多个含不同质量项的费米子矩阵求逆算法

合集下载

矩阵求逆方法大全

矩阵求逆方法大全

矩阵求逆方法大全
矩阵的逆是一个重要的数学概念,它在很多领域中都得到了广泛的应用,如线性代数、微积分、概率论等。

求解矩阵的逆可以用于解线性方程组、计算行列式、计算特征值和特征向量等。

本文将介绍几种常见的矩阵求逆方法,包括伴随矩阵法、高斯消元法、LU分解法和特征值分解法。

1.伴随矩阵法:
伴随矩阵法是求解逆矩阵最常用的方法之一、首先,计算出矩阵的伴
随矩阵,然后将其除以矩阵的行列式即可得到逆矩阵。

2.高斯消元法:
高斯消元法是一种常用的线性方程组求解方法,也可以用来求解矩阵
的逆。

通过将待求逆矩阵与单位矩阵连接起来,然后进行初等行变换,直
至左边的矩阵变为单位矩阵,右边的矩阵即为所求逆矩阵。

3.LU分解法:
LU分解法将矩阵分解为下三角矩阵L和上三角矩阵U的乘积,然后
通过求解两个三角矩阵的逆矩阵,进而求得原矩阵的逆。

LU分解法是一
种常用的数值计算方法,应用广泛。

4.特征值分解法:
特征值分解法是一种通过矩阵的特征值和特征向量来求解矩阵的逆的
方法。

首先,根据特征值定理求解矩阵的特征值和特征向量,然后利用这
些特征值和特征向量构建一个对角矩阵,最后通过对角矩阵求逆得到原矩
阵的逆。

除了上述方法外,还有其他一些方法可以用来求解矩阵的逆,如迭代法、SVD分解法等。

这些方法在不同的应用场景下有不同的优势。

总之,求解矩阵的逆是一个重要的数学问题,在实际应用中有着广泛的应用。

以上介绍的几种方法是常用的求解逆矩阵的方法,读者可以根据自己的需求选择合适的方法进行求解。

矩阵求逆方法大全

矩阵求逆方法大全

矩阵求逆方法大全矩阵的逆在线性代数中是一个非常重要且常用的概念。

逆矩阵存在的前提是矩阵必须是方阵且可逆。

逆矩阵的定义可以简单地表述为:对于一个方阵A,如果存在一个矩阵B,使得AB=BA=I,其中I为单位矩阵,那么B就是A的逆矩阵,记作A^-1下面将介绍几种求解矩阵逆的方法。

1.初等变换法:初等变换法是一种最常用的求解矩阵逆的方法。

基本思想是通过一系列初等行变换将原矩阵A转化为单位矩阵I,同时对单位矩阵进行相同的初等变换,得到A的逆矩阵。

具体步骤为:(1)将原矩阵A与单位矩阵I进行横向拼接,形成增广矩阵[A,I];(2)通过初等行变换将增广矩阵[A,I]变换为[I,B],其中B即为矩阵A的逆矩阵。

这种方法比较直观,但计算量较大,特别是对于大型矩阵很不方便。

2.列主元消去法:列主元消去法是一种改进的初等变换法,其目的是选取主元的位置,使得计算量减少。

具体步骤为:(1)将原矩阵A与单位矩阵I进行横向拼接,形成增广矩阵[A,I];(2)选取增广矩阵中当前列中绝对值最大的元素作为主元,通过交换行使主元出现在当前处理行的位置;(3)用主元所在行将其他行消元,使得主元所在列的其他元素都为0;(4)重复以上步骤,直到增广矩阵[A,I]经过一系列的行变换变为[I,B],其中B即为矩阵A的逆矩阵。

列主元消去法相对于初等变换法来说,计算量会更小,但仍然对于大型矩阵的操作不够高效。

3.公式法:对于一个二阶方阵A,其逆矩阵可以通过以下公式求得:A^-1 = (1/,A,) * adj(A),其中,A,为A的行列式,adj(A)为A的伴随矩阵。

对于更高阶的矩阵,也可以通过类似的公式求解,但行列式和伴随矩阵的计算相对较为复杂,不太适用于实际操作。

4.LU分解法:LU分解也是一种常用的矩阵求解方法,其将原矩阵A分解为一个下三角矩阵L和一个上三角矩阵U的乘积,即A=LU。

逆矩阵的计算可以通过LU分解来完成。

具体步骤为:(1)对原矩阵A进行LU分解,得到下三角矩阵L和上三角矩阵U;(2)分别求解方程LY=I和UX=Y,其中Y为未知矩阵;(3)得到Y后,再将方程UX=Y带入,求解方程UX=I,得到逆矩阵X。

