铸造

合集下载

铸造名词解释

铸造名词解释

铸造名词解释铸造技术是金属结构加工的重要方法之一,在工业生产中大量使用,特别是在机械制造、电子、航空、航天、汽车、冶金等行业中应用广泛。

与其他金属成形工艺相比,铸造具有结构紧凑、强度大、加工精度高、易于加工多孔复杂零件等优点。

下面介绍铸造名词解释。

一、铸件:铸件是以坯料或其他金属材料为原料,经过熔化精制、浇铸、造型而制成的金属结构件。

由于其坯料有着一定的固有结构,因而具有高强度、结构紧凑、精度高等特点。

二、铸造:铸造是把金属以液态形式,通过各种工艺流程,加热、熔化、浇铸、冷却等,把金属从液态转化为固态,得到所需要的铸件的工艺。

三、型芯:型芯是铸造过程中的一个必要工艺零件,它用于形成铸件的内部结构和形状,型芯的材料有砂型、木型、模具铁等,它在铸造工艺中起着关键的作用。

四、浇口:浇口是指铸件的浇铸口,是熔化金属从型腔中浇入铸件内部的通道,它们的位置及形状是影响铸件最终形状和质量的重要因素,需要严格控制。

五、充型:充型是指型芯内注入型料、固化材料或者砂浆等,以及在这些材料中植入钢模具或木模具,以形成铸件所需要的内部结构和形状所进行的工序。

六、排气:排气是指将浇注过程中产生的空气从型腔中排出的过程,目的是使铸件内部形状精确,也可以使金属的流动性得到改善。

七、静固:静固是指铸件内部结构及形体稳定不变的过程,在铸件内部结构成形前,需要将型芯内的型料、固化材料或者砂浆等进行静固,以保证其稳定性。

八、整形:整形是指铸件加工完成后,进行外观及尺寸精度等处理,以达到所要求的标准,这一步骤可以由专业设备或手工工具完成。

九、抛光:抛光是指给铸件表面施加光滑的处理工艺,使其表面光洁,有利于观赏和使用的效果,也是给予铸件特殊功效的重要步骤之一。

本文介绍了铸造名词解释,比如铸件、铸造、型芯、浇口、充型、排气、静固、整形和抛光等,它们都是铸造工艺中不可缺少的环节,并且在整个铸造过程中起着重要的作用,只有将其贯彻到位,才能保证铸件质量。

