晶体学基础(一)

合集下载

XRD(2-晶体学基础)(1)

XRD(2-晶体学基础)(1)

1.倒易点阵的定义? 2.倒易点阵的重要性质?
34
<100>等效晶向
16
(三)晶面和晶面间距 1、晶面
➢ 在布拉菲格子中作一簇平行的平面,这些相互平行、 等间距的平面可以将所有的格点包括无遗。
➢ 这些相互平行的平面称为晶体的晶面 ➢ 同一布拉菲格子中可以存在位相不同的的晶面
17
(hkl):表示一组相互平行的晶面, 称为晶面指数或米勒指数。
(hkl)是平面在三个坐标轴上截距倒数的互质比。 晶格中一组晶面不仅平行,并且等距;
一组晶面必包含了所有格点而无遗漏。
同一个格子,两组不同的晶面
18

以晶胞参数a,b,c为三个对应晶轴的度量单位,晶面ABC在 坐标轴上的截距分别为2、3、6; 其倒数为1/2、 1/3 、 1/6,
h:k:l = 1/2 :1/3 : 1/6
=3:2:1
故: 该晶面的晶面指数 (hkl)为(321)。
带轴。
凡属于[uvw]晶带的晶面,其面指数(hkl)必符合关系:
hu+kv+lw=0
晶带定律
跳过下一页PPT 26
二、倒易点阵(倒点阵)
倒点阵可以直观地解释衍射图的成因, 它是虚拟的、抽象的教学工具。
晶体学中的正点阵(空间点阵),通过某种联系,将其 抽象出另外一套结点的集合,得到倒点阵。
➢ 晶体点阵中的一个晶面(hkl),在倒点阵中将用 一个点Phkl表示。该点与其对应的晶面有倒易关系。
E、当晶面指数中某个位置上的指数为0时, 表示该晶面与对应的晶轴平行。 如(100)(001)。
22
2、晶面间距dhkl
晶面间距是指两个相邻的平行晶面间的垂直距离。 通常用dhkl 或简写为d来表示。

2-1晶体学基础--西安交大材料科学基础

2-1晶体学基础--西安交大材料科学基础

1
13
c
c1
(463)
O a a1
b1
b
图2-6 晶面指数的确定 1 Oa1=1/2a Ob1=1/2b Oc1=1/2c
14
在确定密勒指数时,还需规定几点: 在确定密勒指数时,还需规定几点: (1)该晶面不能通过原点,因为这时截距为零,其倒数 )该晶面不能通过原点,因为这时截距为零, 是无意义的, 是无意义的,这时应选择与该晶面平行但不过原点的面来 确定晶面指数或把坐标原点移到该面之外; 确定晶面指数或把坐标原点移到该面之外; (2)当晶面与某晶轴平行时,规定其截距为 ,则截距 )当晶面与某晶轴平行时,规定其截距为∞, 的倒数为零; 的倒数为零; ( 3)当晶面与坐标轴的负方向相交时,截距为负,该指数 当晶面与坐标轴的负方向相交时, 当晶面与坐标轴的负方向相交时 截距为负, 的负号最后标在数字的上方。 的负号最后标在数字的上方。 (4)由于任一晶面平移一个位置后仍然是等同的晶面, )由于任一晶面平移一个位置后仍然是等同的晶面, 因此指数相同而符号相反的晶面指数是可以通用的。 因此指数相同而符号相反的晶面指数是可以通用的。
相同,还要看晶面的面间距和原子密度是否相等 如果它们 相同 还要看晶面的面间距和原子密度是否相等.如果它们 还要看晶面的面间距和原子密度是否相等 不相等,尽管晶面指数的数字相等 尽管晶面指数的数字相等,也不是性质相同的等同 不相等 尽管晶面指数的数字相等 也不是性质相同的等同 晶面,而不属于同族晶面 而不属于同族晶面。 晶面 而不属于同族晶面。
1
9
●确定晶向指数时,坐标原点不一定非选在晶向上,若 确定晶向指数时,坐标原点不一定非选在晶向上, 原点不在待标晶向上, 原点不在待标晶向上,那就需要找出该晶向上 ( x 1 , y 1 , z 1 )和 ( x 2 , y 2 , z 2 ) 两点的坐标 标 (x 1 − x 2 ) ( y 1 − y 2 ) (z 1 − z 2 ) 并使之满足: 质整数 uvw ,并使之满足: ,然后将三个数化成互 然后将三个数化成互