求矩阵的逆的方法

求矩阵的逆的方法

求矩阵的逆的方法矩阵的逆是一种非常重要的数学运算,在数学的各个领域都有许多重要的应用。

例如,在线性代数中,求矩阵的逆是解决线性方程组、矩阵方程的关键步骤,在各种计算机科学领域中也被广泛应用,如图形处理、数据挖掘、网络优化等。

因此,学习并掌握如何求矩阵的逆是非常有必要的。

本文将介绍三种常见的求矩阵的逆的方法:行列式法、伴随矩阵法和高斯消元法。

一、行列式法求矩阵的逆有时可以使用行列式法。

行列式法需要先求出矩阵的行列式,再求出矩阵的伴随矩阵,最后将伴随矩阵除以行列式就可以得到矩阵的逆。

先来看如何求一个 2x2 的矩阵的逆。

设矩阵 $A = \begin{bmatrix}a & b\\c & d\end{bmatrix}$,则矩阵$A$ 的逆为:$$ A^{-1} = \frac{1}{ad-bc} \begin{bmatrix}d & -b\\-c & a\end{bmatrix} $$其中,$ad-bc$ 不能为零。

如果该式成立,则 $AA^{-1} = A^{-1} A = I$,其中 $I$ 是单位矩阵。

对于一个 $n\times n$ 的矩阵 $A$,它的逆可以通过行列式法来计算。

如果 $A$ 可逆,即 $det(A) \neq 0$,其中 $det(A)$ 表示 $A$ 的行列式,则 $A$ 的逆为:$$ A^{-1} = \frac{1}{det(A)} \cdot adj(A) $$其中 $adj(A)$ 表示 $A$ 的伴随矩阵,$adj(A)$ 的元素 $A_{ij}$ 等于 $A$ 的代数余子式 $A_{ij}$ 的符号变号:$$ adj(A)=\begin{bmatrix}A_{11} & -A_{21}&\cdots & (-1)^{1+n}A_{n1}\\ -A_{12} & A_{22}&\cdots & (-1)^{2+n}A_{n2} \\ \vdots & \vdots &\ddots & \vdots \\ (-1)^{n+1}A_{1n} & (-1)^{n+2}A_{2n} & \cdots & A_{nn} \end{bmatrix} $$然后,如果 $det(A)=0$,表示矩阵 $A$ 不可逆,我们称之为奇异矩阵。

逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析(很全很经典)逆矩阵的几种求法与解析矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法.1.利用定义求逆矩阵定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用.例1 求证: 如果方阵A 满足A k= 0, 那么EA 是可逆矩阵, 且(E-A )1-= E + A + A 2+…+A 1-K证明因为E 与A 可以交换, 所以(E- A )(E+A + A 2+…+ A 1-K )= E-A K ,因A K = 0 ,于是得(E-A)(E+A+A 2+…+A 1-K )=E ,同理可得(E + A + A 2+…+A 1-K )(E-A)=E ,因此E-A 是可逆矩阵,且(E-A)1-= E + A + A 2+…+A 1-K .同理可以证明(E+ A)也可逆,且(E+ A)1-= E -A + A 2+…+(-1)1-K A 1-K .由此可知, 只要满足A K =0,就可以利用此题求出一类矩阵E ±A 的逆矩阵.例2 设 A =?0000300000200010,求 E-A 的逆矩阵.分析由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵.解容易验证A 2=0000000060000200, A 3=?0000000000006000, A 4=0而 (E-A)(E+A+ A 2+ A 3)=E,所以(E-A)1-= E+A+ A 2+ A 3=1000310062106211.2.初等变换法求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21 使(1)s p p p 21A=I ,用A 1-右乘上式两端,得:(2) s p p p 21I= A 1-比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-.用矩阵表示(A I )→?初等行变换为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵.例1 求矩阵A 的逆矩阵.已知A=521310132.解[A I]→100521010310001132→????001132010310100521→ --3/16/16/1100010310100521→-----3/16/16/110012/32/10103/46/136/1001故 A 1-=-----3/16/16/112/32/13/46/136/1. 在事先不知道n 阶矩阵是否可逆的情况下,也可以直接用此方法.如果在初等变换过程中发现左边的矩阵有一行元素全为0,则意味着A 不可逆,因为此时表明A =0,则A 1-不存在.例2 求A=987654321.解[A E]=100987010654001321→????------1071260014630001321→ ??----121000014630001321. 由于左端矩阵中有一行元素全为0,于是它不可逆,因此A 不可逆.3.伴随阵法定理 n 阶矩阵A=[a ij ]为可逆的充分必要条件是A 非奇异.且A 1-=A 1?nn nnn n A A A A A A A A A (212221212111)其中A ij 是A 中元素a ij 的代数余子式.矩阵?nn nn n n A A A A A AA A A (2122212)12111称为矩阵A 的伴随矩阵,记作A 3,于是有A 1-=A 1A 3.证明必要性:设A 可逆,由A A 1-=I ,有1-AA =I ,则A 1-A =I ,所以A ≠0,即A 为非奇异.充分性:设A 为非奇异,存在矩阵B=nn nnn n A A A A A A A A A .....................212221212111,其中AB=?nn n n n n a a a a a a a a a (2)12222111211?A 1?nn nn n n A A A A A A A A A ...............(2122212)12111=A 1A A A A ............0...00...0=?...1......0...100...01=I同理可证BA=I.由此可知,若A 可逆,则A 1-=A1A 3. 用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有规律可循.因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,次对角线的元素变号即可.若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或9个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大且中途难免出现符号及计算的差错.对于求出的逆矩阵是否正确,一般要通过AA 1-=I 来检验.一旦发现错误,必须对每一计算逐一排查.4.分块矩阵求逆法4.1.准对角形矩阵的求逆命题设A 11、A 22都是非奇异矩阵,且A 11为n 阶方阵,A 22为m 阶方阵221100A A ??--12211100A A 证明因为A =221100A A =11A 22A ≠0, 所以A 可逆.设A 1-=W ZY X,于是有W Z Y X00A A =??m nI I 00,其中 X A 11=I n , Y A 22=0,Z A 11=0,W A 22=I m .又因为A 11、A 22都可逆,用A 111-、A 122-分别右乘上面左右两组等式得:X= A 111-,Y=0,Z=0,W= A 122-故 A 21= ??--12211100A A 把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:121...-k A A A =---11211...k A A A 4.2.准三角形矩阵求逆命题设A 11、A 22都是非奇异矩阵,则有12212110-A A A =??-----122122121111110A A A A A证明因为2212110A A A --I A A I 012111=??22110A A 两边求逆得1121110---I A A I 12212110-A A A =??--12211100A A 所以 1221211-A A A =??--I A A I 012111??--12211100A A =??-----122122121111110A A A A A同理可证12221110-A A A =??-----122122211111110A A A A A 此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. 是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.5.恒等变形法恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上.就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用AA 1-=E ,把题目中的逆矩阵化简掉。

矩阵逆运算法则

矩阵逆运算法则

矩阵逆运算法则
矩阵逆运算法则定义为:如果A是一个n阶方阵,且满足A*A⁻¹=I,其中I为n阶单位矩阵,那么A阶就存在逆矩阵A⁻¹,A⁻¹是A的逆矩阵。

给定一个n阶非奇异矩阵A,计算A的逆矩阵A⁻¹可以采用列主元消元法和伴随矩阵法,其中,列主元消元法有展开法、置换法和消去法三种方法。

1.展开法:首先将方阵A拆分为三个矩阵,即A=(L|U|I),其中,L 是一个单位对角线下三角阵,U是一个上三角阵,I是单位矩阵,接着,采用消元法,将L和U消去,从而得到A⁻¹=I。

2.置换法:首先,将方阵A拆分为三个矩阵,L和U,以及一个置换矩阵P,其中,P的作用是使得A转换成低阶半正定矩阵。

然后,通过置换法将P和U消去,从而得到A⁻¹=P⁻¹。

3.消去法:首先,将方阵A拆分为三个矩阵,即A=(L|U|I),其中L 是一个单位对角线下三角阵,U是一个上三角阵,I是单位矩阵。

然后,采用消去法,逐步消元,从而得到A⁻¹=I。

伴随矩阵法:给定n阶非奇异矩阵A,令A的伴随矩阵为C,即
C=adj(A),其中adj(A)为矩阵A的代数余子式矩阵,那么A的逆矩阵A⁻¹可以通过A⁻¹=C/det(A)得到。

