高考数学一轮复习 34 函数y=Asin(ωx+φ)的图象及应用课件 理 新人教A版

合集下载

高三数学一轮复习 4.4 函数y=Asin(ωx+φ)的图象及应用

高三数学一轮复习 4.4 函数y=Asin(ωx+φ)的图象及应用

π 3
的图象. ( × )
(3)函数 f(x)=Asin(ωx+φ)(A≠0)的最大值为 A,最小值为-A.( × )
(4)如果 y=Acos(ωx+φ)的最小正周期为 T,那么函数图象的两个
相邻对称中心之间的距离为���2���. ( √ )
(5)若函数 y=Asin(ωx+φ)为偶函数,则 φ=2kπ+π2(k∈Z). ( × )
3.函数 f(x)=2sin(ωx+φ)
������>0,-Fra bibliotekπ 2
<
������
<
π 2
的部分图象如图所
示,则 ω,φ 的值分别是( A )
A.2,-π3 B.2,-π6 C.4,-π6 D.4,π3
解析 ∵34T=51π2 −
-
π 3
,∴T=π,∴ω=2.
∴2×51π2+φ=2kπ+π2,k∈Z,∴φ=2kπ-π3,k∈Z.
-9-
知识梳理 双基自测 自测点评
12345
2.将函数 y=2sin
2������
+
π 3
的图象向左平移14个周期后,所得图象
对应的函数解析式为( B )
A.y=2sin
2������-
π 6
C.y=2sin
2������
+
π 12
B.y=2sin
2������
+
5π 6
D.y=2sin
2������
高三数学一轮复习课件
第四章 三角函数、解三角形
4.4 函数y=Asin(ωx+φ) 的图象及应用
-4-

高考数学一轮复习函数y=Asin(ωx+φ)的图象及应用

高考数学一轮复习函数y=Asin(ωx+φ)的图象及应用

/目录
01
目录

1.函数y=Asin(ωx+φ)的有关概念
y=Asin(ωx+φ)
(A>0,ω>0)
振幅
周期
频率
A
2
T=
ω
1
ω
f= =
T 2
相位
初相
ωx+φ
φ

目录
2.用“五点法”画y=Asin(ωx+φ)(A>0,ω>0)一个周期内的简图
用“五点法”画y=Asin(ωx+φ)(A>0,ω>0)一个周期内的简图时,要找
区间.如果已知图象上有最值点,最好代入最值点求解.
目录

1.如图,函数y= 3tan 2 +
△DEF的面积为

π
A.
4
π
B.
2
C.π
D.2π
π
6
的部分图象与坐标轴分别交于点D,E,F,则

解析:A 在y= 3tan 2 +
π
6
中,令x=0,可得y=1,所以D(0,1);令y=
π
π
0,解得x= - (k∈Z),故E
,0
6
2
12
12
D. −

,0
12
.
A.8π
π

2 6
1
图象上所有点的横坐标缩小到原来的 ,则所得函数的最
2

B.4π
C.2π
解析:C 所得函数解析式为y=sin
π

6
D.π
,周期为2π.
目录
1
3
4.函数y= sin
3
2
1
答案:

2020版高考数学一轮复习 函数y=Asin(ωx+φ)的图象及应用讲义理(含解析)

2020版高考数学一轮复习 函数y=Asin(ωx+φ)的图象及应用讲义理(含解析)