六种铸造方法

六种铸造方法

六种铸造方法铸造是一种常见的制造工艺,用于制造各种金属制品。

在铸造过程中,根据所用的模具和铸造材料的不同,可以分为六种主要的铸造方法,分别是砂型铸造、金属型铸造、压铸、熔模铸造、连续铸造和精密铸造。

1. 砂型铸造砂型铸造是最常见的铸造方法之一。

它使用砂型作为铸造材料,将其填充到模具中,然后浇注熔化的金属。

砂型铸造适用于生产各种不同形状和大小的铸件,成本低廉,生产效率高。

然而,由于砂型的热膨胀和收缩,砂型铸造的尺寸精度较低。

2. 金属型铸造金属型铸造是一种使用金属模具的铸造方法。

金属模具可以承受高温和高压,因此可以制造出更精确、更复杂的铸件。

金属型铸造适用于生产高精度、高质量要求的零件,但成本较高,适用范围较窄。

3. 压铸压铸是一种将熔化的金属注入高压下的快速冷却模具中的铸造方法。

压铸可以制造出形状复杂、尺寸精确的铸件,表面质量好,且具有良好的机械性能。

压铸适用于大批量生产,但设备和模具成本较高。

4. 熔模铸造熔模铸造是一种使用可熔化模具的铸造方法。

先制造出模具,然后将其加热以使其熔化,再将熔化的模具注入金属。

熔模铸造适用于生产高温合金和复杂形状的铸件,但模具制造成本较高,生产周期较长。

5. 连续铸造连续铸造是一种连续生产铸件的铸造方法。

在连续铸造中,熔化的金属通过连续浇注到连续铸造机中的模具中,形成连续的铸件。

连续铸造适用于生产长条状或板状的铸件,具有高生产效率和较好的机械性能。

6. 精密铸造精密铸造是一种制造高精度、高表面质量的铸件的铸造方法。

精密铸造使用特殊的模具和工艺,可以制造出复杂的内腔和细小的结构。

精密铸造适用于制造精密仪器、模具等高要求的铸件,但成本较高,生产周期较长。

总结起来,不同的铸造方法适用于不同的生产需求。

砂型铸造和金属型铸造适用于一般铸件的大批量生产,压铸适用于形状复杂、尺寸精确的铸件,熔模铸造适用于高温合金和复杂形状的铸件,连续铸造适用于长条状或板状的铸件,精密铸造适用于高精度、高表面质量的铸件。