矩阵求逆方法

矩阵求逆方法

矩阵求逆方法矩阵求逆是线性代数中的重要概念,对于解决线性方程组、最小二乘法、特征值求解等问题都有着重要的作用。

在实际应用中,我们经常会遇到需要对矩阵进行求逆操作的情况,因此掌握矩阵求逆的方法显得尤为重要。

本文将介绍几种常用的矩阵求逆方法,希望能够帮助读者更好地理解和应用这一概念。

方法一,伴随矩阵法。

对于一个n阶矩阵A,如果其行列式不为0,那么矩阵A是可逆的。

我们可以通过伴随矩阵法来求解可逆矩阵的逆矩阵。

首先计算矩阵A的伴随矩阵Adj(A),然后利用公式A^(-1) = 1/|A| Adj(A),其中|A|表示矩阵A的行列式。

这种方法适用于小规模矩阵的求逆,但对于大规模矩阵来说计算量较大,不太实用。

方法二,LU分解法。

LU分解是将一个矩阵分解为一个下三角矩阵L和一个上三角矩阵U的乘积,即A=LU。

对于一个非奇异矩阵A,我们可以通过LU分解来求解其逆矩阵。

首先对矩阵A进行LU分解,然后分别对L和U进行前代和后代计算,最终得到A的逆矩阵。

这种方法适用于一般的矩阵求逆问题,计算效率较高。

方法三,Gauss-Jordan消元法。

Gauss-Jordan消元法是一种通过初等行变换将矩阵化为单位矩阵的方法,从而求解矩阵的逆矩阵。

具体步骤包括将原矩阵和单位矩阵拼接在一起,然后利用初等行变换将原矩阵化为单位矩阵,此时拼接部分的矩阵就是原矩阵的逆矩阵。

这种方法适用于任意规模的矩阵求逆,但计算量较大。

方法四,特征值分解法。

对于一个对称正定矩阵A,我们可以利用其特征值分解来求解其逆矩阵。

具体步骤包括求解矩阵A的特征值和特征向量,然后利用特征值和特征向量构造出A 的逆矩阵。

这种方法适用于对称正定矩阵的求逆,计算较为简单高效。

方法五,奇异值分解法。

对于任意矩阵A,我们可以利用奇异值分解来求解其逆矩阵。

奇异值分解将矩阵A分解为三个矩阵的乘积,即A=UΣV^T,其中U和V是正交矩阵,Σ是一个对角矩阵。

通过对Σ中的非零元素取倒数,然后转置U和V,即可得到矩阵A的逆矩阵。

矩阵的逆运算公式

矩阵的逆运算公式

矩阵的逆运算公式矩阵求逆的基本原理及公式:1. 矩阵逆的定义:当矩阵A的乘积与单位矩阵I相乘,可得到单位矩阵时,称A的逆为A-1。

即A*A-1 = I, I是n阶单位矩阵。

2. 矩阵求逆的基本定理:当且仅当一个n阶矩阵A的行列式|A|≠0时,矩阵A才可求逆,即A存在逆矩阵A-1。

3. 矩阵求逆的公式:假定n阶矩阵A的逆矩阵为A-1,当矩阵A已知时,其逆是:A-1= |A|-1*(A变换矩阵),其中|A|是A的行列式,A变换矩阵为矩阵A取伴随矩阵,对角元素改变符号后有:(1)当n=2时,A变换矩阵为:\begin{pmatrix}a&b\\c&d\end{pmatrix}A变换矩阵:\begin{pmatrix}d&-b\\-c&a\end{pmatrix}(2)当n=3时,A变换矩阵为:\begin{pmatrix}a&b&c\\d&e&f\\g&h&i\end{pmatrix}A变换矩阵:\begin{pmatrix}ei-fh&ch-bi&bf-ce\\fg-di&ai-gc&dh-af\\dh-eg&bg-ah&ce-bf\end{pmatrix}4. 矩阵求逆的算法:(1)将n阶方阵A分解为两个n阶行列式:A=|A|*A变换矩阵。