第4讲函数y=A sin(ωx+φ)的图象及应用1.“五点法”作函数y=A sin(ωx+φ)(A>0,ω>0)的简图“五点法”作图的五点是在一个周期内的最高点、最低点及与x轴相交的三个点,作图时的一般步骤为:(1)定点:如下表所示.(2)作图:在坐标系中描出这五个关键点,用平滑的曲线顺次连接得到y=A sin(ωx+φ)在一个周期内的图象.(3)扩展:将所得图象,按周期向两侧扩展可得y=A sin(ωx+φ)在R上的图象.2.函数y=sin x的图象经变换得到y=A sin(ωx+φ)(A>0,ω>0)的图象的步骤1.概念辨析(1)将函数y =3sin2x 的图象左移π4个单位长度后所得图象的解析式是y =3sin ⎝⎛⎭⎪⎫2x +π4.( ) (2)利用图象变换作图时,“先平移,后伸缩”与“先伸缩,后平移”中平移的长度一致.( )(3)将函数y =2sin x 的图象上所有点的横坐标缩短为原来的12,纵坐标不变,得函数y=2sin x2的图象.( )(4)由图象求解析式时,振幅A 的大小是由一个周期内图象中最高点的值与最低点的值确定的.( )答案 (1)× (2)× (3)× (4)√ 2.小题热身(1)函数y =2sin ⎝ ⎛⎭⎪⎫2x +π4的振幅、频率和初相分别为( ) A .2,1π,π4B .2,12π,π4 C .2,1π,π8D .2,12π,-π8答案 A解析 函数y =2sin ⎝⎛⎭⎪⎫2x +π4的振幅是2,周期T =2π2=π,频率f =1T =1π,初相是π4,故选A.(2)用五点法作函数y =sin ⎝⎛⎭⎪⎫x -π6在一个周期内的图象时,主要确定的五个点是________、________、__________、________、________.答案 ⎝⎛⎭⎪⎫π6,0⎝ ⎛⎭⎪⎫2π3,1⎝ ⎛⎭⎪⎫7π6,0⎝ ⎛⎭⎪⎫5π3,-1⎝ ⎛⎭⎪⎫13π6,0解析 列表:五个点依次是⎝ ⎛⎭⎪⎫π6,0、⎝ ⎛⎭⎪⎫2π3,1、⎝ ⎛⎭⎪⎫7π6,0、⎝ ⎛⎭⎪⎫5π3,-1、⎝ ⎛⎭⎪⎫13π6,0.(3)将函数f (x )=-12cos2x 的图象向右平移π6个单位长度后,再将图象上各点的纵坐标伸长到原来的2倍,得到函数y =g (x )的图象,则g ⎝⎛⎭⎪⎫3π4=________.答案32解析 函数f (x )=-12cos2x 的图象向右平移π6个单位长度后得函数y =-12cos2⎝ ⎛⎭⎪⎫x -π6=-12cos ⎝ ⎛⎭⎪⎫2x -π3,再将图象上各点的纵坐标伸长到原来的2倍,得到函数g (x )=-cos ⎝ ⎛⎭⎪⎫2x -π3,所以g ⎝ ⎛⎭⎪⎫3π4=-cos ⎝ ⎛⎭⎪⎫3π2-π3=sin π3=32.(4)(2018·长春模拟)函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π)的部分图象如图所示,则函数f (x )的解析式为________.答案 f (x )=2sin ⎝⎛⎭⎪⎫2x +π3 解析 由图象可知A =2,T 4=7π12-π3=π4,所以2πω=π,ω=2,所以f (x )=2sin(2x+φ),又f ⎝⎛⎭⎪⎫7π12=-2,所以2×7π12+φ=2k π+3π2,k ∈Z ,φ=2k π+π3,k ∈Z ,又|φ|<π,所以φ=π3,所以f (x )=2sin ⎝⎛⎭⎪⎫2x +π3.题型 一 函数y =A sin(ωx +φ)的图象及变换1.(2017·全国卷Ⅰ)已知曲线C 1:y =cos x ,C 2:y =sin ⎝ ⎛⎭⎪⎫2x +2π3,则下面结论正确的是( )A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2答案 D解析 由C 2:y =sin ⎝ ⎛⎭⎪⎫2x +2π3=sin ⎝ ⎛⎭⎪⎫2x +π6+π2=cos ( 2x +π6 )=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π12. 根据三角函数图象变换的规律,可得D 正确.2.(2018·蚌埠一模)已知ω>0,顺次连接函数y =sin ωx 与y =cos ωx 的任意三个相邻的交点都构成一个等边三角形,则ω=( )A .π B.6π2 C.4π3D.3π 答案 B解析 当正弦值等于余弦值时,函数值为±22,故等边三角形的高为2,由此得到边长为2×33×2=263,边长即为函数的周期,故2πω=263,ω=6π2.3.已知函数f (x )=2sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤-π3,π4上单调递增,求ω的最大值.解 函数f (x )=2sin ωx (ω>0)在⎣⎢⎡⎦⎥⎤-π2ω,π2ω上单调递增,所以⎣⎢⎡⎦⎥⎤-π3,π4⊆⎣⎢⎡⎦⎥⎤-π2ω,π2ω,所以⎩⎪⎨⎪⎧-π2ω≤-π3,π2ω≥π4.解得0<ω≤32,所以ω的最大值为32.4.已知函数y =cos ⎝ ⎛⎭⎪⎫2x -π3.(1)求它的振幅、周期、初相;(2)用“五点法”作出它在区间[0,π]内的图象;(3)说明y =cos ⎝⎛⎭⎪⎫2x -π3的图象可由y =cos x 的图象经过怎样的变换而得到.解 (1)函数y =cos ⎝ ⎛⎭⎪⎫2x -π3的振幅为1,周期T =2π2=π,初相是-π3. (2)列表:描点,连线.(3)解法一:把y =cos x 的图象上所有的点向右平移π3个单位长度,得到y =cos ⎝ ⎛⎭⎪⎫x -π3的图象;再把y =cos ⎝ ⎛⎭⎪⎫x -π3的图象上所有点的横坐标缩短到原来的12(纵坐标不变),得到y =cos ⎝⎛⎭⎪⎫2x -π3的图象.解法二:将y =cos x 的图象上所有点的横坐标缩短为原来的12(纵坐标不变),得到y =cos2x 的图象;再将y =cos2x 的图象向右平移π6个单位长度,得到y =cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6=cos ⎝ ⎛⎭⎪⎫2x -π3的图象.