铸造的定义及特点

铸造的定义及特点

铸造的定义及特点铸造是一种通过将熔化的金属或合金注入到模具中,并在冷却后使其凝固成所需形状的工艺。

在铸造过程中,金属或合金会经历熔化、注入、凝固和冷却等阶段,最终得到所需的铸件。

铸造是制造业中最常见的一种工艺,被广泛应用于汽车、航空航天、建筑、机械等领域。

铸造的特点主要包括以下几个方面:1. 造型自由度高:铸造工艺可以制造出各种形状复杂的铸件,无论是几何形状还是内部空腔结构,都可以通过合理设计模具来实现。

这使得铸造成为制造大型、复杂铸件的首选工艺。

2. 工艺适应性强:铸造适用于各种金属和合金,包括铁、钢、铝、铜、镁等。

不同的金属和合金有不同的熔点、凝固温度和流动性,铸造工艺可以根据材料的特性进行调整,以得到满足要求的铸件。

3. 生产效率高:铸造是一种批量生产的工艺,通过模具可以同时制造多个相同的铸件,大大提高了生产效率。

同时,铸造工艺可以实现自动化生产,减少了人工操作,提高了生产效率和产品质量。

4. 材料利用率高:铸造过程中,金属或合金是以液态形式注入模具中的,因此可以充分利用金属材料,减少浪费。

同时,铸造还可以回收和再利用废铸件和铸型材料,减少资源消耗和环境污染。

5. 产品质量稳定:铸造工艺可以通过控制铸件的组织和性能来满足不同的使用要求。

通过合理的铸造工艺参数和材料选择,可以获得具有一定强度、硬度、耐磨性、耐腐蚀性等特性的铸件。

6. 成本较低:相比其他制造工艺,铸造的设备投资和生产成本较低。

铸造设备简单、易于操作,不需要复杂的加工工艺和设备,可以在较低的成本下完成生产任务。

铸造工艺的发展随着时间的推移和科技的进步,逐渐形成了多种不同的铸造方法和工艺。

例如,根据铸造材料的不同,可以将铸造分为金属铸造、陶瓷铸造和塑料铸造等。

根据铸造方法的不同,可以将铸造分为重力铸造、压力铸造、离心铸造、注射铸造等。

每种铸造方法和工艺都有其适用的范围和特点,可以根据具体的产品要求和生产需求进行选择。

铸造作为一种传统的制造工艺,在现代工业中仍然占据重要地位。

铸造的定义及特点

铸造的定义及特点

铸造的定义及特点铸造是一种制造工艺,通过将熔化的金属或其他物质倒入预先设计好的模具中,使其在冷却凝固后得到所需形状和尺寸的制品。

铸造是人类最早的金属加工方法之一,已有数千年的历史。

在铸造过程中,通过控制熔融金属的温度、流动性和冷却速度等参数,可以获得不同性能和形状的铸件。

铸造工艺广泛应用于汽车、航空航天、机械制造、建筑等各个领域,成为现代工业生产中不可或缺的一环。

铸造的主要特点如下:1. 灵活性:铸造工艺适用于各种金属和合金材料,包括铁、钢、铝、铜、镁等。

同时,铸造还可以生产出各种形状和尺寸的铸件,从小到几毫米的微型零件到几十吨重的大型机械零件都可以通过铸造加工得到。

2. 成本效益高:相对于其他金属加工方法,铸造具有较低的成本。

一方面,铸造工艺可以实现批量生产,提高生产效率;另一方面,铸造可以充分利用原材料,减少废料产生。

3. 可制造复杂零件:铸造可以制造出复杂形状的零件,包括内部空腔、空心结构、细小的花纹等。

这些复杂的形状和结构通过其他金属加工方法难以实现。

4. 材料性能可调:通过调整铸造工艺参数和合金成分,可以获得不同性能的铸件。

例如,通过改变冷却速度可以调控铸件的组织结构和硬度,通过添加合金元素可以提高铸件的强度和耐腐蚀性能。

5. 制造周期短:相对于其他金属加工方法,铸造的制造周期较短。

一方面,铸造的生产过程相对简单,可以通过自动化设备实现连续生产;另一方面,铸造可以一次性得到所需形状和尺寸的铸件,无需进行多道工序的加工。

6. 可实现大规模生产:铸造工艺适用于大规模生产,可以满足工业生产的需求。

通过制造模具,可以实现连续、高效、稳定的生产。

7. 可修复性强:由于铸造的铸件通常具有一定的余量,即使在生产过程中出现一些缺陷或损伤,也可以通过热处理、机械加工等方法进行修复。

8. 环保性:铸造工艺可以充分利用可回收材料,减少资源浪费。

同时,铸造过程中产生的废料和废气可以通过处理和过滤设备进行处理,减少对环境的污染。

铸造知识

铸造知识

第一章铸造概述铸造——将液态金属浇注到铸型型腔中,待其冷却凝固后,获得一定形状的毛坯或零件的方法。

铸造生产的特点:优点——零件的形状复杂;工艺灵活;成本较低。

缺点——机械性能较低;精度低;效率低;劳动条件差。

分类:砂型铸造——90%以上特种铸造——铸件性能较好,精度低,效率高我国铸造技术历史悠久,早在三千多年前,青铜器已有应用;二千五百年前,铸铁工具已经相当普遍。

泥型、金属型和失蜡型是我国创造的三大铸造技术。

§1-1 金属的铸造性能合金的铸造性能是表示合金铸造成型获得优质铸件的能力。

通常用流动性和收缩性来衡量。

一、合金的流动性1、流动性概念流动性——液态合金的充型能力。

流动性好的合金:易于浇注出轮廓清晰、薄而复杂的铸件;有利于非金属夹杂物和气体的上浮和排除;易于补缩及热裂纹的弥合。

合金的流动性是以螺旋形流动试样的长度来衡量。

试样越长,流动性越好。

2、影响合金流动性的因素a、合金性质方面纯金属、共晶合金流动性好。

(恒温下结晶,凝固层内表面光滑)亚、过共晶合金流动性差。

((在一定温度范围内结晶,凝固层内表面粗糙不平))b、铸型和浇注条件提高流动性的措施:提高铸型的透气性,降低导热系数;确定合理的浇注温度;提高金属液的压头; 浇注系统结构简单。

C 、铸件结构铸件壁厚>最小允许壁厚二、合金的收缩1、收缩的概念收缩是铸件中的缩孔、缩松、变形和开裂等缺陷产生的原因。

收缩的三个阶段:液态收缩形成缩孔、缩松(体收缩率) 凝固收缩固态收缩 ——产生变形和裂纹(线收缩率)2、铸件的缩孔和缩松 缩孔的形成:纯金属或共晶成分的合金易形成缩孔。

缩松的形成:结晶温度范围大的合金易形成缩松。

缩孔和缩松的防止:定向凝固——在铸件可能出现缩孔的厚大部位,通过增设冒口或冷铁等工艺措施,使铸件上远离冒口的部位先凝固,尔后是靠近冒口的部位凝固,冒口本身最后凝固。