(2)计算|A|:|A|= |A|1*|A|2*......|A|n,其中|A|n是A的n阶行列式。

(3)计算A变换矩阵A1:A1=A变换矩阵1*A变换矩阵2*......*A变换矩阵n。

(4)将(2)和(3)结果相乘:A-1= |A|-1*A1,得到n阶矩阵A的逆矩阵A-1。

矩阵求逆的几种方法

矩阵求逆的几种方法

矩阵求逆的几种方法
矩阵求逆是线性代数中最基本的概念之一,它是一种求解方程组系数等式的有效方法。

矩阵求逆可以用来解决多元线性方程组,解决矩阵分解、合并及其他复杂的线性方程计算问题,并且可以用于机器学习、信号处理等领域。

但是,由于矩阵求逆的复杂性,它往往需要特定的计算方法才能够实现。

常见的矩阵求逆方法有三种。

第一种方法是元素反转法,也被称为除法法则,它是最常用的求逆方法之一,通过矩阵的乘法和逆矩阵的乘法定义来实现。

它可以用来求解较小的矩阵,但是当矩阵较大时,会出现精度问题,而且计算速度过慢。

第二种方法是LU分解法,又称为分块LU分解法。

它是一种应用矩阵分块技术的求逆方法,结合了高斯消去和Gauss-Jordan法,可以对矩阵进行分块化处理,从而减小解矩阵求逆的规模,节省计算时间。

第三种方法是QR分解法,又称为秩一QR分解法。

它是一种求解非线性方程组的一种有效方法,利用QR分解矩阵,可以求解矩阵求逆问题。

该方法既可以求解高维度矩阵求逆问题,又可以求解低维度矩阵的求逆问题。

此外,还有许多其他的求逆方法,比如列主元消去法、Jacobi
迭代法、Gauss-Seidel迭代法、稀疏矩阵求逆法、尺度不变技术、变分法等等。

以上就是求解矩阵求逆问题的几种常用方法,它们各有特色,并
且在不同的应用场景中都可能发挥作用。

在决定使用何种方法时,需要根据矩阵的大小以及要解决的问题的复杂程度来进行选择,这样可以获得更好的计算效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

代法[2]. 由于费米子矩阵是维数很大的稀疏矩阵,
共轭梯度法以及 BiCGstab 迭代法在费米子矩阵的
求逆中应用较广.
组态的演化有多种算法,有 R 算法, 算法,
Hybrid Monte Carlo 算法,以及 RHMC 算法(其全称
为 算法) 算法是 Rational Hybrid Monte Carlo
但随之而来
α

0 + n M +
问题是在模
αn M+
拟中

会β n出
φ




(4) 矩阵
求逆的计算(例如,在式(4)的求和中有很多项,分
母是两个费米子矩阵的乘积和一个常对角矩阵的
和 求
.逆在),求带Sf
的过程 来时间
中 和
就涉及到这样的一系 计算资源的大量消
列 耗
矩阵 ,限的ຫໍສະໝຸດ 制RHMC 算法的应用.φ 来表示(在格点上,φ 成为一个列矩阵),所以费米
子作用量可以用 φ 表示为[4]
; 收稿日期: 修回日期:
2018 - 03 - 26
2018 - 09 - 14
基金项目:国家自然科学基金( )和 11347029 江苏大学大学生科研项目资助
作者简介:吴良凯( — 1970 ),湖北武汉人,江苏大学物理系教师,博士,主要从事大学物理教学与研究工作.
的费米子的方法.它的思想是把费米子行列式展开为有理函数的形式.但该方法会带来很多彼此相差一个常对角矩阵的矩阵
的求逆的计算,消耗大量的时间和计算资源,限制了 RHMC 算法的应用.本文利用移位多项式,针对共轭梯度法得到多个含有
不同质量项的矩阵求逆的一种方法,该方法可以应用到 RHMC 算法中.
关键词:费米子;逆矩阵;格点量子色动力学;移位多项式
在量子场论中,系统的拉氏量可以表达为费米 场的双线性形式和规范场部分之和:
( )1
L = -ψγμ μ -igAμ ψ- 4 Fμν Fμν
(1)
在格点量子色动力学中,在每一个格点上都有一个
费米场,费 米 场 的 双 线 性 形 式 可 以 用 矩 阵 表 示 为
-ψiMijψj,其中 Mij是费米子矩阵,i、j 标记不同的格 点. 因此系统的配分函数可写成如下的路径积分的 形式:
∫ [ ] ( ) Z = Dψ Dψ DUexp - ψ i Mijψ j - Sg