作函数y =A sin(ωx +φ)(A >0,ω>0)的图象常用的两种方法(1)五点法作图:用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,3π2,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象.(2)图象的变换:由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象有两种途径:“先平移后伸缩”与“先伸缩后平移”.1.要想得到函数y =sin2x +1的图象,只需将函数y =cos2x 的图象( ) A.向左平移π4个单位长度,再向上平移1个单位长度B.向右平移π4个单位长度,再向上平移1个单位长度C.向左平移π2个单位长度,再向下平移1个单位长度D.向右平移π2个单位长度,再向下平移1个单位长度答案 B解析 先将函数y =cos2x 的图象向右平移π4个单位长度,得到y =sin2x 的图象,再向上平移1个单位长度,即得y =sin2x +1的图象,故选B.2.(2018·青岛模拟)将函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3图象上的每个点的横坐标缩短为原来的一半,纵坐标不变,再将所得图象向左平移π12个单位得到函数g (x )的图象,在g (x )图象的所有对称轴中,离原点最近的对称轴方程为( )A.x =-π24B .x =π4C.x =5π24D .x =π12答案 A解析 当函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3图象上的每个点的横坐标缩短为原来的一半,纵坐标不变时,此时函数解析式可表示为f 1(x )=2sin ⎝ ⎛⎭⎪⎫4x +π3,再将所得图象向左平移π12个单位得到函数g (x )的图象,则g (x )可以表示为g (x )=2sin ⎣⎢⎡⎦⎥⎤4⎝ ⎛⎭⎪⎫x +π12+π3=2sin ⎝ ⎛⎭⎪⎫4x +2π3.则函数g (x )的图象的对称轴可表示为4x +2π3=π2+k π,k ∈Z ,即x =-π24+k π4,k∈Z .则g (x )的图象离原点最近的对称轴,即g (x )的图象离y 轴最近的对称轴为x =-π24.题型 二 由图象确定y =A sin(ωx +φ)的解析式1.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π),其导函数f ′(x )的图象如图所示,则f ⎝ ⎛⎭⎪⎫π2的值为( )A .2 2 B. 2 C .-22 D .-24答案 D解析 依题意得f ′(x )=Aωcos(ωx +φ),结合函数y =f ′(x )的图象,则T =2πω=4⎝⎛⎭⎪⎫3π8-π8=π,ω=2.又Aω=1,因此A =12.因为0<φ<π,3π4<3π4+φ<7π4,且f ′⎝ ⎛⎭⎪⎫3π8=cos ⎝ ⎛⎭⎪⎫3π4+φ=-1,所以3π4+φ=π,即φ=π4,所以f (x )=12sin ⎝ ⎛⎭⎪⎫2x +π4,f ⎝ ⎛⎭⎪⎫π2=12sin ⎝⎛⎭⎪⎫π+π4=-12×22=-24. 2.设f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π),其图象上最高点M 的坐标是(2,2),曲线上的点P 由点M 运动到相邻的最低点N 时,在点Q (6,0)处越过x 轴.(1)求A ,ω,φ的值;(2)函数f (x )的图象能否通过平移变换得到一个奇函数的图象?若能,写出变换方法;若不能,说明理由.解 (1)由题意知A =2,T =(6-2)×4=16,所以ω=2πT =π8.又因为Q (6,0)是零值点,且|φ|<π,所以π8×6+φ=π,所以φ=π4,经验证,符合题意.所以A =2,ω=π8,φ=π4.(2)f (x )的图象经过平移变换能得到一个奇函数的图象.由(1)知f (x )=2sin ⎝ ⎛⎭⎪⎫π8x +π4,当f (x )的图象向右平移2个单位长度后,所得图象的函数解析式为g (x )=2sin π8x ,是奇函数.确定y =A sin(ωx +φ)+b (A >0,ω>0)中参数的方法(1)求A ,b :确定函数的最大值M 和最小值m ,则A =M -m2,b =M +m2;(2)求ω:确定函数的周期T ,则可得ω=2πT;(3)求φ:常用的方法有:①代入法:把图象上的一个已知点代入(此时A ,ω,b 已知)或代入图象与直线y =b 的交点求解(此时要注意交点在上升区间上还是在下降区间上).②五点法:确定φ值时,往往以寻找“五点法”中的某一个点为突破口.具体如下:1.(2018·四川绵阳诊断)如图是函数f (x )=cos(πx +φ)⎝⎛⎭⎪⎫0<φ<π2的部分图象,则f (3x 0)=( )A.12 B .-12C.32D .-32答案 D解析 ∵f (x )=cos(πx +φ)的图象过点⎝ ⎛⎭⎪⎫0,32, ∴32=cos φ,结合0<φ<π2,可得φ=π6.∴由图象可得cos ⎝⎛⎭⎪⎫πx 0+π6=32,πx 0+π6=2π-π6,解得x 0=53. ∴f (3x 0)=f (5)=cos ⎝⎛⎭⎪⎫5π+π6=-32.2.已知函数f (x )=A tan(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2,y =f (x )的部分图象如图所示,则f ⎝ ⎛⎭⎪⎫π24等于________.答案3解析 观察图象可知T 2=3π8-π8,所以π2ω=π4,ω=2,所以f (x )=A tan(2x +φ).又因为函数图象过点⎝⎛⎭⎪⎫3π8,0,所以0=A tan ⎝ ⎛⎭⎪⎫2×3π8+φ,所以3π4+φ=k π(k ∈Z ),所以φ=k π-3π4(k ∈Z ).又因为|φ|<π2,所以φ=π4.又图象过点(0,1),所以A =1.综上知,f (x )=tan ⎝⎛⎭⎪⎫2x +π4,故f ⎝ ⎛⎭⎪⎫π24=tan ⎝ ⎛⎭⎪⎫2×π24+π4= 3.