)份学案,选择甲种印刷方式较合算.
5.解:(1)由题意知,当0<x ≤1时,y 甲=22x ;当x >1时,y 甲=22+15(x -1)=15x +7.y 乙=16x +3.
(2)①当0<x ≤1时,令y 甲<y 乙,即22x <16x +3,解得0<x <12;令y 甲=y 乙,即22x =16x +3,解得x =1
2;
令y 甲>y 乙,即22x >16x +3,解得1
2
<x ≤1.②当x >1时,令y 甲<y 乙,即15x +7<16x +3,解得x >4;令y 甲=
y 乙,即15x +7=16x +3,解得x =4;令y 甲>y 乙,即15x +7>16x +3,解得1<x <4.综上可知,当1
2
<x <4时,
选乙快递公司省钱;当x =4或x =12时,选甲、乙两家快递公司快递费一样多;当0<x <1
2或x >4时,选甲快递公
司省钱.
6.解:(1)设大货车用x 辆,小货车用y 辆,根据题意得⎩⎪⎨⎪⎧x +y =15,12x +8y =152,解得⎩
⎪⎨⎪⎧x =8,
y =7.
答:大货车用8辆,小货车用7辆.
(2)y =800x +900(8-x )+400(10-x )+600[7-(10-x )]=100x +9400(3≤x ≤8,且x 为整数).
(3)由题意得12x +8(10-x )≥100,解得x ≥5.又∵3≤x ≤8,∴5≤x ≤8且为整数.∵y =100x +9400,k =100>0,∴y 随x 的增大而增大,∴当x =5时,y 最小,y 最小=100×5+9400=9900.
答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A 村;3辆大货车、2辆小货车前往B 村.最少运费为9900元.。