U 代表规范场,Sg 是规范场作用量.
格点量子色动力学进行的研究涉及到组态的演
化和物理量的计算,这些工作都要求进行费米子矩
阵的求逆,因此费米子矩阵的求逆在格点量子色动
力学的模拟中居于中心的地位.矩阵求逆有很多的
算法.事实上,所有的求解线性方程组的算法都可以
30
大 学 物 理
第 38 卷
在Sf
为上费式米中子,作矩用S阵f =量的<,φn分|f(为数M味+次M道)幂数-n不f/,4 M|好φ>为处费理米,子我
(3) 矩阵. 们把
(M + M)-nf / 4 展 开 成 有 理 函 数 的 形 式 ,得 到 如 下 的 表
达式:
Sf = < φ |
用来 求 矩 阵 的 逆 矩 阵 . 这 些 方 法 包 括 消 元 法 ,矩 阵
分 解 法 ,追 赶 法 以 及 迭 代 法 . 消 元 法 中 还 包 括 选 主
元的消元法;矩阵分解法中包括 LU 分解法,QR 分
解法,Cholesky 分解 法;迭 代 法 包 括 Jacob 迭 代 法,
Gauss-Siedel 迭代法,共轭梯度法 以 及 BiCGstab 迭
(6)
A 为矩阵,ω 为常对角矩阵 ω = ωI (常对角矩阵可
以写成常数和单位矩阵的乘积,在以下的叙述中,用
非黑体的 ω 来表示和单位矩阵相乘的常数),ν 为列
矢量,x 为待求列矢量.相应于 Ax =v 的系统,假定某
( ) 中图分类号: 文献标识码: 文章编号: O 413.3

1000 0712 2019 01 0029 03
【 】 DOI 10.16854 / j.cnki.1000 0712.180181
量子场论是在大学物理课程中的一门重要的课 程.它是研究基本粒子之间相互作用的理论,其方法 在理论物理和凝聚态物理中得到了广泛的应用.量 子色动力学是其一个分支,是研究夸克,胶子之间作 用的有力武器.由于色相互作用在低能下的强相互 作用性质,微扰论不能得到应用.诺贝尔奖得主 Ken neth G. Wilson 创立了格点量子色动力学.格点量子 色动力学把连续的 4 维时空离散化,把费米场定义 在格点上,把规范场定义在连接格点的链上,其实质 是截断对动量的积分以得到有限的结果.通过 Wick 转动从闵氏空间转到欧式空间,使得 Monte Carlo 模 拟能顺利进行.格点量子色动力学在强子谱,强子矩 阵 元 和 相 变 的 研 究 中 取 得 了 巨 大 成 就 [1]. 由 于 在 欧 式 空 间 中 讨 论 场 论 ,统 计 物 理 的 很 多 概 念 (包 括 配 分函数)可以推广到格点量子色动力学中.
如何利用其中一次矩阵求逆的结果而较好较快
的得到其他的类似的,仅仅相差一个常数矩阵的矩
阵的逆矩阵,是值得研究的问题.本文针对 共轭梯
度法 方法,参考了文献[5],利用移位多项式得到
一种解决方案.
1 移位多项式
我们的目的是在已经知道如何求解线性系统
Ax = v
(5)
的条件下,求解线性系统:
( ) A+ω x = v
2第01398年卷1第月1 期
大 学 物 理
COLLEGE PHYSICS
Vol.38 No.1 Jan. 2019
多个含不同质量项的费米子矩阵求逆算法
吴良凯,顾 鑫,刘 坤,冯龙海
(江苏大学 物理系,江苏 镇江 ) 212013
摘要:在格点量子色动力学的模拟中,Rational Hybrid Monte Carlo (RHMC)算法是一种精确的,能应用到任意多个味道数
.RHMC
一种精确的,能应用到任意个味道费米子的算法.它
的思想是把费米行列式展开为有理函数的形式[3].
由于费米场满足 grassman 代数,无法用普通的
复数场来表示,在模拟中不能直接处理费米场.因此
我们先积分掉费米场,得到费米子行列式,由于行列
式的计算量惊人,我们用另外的普通的复数场的积
分来代替费米子行列式.这个普通的复数场,我们用
相关文档
最新文档