题型 三 三角函数图象性质的应用角度1 三角函数模型的应用1.如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝ ⎛⎭⎪⎫π6x +φ+k ,据此函数可知,这段时间水深(单位:m)的最大值为( )A.5 B .6 C .8 D .10答案 C解析 由图象可知,y min =2,因为y min =-3+k ,所以-3+k =2,解得k =5,所以这段时间水深的最大值是y max =3+k =3+5=8.角度2 函数零点(方程根)问题2.已知关于x 的方程2sin ⎝ ⎛⎭⎪⎫x +π6+1-a =0在区间⎣⎢⎡⎦⎥⎤0,2π3上存在两个根,则实数a的取值范围是________.答案 [2,3)解析 2sin ⎝ ⎛⎭⎪⎫x +π6+1-a =0化为sin ⎝ ⎛⎭⎪⎫x +π6=a -12,令t =x +π6,由x ∈⎣⎢⎡⎦⎥⎤0,2π3得,t =x +π6∈⎣⎢⎡⎦⎥⎤π6,5π6,画出函数y =sin t ,t ∈⎣⎢⎡⎦⎥⎤π6,5π6的图象和直线y =a -12,当12≤a -12<1,即2≤a <3时,函数y =sin t ,t ∈⎣⎢⎡⎦⎥⎤π6,5π6的图象和直线y =a -12有两个公共点,原方程有两个根.角度3 三角函数图象性质的综合3.函数f (x )=A sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2的部分图象如图,则( )A .函数f (x )的对称轴方程为x =4k π+π4(k ∈Z )B.函数f (x )的递减区间为⎣⎢⎡⎦⎥⎤8k π+π4,8k π+5π4(k ∈Z )C.函数f (x )的递增区间为[8k +1,8k +5](k ∈Z )D.f (x )≥1的解集为⎣⎢⎡⎦⎥⎤8k -13,8k +73(k ∈Z )答案 D解析 由题图知,A =2,函数f (x )的最小正周期T =4×(3-1)=8,故ω=2π8=π4,所以f (x )=2sin ⎝ ⎛⎭⎪⎫π4x +φ,因为点(1,2)在图象上,所以2sin ⎝ ⎛⎭⎪⎫π4+φ=2,因为|φ|<π2,所以φ=π4,即f (x )=2sin ⎝ ⎛⎭⎪⎫π4x +π4,由π4x +π4=k π+π2(k ∈Z )得x =4k +1,即函数f (x )的对称轴方程为x =4k +1(k ∈Z ),所以A 项错误;由2k π+π2≤π4x +π4≤2k π+3π2(k ∈Z )得8k +1≤x ≤8k +5,即函数f (x )的单调减区间为[8k +1,8k +5](k ∈Z ),所以B ,C两项错误;由2sin ⎝ ⎛⎭⎪⎫π4x +π4≥1,得sin ⎝ ⎛⎭⎪⎫π4x +π4≥12,所以2k π+π6≤π4x +π4≤2k π+5π6(k ∈Z ),解得8k -13≤x ≤8k +73(k ∈Z ),即不等式f (x )≥1的解集为⎣⎢⎡⎦⎥⎤8k -13,8k +73(k ∈Z ),故选D.(1)三角函数模型在实际应用中体现的两个方面①已知三角函数模型,利用三角函数的有关性质解决问题,其关键是准确理解自变量的意义及自变量与函数之间的对应法则;②把实际问题抽象转化成数学问题,建立三角函数模型,再利用三角函数的有关知识解决问题,其关键是建模.(2)三角函数的零点、不等式问题的求解思路①把函数表达式转化为正弦型函数形式y =A sin(ωx +φ)+B (A >0,ω>0); ②画出一个周期上的函数图象;③利用图象解决有关三角函数的方程、不等式问题.(3)研究y =A sin(ωx +φ)的性质时可将ωx +φ视为一个整体,利用换元法和数形结合思想解题.1.设函数f (x )=⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫x +π3(x ∈R ),则f (x )( )A.在区间⎣⎢⎡⎦⎥⎤2π3,7π6上是增函数B.在区间⎣⎢⎡⎦⎥⎤-π,-π2上是减函数 C.在区间⎣⎢⎡⎦⎥⎤-π3,π4上是增函数D.在区间⎣⎢⎡⎦⎥⎤π3,5π6上是减函数答案 A解析 函数f (x )=⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫x +π3(x ∈R )的图象如图所示,由图象可知函数f (x )=⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫x +π3(x ∈R )在区间⎣⎢⎡⎦⎥⎤2π3,7π6上是增函数.故选A.2.一个大风车的半径为8 m,12 min 旋转一周,它的最低点P 0离地面2 m ,风车翼片的一个端点P 从P 0开始按逆时针方向旋转,则点P 离地面距离h (m)与时间t (min)之间的函数关系式是( )A .h (t )=-8sin π6t +10B.h (t )=-cos π6t +10C.h (t )=-8sin π6t +8D.h (t )=-8cos π6t +10答案 D解析 设h (t )=A cos ωt +B ,因为12 min 旋转一周, 所以2πω=12,所以ω=π6,由于最大值与最小值分别为18,2.所以⎩⎪⎨⎪⎧-A +B =18,A +B =2,解得A =-8,B =10.所以h (t )=-8cos π6t +10.3.若函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π6(ω>0)满足f (0)=f ⎝ ⎛⎭⎪⎫π3,且函数在⎣⎢⎡⎦⎥⎤0,π2上有且只有一个零点,则f (x )的最小正周期为( )A.π2 B .π C.3π2D .2π 答案 B解析 依题意,函数f (x )图象的一条对称轴为x =0+π32=π6,又因为函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上有且只有一个零点,所以π6-0≤T 4≤π2-π6,所以2π3≤T ≤4π3.根据选项可得,f (x )的最小正周期为π.。