结果——使铸件各个部分的凝固收缩均能得到液态金属的补充,而将缩孔转移到冒口之中3、铸造应力铸造内应力有热应力和机械应力,是铸件产生变形和开裂的基本原因。

制造工艺详解——铸造

制造工艺详解——铸造

制造工艺详解-—铸造铸造是人类掌握比较早的一种金属热加工工艺,已有约6000年的历史。

中国约在公元前1700~前1000年之间已进入青铜铸件的全盛期,工艺上已达到相当高的水平。

一、铸造的定义和分类铸造的定义:是将液体金属浇铸到与零件形状相适应的铸造空腔中,待其冷却凝固后,获得具有一定形状、尺寸和性能金属零件毛坯的成型方法。

常见的铸造方法有砂型铸造和精密铸造,详细的分类方法如下表所示。

砂型铸造:砂型铸造—-在砂型中生产铸件的铸造方法。

钢、铁和大多数有色合金铸件都可用砂型铸造方法获得。

由于砂型铸造所用的造型材料价廉易得,铸型制造简便,对铸件的单件生产、成批生产和大量生产均能适应,长期以来,一直是铸造生产中的基本工艺。

精密铸造:精密铸造是用精密的造型方法获得精确铸件工艺的总称.它的产品精密、复杂、接近于零件最后形状,可不加工或很少加工就直接使用,是一种近净形成形的先进工艺.铸造方法分类二、常用的铸造方法及其优缺点1。

普通砂型铸造制造砂型的基本原材料是铸造砂和型砂粘结剂。

最常用的铸造砂是硅质砂,硅砂的高温性能不能满足使用要求时则使用锆英砂、铬铁矿砂、刚玉砂等特种砂。

应用最广的型砂粘结剂是粘土,也可采用各种干性油或半干性油、水溶性硅酸盐或磷酸盐和各种合成树脂作型砂粘结剂。

砂型铸造中所用的外砂型按型砂所用的粘结剂及其建立强度的方式不同分为粘土湿砂型、粘土干砂型和化学硬化砂型3种.砂型铸造用的是最流行和最简单类型的铸件已延用几个世纪。

砂型铸造是用来制造大型部件,如灰铸铁,球墨铸铁,不锈钢和其它类型钢材等工序的砂型铸造。

其中主要步骤包括绘画,模具,制芯,造型,熔化及浇注,清洁等.工艺参数的选择加工余量:所谓加工余量,就是铸件上需要切削加工的表面,应预先留出一定的加工余量,其大小取决于铸造合金的种类、造型方法、铸件大小及加工面在铸型中的位置等诸多因素。

起模斜度:为了使模样便于从铸型中取出,垂直于分型面的立壁上所加的斜度称为起模斜度.铸造圆角:为了防止铸件在壁的连接和拐角处产生应力和裂纹,防止铸型的尖角损坏和产生砂眼,在设计铸件时,铸件壁的连接和拐角部分应设计成圆角。