2024版高考数学总复习:函数y=Asin(ωx φ)的图象及简单应用课件

2024版高考数学总复习:函数y=Asin(ωx φ)的图象及简单应用课件

π
3
的图象,只需
(
)
π
A.先将函数f(x)图象上所有点的横坐标变为原来的2倍,再向右平移 个
6
单位长度
1
π
B.先将函数f(x)图象上所有点的横坐标变为原来的 ,再向右平移 个单
2
6
位长度
π
C.先将函数f(x)的图象向右平移 个单位长度,再将所有点的横坐标变为
6
1
原来的
2
π
D.先将函数f(x)的图象向右平移 个单位长度,再将所有点的横坐标变为
ωx+φ
π
__
0
__

___
x
y=A sin (ωx+φ)
0
A
0
-A
0
1.五点法作简图要取好五个关键点,注意曲线凹凸方向.
1
2.相邻两个关键点的横坐标之间的距离都是周期的 .
4
3.函数y=sin x的图象经变换得到y=A sin (ωx+φ)(A>0,ω>0)的图
象的两种途径:
由函数y=sin x的图象经过变换得到y=sin(ωx+φ)的图象,如先伸缩,
考点3 三角函数模型及其应用——应用性
考点4 三角函数图象与性质的综合问题——综合性
考点1
由图象确定y=A sin (ωx+φ)的解析式——基础性
1.(2022·银川模拟)已知函数y=sin (ωx+φ) > 0, <
象如图所示,则此函数的解析式可以是(
A.y=sin
1

2
C.y=sin 2
π
(3)若函数y=A sin (ωx+φ)(A≠0)为偶函数,则φ=kπ+ (k∈Z).

高考数学一轮复习函数y=Asin(ωx+φ)的图象及应用完整文ppt课件

高考数学一轮复习函数y=Asin(ωx+φ)的图象及应用完整文ppt课件

.
2
基考课础点堂诊突总断破结
知识梳理 1.“五点法”作函数 y=Asin(ωx+φ)(A>0,ω>0)的简图
“五点法”作图的五点是在一个周期内的最高点、最低点 及与 x 轴相交的三个点,作图时的一般步骤为:
.
3
基考课础点堂诊突总断破结
• (1)定点:如下表所示.
x
-ωφ
π2-φ ω
π-φ ω
32π-φ ω
为A,最小值为-A.
×
•( )
.(3)函数 f(x)=Asin(ωx+φ)的图象的两个相邻对称轴间的距离为 一个周期.
(×) (4)函数 y=Acos(ωx+φ)的最小正周期为 T,那么函数图象的两 个相邻对称中心之间的距离为T2.
(√ )
.
9
基考课础点堂诊突总断破结
• 2.(2014·四川卷)为了得到函数y=sin(x+1) 的图象,只需把函数y=sin x的图象上所有 的点
叫做周期,f=T1叫做频率,
ωx+φ 叫做相位,φ 叫做初相.
.
7
基考课础点堂诊突总断破结
• 诊断自测
• 1.思考辨析(在括号内打“√”或“×”)
• (1)利用图象变换作图时“先平移,后伸
缩”与“先伸缩,后平移”中向左或向右
平移的长度一样.
×
•( )
• (2)函数f(x)=Asin(ωx+φ)(A≠0)的最大值
.
16
基考课础点堂诊突总断破结
考点一 函数 y=Asin(ωx+φ)的图象及变换 【例 1】 设函数 f(x)=sin ωx+ 3cos ωx(ω>0)的周期为 π.
(1)求它的振幅、初相; (2)用五点法作出它在长度为一个周期的闭区间上的图象; (3)说明函数 f(x)的图象可由 y=sin x 的图象经过怎样的变换 而得到.

湘教版高考总复习一轮数学精品课件 第五章 第六节 函数y=Asin(ω+φ)的图象及三角函数的应用

湘教版高考总复习一轮数学精品课件 第五章 第六节 函数y=Asin(ω+φ)的图象及三角函数的应用
6
Z,所以函数 g(x)的图象关于点
π
,0
3
,g(x)的图象的对称轴为直线 2x-
A 项错误;令
中心对称,故
π
2π π

<-2 +2kπ,k∈Z,得- +kπ≤x≤12 +kπ,k∈Z,在区间
3
12
间为
π
0,12
,故 C 项正确;f
项错误.故选 BC.
π
x+ 6
+1=2cos
π
2x+
3

2x- =kπ,得
有的点(
π
x+ 5
的图象,只要把函数 y=3sin
)
4
A.横坐标伸长到原来的3倍,纵坐标不变
3
B.横坐标缩短到原来的4,纵坐标不变
4
C.纵坐标伸长到原来的3倍,横坐标不变
3
D.纵坐标缩短到原来的 ,横坐标不变
4
π
x+5
的图象上所
答案 C
解析 依题意,应把图象上所有点的纵坐标伸长到原来的
4
倍,横坐标不变.
π 3π
0, ,π, ,2π.
2
2
微思考 如图所示为函数y=sin(ωx+φ)的部分图象.利用零点代入求φ时,
ωx1+φ,ωx2+φ取哪些值?
提示 若利用x1这样的零点(图象经过(x1,0)时函数单调递减)代入求φ的值,
应令ωx1+φ=π+2kπ(k∈Z);而如果利用x2这样的零点(图象经过(x2,0)时函数
2
移 φ(φ>0)个单位长度,所得的图象关于 y 轴对称,则 φ 的最小值为(

高三数学(理)一轮复习课件3.4 函数y=Asin(ωx+φ)的图象ppt版本

高三数学(理)一轮复习课件3.4 函数y=Asin(ωx+φ)的图象ppt版本

解析:由题图可知T2=158π-38π=32π,∴T=3π,又 T=2ωπ,

ω

2 3


f(x)

2sin
23x+φ


f(x)