五种常见的铸造工艺及其在铸造行业中的应用案例

五种常见的铸造工艺及其在铸造行业中的应用案例

五种常见的铸造工艺及其在铸造行业中的应用案例铸造工艺是一种常见的制造工艺,用于生产各种金属制品和零部件。

本文将介绍五种常见的铸造工艺,并通过应用案例来展示它们在铸造行业中的实际运用。

一、砂型铸造工艺砂型铸造是最常见和传统的铸造工艺之一。

它使用砂型作为铸型材料,将液态金属倒入模具中,待金属凝固后,砂型被破碎以得到铸件。

这种工艺广泛应用于生产大型铸件,如发动机缸盖和机床床身等。

案例一:汽车制造业中的缸体铸造在汽车制造业中,发动机的缸体通常是用砂型铸造工艺生产的。

砂型可以灵活地制作出各种复杂形状和内腔结构,满足汽车发动机缸体的要求。

二、金属型铸造工艺金属型铸造是一种使用金属模具的铸造工艺。

金属模具可以重复使用,提高了生产效率和产品质量。

这种工艺适用于生产高精度和大批量的铸件。

案例二:飞机引擎叶片的制造飞机引擎叶片是需要具备高精度和高强度的金属部件。

金属型铸造工艺可以制造出符合要求的叶片,有助于提高飞机引擎的性能。

三、压铸工艺压铸是一种将液态金属注入高压模具中,通过施加压力使金属充填模腔的铸造工艺。

压铸可用于生产精密度高、尺寸复杂的铸件。

案例三:手机外壳的生产手机外壳通常由铝合金或镁合金制成,具有精密的尺寸和复杂的结构。

压铸工艺能够满足手机外壳的质量和生产效率要求。

四、连续铸造工艺连续铸造是一种将液态金属连续倒入模具中,通过连续冷却和切割得到连续条状铸坯的工艺。

它适用于生产长条状铸件,如铁路轨道和钢板等。

案例四:钢铁工业中的连铸连铸广泛应用于钢铁工业,以生产各种规格和长度的钢坯。

通过连续铸造工艺,可以提高钢坯的质量和生产效率。

五、精密铸造工艺精密铸造是一种生产高精度和复杂形状铸件的工艺。

它通常结合了其他铸造工艺,如石膏型铸造和失蜡铸造等。

案例五:航空航天领域中的精密铸造在航空航天领域,精密铸造被广泛应用于生产航空发动机的复杂部件,如叶轮、涡轮等。

精密铸造工艺的使用可以确保零部件的高精度和性能要求。

总结:通过对五种常见铸造工艺的介绍和应用案例的展示,可以看出在铸造行业中这些工艺的重要性和广泛运用。

铸造基础知识及常见铸造缺陷简介

铸造基础知识及常见铸造缺陷简介
压力铸造是在高压的作用下,以很高的速度 (sùdù)把液态或半液态金属压入压铸模型腔,并在压 力下快速凝固而获得铸件的铸造方法。
第十六页,共五十四页。
压力铸造 的特 (zhùzào) 1、压铸件尺寸精度高; 点
2、铸件强度和表面硬度高;
3、可以压铸复杂形状的薄壁件;
4、具有很高的生产效率;
5、铸件中残留气体多,不宜(bùyí)进行过多的表面
10
第十页,共五十四页。
消失模铸造(zhùzào)
消失模铸造,又称实型铸造,采用(cǎiyòng)可气化的材 料制得的模型来造型,不用起模直接将金属液浇注 到气化模上,使其燃烧、气化并形成空腔来容纳金 属液,从而获得铸件的方法。
第十一页,共五十四页。
消失模铸造 的优点 (zhùzào)
(1)铸件精度高,消失模铸造的铸件质量和金属型铸造
1.炉料潮湿、锈蚀、油污
2.型、芯、涂料未充分烘干
3.浇注系统不合理,形成紊流、卷入气体
4.水分过多及粘结剂发气量过大、未及时排出
5.铁水浇注温度过低
6.阴雨天气
31 第三十一页,共五十四页。
气孔(qìkǒng)
32 第三十二页,共五十四页。
气孔(qìkǒng)
33
第三十三页,共五十四页。
气孔(qìkǒng)
第五页,共五十四页。
金属型铸造的特点
(tèdiǎn)
1. 铸型是永久(yǒngjiǔ)型,生产效率高,对环境污染小。 2.铸件的机械性能高,精度和表面光洁度高。
3.工序简化,易于实现生产的机械化和自动化。 6.模具结构复杂,成本高,适合大批量生产; 7.金属型激冷作用大,无退让性,无透气性。
8.不易生产过大和过薄的铸件。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1分形面的选择
分形面的选择要使铸件容易脱模,所以一般选择在水平投影面积最大处,此铸件如图所示A——A所示:
2 浇注位置的确定
如果铸件按最大截面水平放置进行浇注,那么必须要非常高的浇注速度,不然不容易排渣排气,从而很容易被氧化,而竖直放置则完全可以避免,所以选择竖直放置,如图所示
3 铸件的尺寸公差
通过查表可以找到各种铸件材料的尺寸公差等级,本铸件是由蠕墨铸铁铸造而成,它的尺寸公差等级是8—12,我们选定为9,通过尺寸公差等级和铸件基本尺寸查表可得铸件尺寸公差数值,尺铸件轴向长度大约200左右,查表可得轴向尺寸公差数值为2.8mm,径向尺寸为100mm左右,查表径向尺寸公差数值为2.5mm,
4 机械加工余量
通过造型方法和铸件材料查表可得要求的机械加工余量等级,查表本铸件的机械加工余量等级为E—G,我们选定为G,通过铸件最大尺寸和机械加工余量等级可以查出要求的机械加工余量,此铸件的最大尺寸为200左右,所以要求的机械加工余量为2.8mm
5 铸造收缩率
铸造收缩率用如下公式表示ε=(L1-L2)/L1
ε——铸造收缩率(﹪);
L1——模样长度(mm);
L2——铸件长度(mm);
本铸件属于中小型铸件,铸件铸造里面有型芯,所以其收缩为受阻收缩,查表可得它的收缩率为0.9﹪
6 起模斜度
由于此铸造件为圆筒件(除一端外),所以其圆筒部分可以不设置起模斜度,而一端为方块结构,为方便起模可以设置起模斜度,本铸造为砂土造型,其高度为55mm,所以查表可得其起模斜度为0°30′。