38π,2


2sinπ4+φ=2,∴π4+φ=2kπ+π2(k∈Z),∴φ=2kπ+π4(k∈Z).
又∵|φ|<π2,∴φ=π4.∴f(x)=2sin23x+π4.由23x+π4=kπ(k∈Z),
利用 y=sinx 的对称轴为 x=kπ+π2(k∈Z)求解,令 ωx+φ=kπ +π2(k∈Z)得其对称轴.
—[通·一类]—
[同类练]——(着眼于触类旁通) 3.(2016·课标全国Ⅱ,7)若将函数 y=2sin 2x 的图象向左平 移1π2个单位长度,则平移后图象的对称轴为( ) A.x=k2π-π6(k∈Z) B.x=k2π+π6(k∈Z) C.x=k2π-1π2(k∈Z) D.x=k2π+1π2(k∈Z)
6.函数 f(x)=2sin(ωx+φ)ω>0,-π2<φ<π2 的部分图象如图所示,则 ω=________.
解析:∵T2=1112π-152π,∴T=π. 又 T=2ωπ(ω>0),∴2ωπ=π, ∴ω=2. 答案:2
一、必记 3●个知识点 1.函数 y=sinx 的图象变换得到 y=Asin(ωx+φ)(A>0,ω >0)的图象的步骤
轴,且 f(x)在1π8,53π6上单调,则 ω 的最大值为( )
A.11
B.9
C.7
D.5
[解析]
依题意,有ωω··π4-+π4φ=+nφπ=+mπ2π,

湘教版高考总复习一轮数学精品课件 第5章三角函数、解三角形 函数y=Asin(ωx+φ)的图象及应用

湘教版高考总复习一轮数学精品课件 第5章三角函数、解三角形 函数y=Asin(ωx+φ)的图象及应用
6 6
6
6
π
(0,)是
g(x)的一个单调递增区间,所以
π
π
π
g(0)=-1,即- 6 − 6=2kπ-2,k∈Z,解得
ω=-12k+2,k∈Z,因为 0<ω<6,所以 ω=2,故

T= 2 =π,故
A 正确;令
π
2kπ-2
π
≤2x-6
π
f(x)=sin(2x-6).f(x)的最小正周期
π
≤2kπ+2,k∈Z,解得
1 π
C.y=sin(2x-2 )
π
D.y=sin(2x- )
6
1 2 3 4 5 6 7 8 9 10 11
解析 将函数

y=sin(x-3)的图象上所有点的横坐标伸长到原来的
不变),得到图象对应的函数解析式为
1
y=sin(2x-3),将

移3个单位长度,得到的图象对应的函数解析式为
1 2 3 4 5 6 7 8 9 10 11
1 2 3 4 5 6 7 8 9 10 11
(2)将函数y=f(x)图象上所有点向左平移θ(θ>0)个单位长度,得到函数y=g(x)
的图象.若函数y=g(x)图象的一个对称中心为(