7 型芯设计
首先设计水平芯头,铸件水平长度L为127.5mm,水平芯头的直径D为79mm,通过查表可得水平芯头的长度为35—45(mm);
再设计垂直芯头,铸件垂直长度L为230mm,垂直芯头的直径D为79mm,通过查表可得垂直芯头的长度h为35—40(mm)。

8 冒口的设计
最应该设计冒口的地方为如图所示的地方,通过绘图我们得知此处凝固模数M c≈3mm>2.5mm,且本零件比较小,又可以石墨膨胀,在砂型的刚度和强度足够时,可采用无冒口工艺铸造。

9 浇注系统的设计
采用奥赞公式我们可以算出内浇道的面积
奥赞公式:A阻=m/(P
ρτμ)
2
gH
A阻——内浇道的横截面积;
m——流经内浇道的横截面积;
τ——填充型腔的总时间(s);
ρ——金属液密度(g/mm3);
μ——流量系数;
g——重力加速度;
H——填充型腔时的平均静压头(mm);
p
H=0H-p²/2c
p
H——阻流截面以上的金属静压头;
p
P——阻流截面以上的型腔高度;
τ=S L G
S——系数,与壁厚有关,此处取1.85;
G——浇注重量
L
由图示可得:0H=312mm,L G=3kg,μ=0.5, ρ=7g/ cm3, p=142mm,C=230mm,m=3kg,
通过计算可得τ=3.2,我们可以取5s;
H=268mm;
p
把所有数据代入奥赞公式可得A阻=234mm²
此设计图上的内浇道横截面积为190mm²<234mm²,差别不大并且能提高充型速度。

铸件高度为230mm,浇注液的上升速度为ν=c/ τ,
代入数值可得ν=46mm/s
由图可得铸件的壁厚的厚度为5mm
由壁厚可查表得铸铁液的最小上升速度为20~30mm/s
46mm/s>30mm/s
所以此速度是合适的
本浇注系统可以采用封闭—开放式浇注系统
即:∑Ag>∑Aru<∑As
此浇注系统的好处是可以利于挡渣,又充型平稳,兼有封闭与开放式教导的优点
此设计图∑Ag=390mm²,∑Aru=240mm²,∑As=336 mm²
刚好满足∑Ag>∑Aru<∑As这个不等式。

10 浇口杯的设计
浇注速度公式如右: q=m/τ
m——浇注液质量(kg)
把m=6kg和τ=5s代入上述公式可得
q=1.2kg/s
查表可以选择自动用浇口杯规格1号,此浇口杯的形状如下
此浇口杯尺寸尺寸为:A=40mm,B=30mm.c=15mm.
11 冷铁的设置
此铸件比较小,壁厚比较小,热节区域相比铸造件的比例也是小,所以热节区域算是小上加小,因此设置冷铁是不必要的。

12 出气孔的设计
此铸件是机器造型生产的薄壁,常采用暗的出气孔,出气孔设置在铸件型芯最高处,出气孔的直径不应该超过铸件壁厚的1/2,所以出气孔的直径选取为 2.5mm,为了更好的排气,将排气孔设置成斜的,这样排气空间变大,所以能更好的排气。

本课程体会:前后一个学期两次设计题的作业让我自己的设计能力有了很大的提升,让我对自己的自学能力有了很大的信心,这对我以后面对工作中的挑战是很有裨益的。

建议:您让我们看一些汽车零件,我感觉收获不大,应该让我们看整个铸造实体,我想会比较好。

相关文档
最新文档