12
,0),求θ的最小值;
(3)作出函数f(x)在长度为一个周期的闭区间上的图象.
1 2 3 4 5 6 7 8 9 10 11
f(x)的图象,不但要由 y=2sin 2x 进行平移变
换,而且还要进行对称变换,故③错误;将
中,f(x)≠±1,故②错误;当 f(x)≤
π
+3
π
x= 代入
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A.T=6,φ=π6
B.T=6,φ=π3
C.T=6π,φ=π6
D.T=6π,φ=3π
解析:由题意知 f(0)=2sin φ=1,∴sin φ=12,又|φ|<π2,∴φ=π6,又
T=6,故选 A.
答案:A
2.函数 y=sin2x-3π在区间-π2,π上的简图是下列选项中的(
)
解析:当 x=π6时,y=sin2×π6-π3=0;当 x=π 时,y=sin2π-π3= - 23,从而排除 B、C、D,选 A.
即可. • 答案:A
4.(2013 年高考四川卷)函数 f(x)=2sin(ωx+φ)(ω>0,-2π<φ<π2)的部 分图象如图所示,则 ω,φ 的值分别是( )
A.2,-π3 C.4,-π6
B.2,-6π D.4,π3
解析:由图象知 T=2×1112π-152π=π,ω=2.又点51π2,2在图象上,
• 画出图象如图所示.
三角函数的图象变换与性质(高频研析)
• 考情分析 三角函数的图象变换与性质在高考中是每年 的必考点之一,在选择题或解答题中出现,常考查基本 的图象变换,稍难的题中是图象变换与三角函数的单调 性、奇偶性、对称性相结合,成为小综合题.
• 角度一 x+φ)+B 型
(2)用“五点法”作图应注意四点: ①将原函数化为 y=Asin(ωx+φ)(A>0,ω>0)或 y=Acos(ωx+φ)(A>0, ω>0)的形式. ②求出周期 T=2ωπ. ③求出振幅 A. ④列出一个周期内的五个特殊点,当画出某指定区间上的图象时,应列 出该区间内的特殊点和区间端点.
1.已知函数 f(x)=sin2x+π3.画出函数 y=f(x)在区间[0,π]上的图象. 解析:∵0≤x≤π,∴π3≤2x+π3≤73π.列表如下:
• 1.(2015年福州质检)已知a=(sin x,cos x),b=(cos x,cos x),函数f(x)=a·b.
• (1)求函数f(x)的单调递增区间;
• (2)函数f(x)的图象可以由函数y=sin x的图象经过怎样的 变换得到?
解析:(1)f(x)=a·b=sin xcos x+cos2x
第四节 函数y=Asin(ωx+φ)的图象及应用
• 最新考纲展示
• 1.了解函数y=Asin(ωx+φ)的物理意义;能画出y= Asin(ωx+φ)的图象,了解参数A,ω,φ对函数图象变 化的影响. 2.了解三角函数是描述周期变化现象的重 要函数模型,会用三角函数解决一些简单的实际问题.
• 一、y=Asin(ωx+φ)的有关概念及五点法描图 • 1.y=Asin(ωx+φ)的有关概念
“第一点”(即图象上升时与 x 轴的交点)为 ωx+φ=0;“第二 点”(即图象的“峰点”)为 ωx+φ=π2;“第三点”(即图象下降时与 x 轴 的交点)为 ωx+φ=π;“第四点”(即图象的“谷点”)为 ωx+φ=32π;“第 五点”为 ωx+φ=2π.
1.已知简谐运动 f(x)=2sinπ3x+φ|φ|<2π的图象经过点(0,1),则该简 谐运动的最小正周期 T 和初相 φ 分别为( )
• 2.用五点法画y=Asin(ωx+φ)一个周期内的简图
• 用五点法画y=Asin(ωx+φ)一个周期内的简图时,要找 五个关键点,如下表所示:
• 二、函数y=sin x的图象变换得到y=Asin(ωx+φ)的图 象的步骤
1.两种不同变换思路中平移单位的区别: 由 y=sin x 的图象变换得到 y=Asin(ωx+φ)的图象,两种变换的区 别:先相位变换再周期变换(伸缩变换),平移的量是|φ|个单位;而先周期 变换(伸缩变换)再相位变换,平移的量是|ωφ|(ω>0)个单位.原因在于相位 变换和周期变换都是针对 x 而言,即 x 本身加减多少值,而不是依赖于 ωx 加减多少值.
角度二 由 y=Asin(ωx+φ1)经图象变换得到 y=Asin(ωx+φ2)型 2.(2014 年高考浙江卷)为了得到函数 y=sin 3x+cos 3x 的图象,可 以将函数 y= 2cos 3x 的图象( ) A.向右平移1π2个单位 B.向右平移π4个单位 C.向左平移1π2个单位 D.向左平移π4个单位
所以 sin2×51π2+φ=1,56π+φ=π2+2kπ,k∈Z,由-2π<φ<π2得 φ=
-π3.
• 答案:A
五点法描图(师生共研)
• 例1 已知函数f(x)=cos2x-2sin xcos x-sin2x.
• (1)将f(x)化为y=Acos(ωx+φ)的形式;
• (2)用“五点法”在给定的坐标中,作出函数f(x)在[0, π]上的图象.
=12sin
2x+cos
2x+1 2
=12sin 2x+21cos 2x+12
= 22sin2x+π4+21. 当 2kπ-π2≤2x+π4≤2kπ+π2,k∈Z,
即 kπ-38π≤x≤kπ+π8,k∈Z 时,函数 f(x)单调递增,
所以函数 f(x)的单调递增区间为kπ-38π,kπ+π8,k∈Z.
2.五点法作图中的五点是函数 y=Asin(ωx+φ)图象上五个关键点, 两个最值点,三个零点,在实际作图中,这是首先要考虑的五个点,但 也不能只依赖这五个点,其他的特殊点也应考虑.
3.由 y=Asin(ωx+φ)的图象确定第一个零点的方法: 确定 φ 值时,往往以寻找“五点法”中的第一零点-ωφ,0作为突 破口.具体如下:
解 析 (1)f(x) = cos2x - sin2x - 2sin xcos x = cos 2x - sin 2x = 2
2 2 cos
2x-
2 2 sin
2x=
2cos2x+π4.
• (2)列表:
• 图象为:
规律方法 (1)寻找[0,π]上的特殊点时,可先求出 2x+4π的范围,在 此范围内找出特殊点,再求出对应的 x 值.
• 答案:A
• 3.(2014年高考四川卷)为了得到函数y=sin(x+1)的图 象,只需把函数y=sin x的图象上所有的点( )
• A.向左平行移动1个单位长度
• B.向右平行移动1个单位长度
• C.向左平行移动π个单位长度
• D.向右平行移动π个单位长度 • 解析:由y=sin x得y=sin(x+1)只需向左平移1个单位
相关文档
最新文档