材料科学基础-第1章

材料科学基础-第1章

晶面指数及晶面间距
现在广泛使用的用来表示晶面指数的密勒指数是由 英国晶体学家ler于1939年提出的。
z
确定晶面指数的具体步骤如下: 1.以各晶轴点阵常数为度量单位,求 出晶面与三晶轴的截距m,n,p; 2.取上述截距的倒数1/m,1/n,1/p; 3. 将以上三数值简为比值相同的三 个最小简单整数,即 1 1 1 h k l (553) : : : : h:k :l x m n p e e e 其中e为m,n,p三数的最小公倍数,h,k,l为简单整数; 4.将所得指数括以圆括号, (hkl)即为密勒指数。
13 体心立方点阵
a=b=c,α=β=γ =90°
14 面心立方点阵
a=b=c,α=β=γ =90°
§ 1.5 晶体结构的对称性
一、对称:对称是指物体相同部分作有规律的 重复。对称操作所依据的几何元素,亦即在对 称操作中保持不动的点、线、面等几何元素称 为对称元素。 二、对称性
1.晶体的宏观对称性 2. 晶体的32种点群 3. 晶体的微观对称性 4.230种空间群
晶体结构=空间点阵+基元
注意:上式并不是一个数学关系式,而只是用来表示这三者之间的 关系。
二、晶体的点阵理论
1 、点阵(Lattice):
将晶体中重复出现的最小单元作为结构基元,用一个数 学上的点来代表 , 称为点阵点,整个晶体就被抽象成一组 点,称为点阵。 1 点阵点必须无穷多; 点阵必须具备的三个条件 2 每个点阵点必须处于相同的环境; 3 点阵在平移方向的周期必须相同。
c
b
a
空间点阵及晶胞的不同取法
选取晶胞的原则: 1.要能充分反映整个空间点阵的周期性和对称性; 2.在满足1的基础上,单胞要具有尽可能多的直角; 3.在满足上条件,晶胞应具有最小的体积。

晶体学基础

晶体学基础
单斜
abc
abc
90
90
三斜
abc
3. 点阵类型
7大晶系 包含14 种空间 点阵— —布拉 菲 (A.Brav ais)点阵
§1-2晶面指数、晶向指数——Miller指数
晶面——穿过晶体的原子平面。 晶向——晶体中任意原子列的直线方向。 不同的晶面和晶向具有不同的原子排列和取向。这就是 晶体具有各向异性的原因。
( 1 00), (0 1 0), (00 1 )
思考: {111}包含多少个等价面?
三、 晶向指数与晶面指数的关系
在立方晶系中(包括密排六方):
[u v w] // (h k l) 时,一定满足:hu+kv+lw = 0 [u v w] (h k l) 时,一定满足:h=u, k=v, l=w
同一直线上,方向相反的晶向其指数加负号;
原子排列相同但空间位向不同的所有晶向称为晶向族, 用< >括号表示。 例如<100>包含:[100],[010],[001 ],[1 00],[0 1 0],[001] z [011] 不通过原点的晶向: (x2-x1):(y2-y1):(z2-z1) =u:v:w
一、晶向指数
确定晶向指数的步骤: 建立坐标系:oxyz, 晶格长度作为单位长度,原点o在待定晶向上;
找出该晶向上除原点外的任意一点的坐标:x,y,z; 将x,y,z 按比例划成互质(最小)整数u,v,w;
将u,v,w 三个数放在方括号内,就得到晶向指数[uvw]。
[说明]: 晶向指数表示的是一族平行的晶向,即相互平行的晶向 具有相同的晶向指数;
[0 1 0]
o x
[1 0 1] [010] y

2012-晶体学基础1

2012-晶体学基础1

点阵矢量:a b c
棱边夹角, ,
14种布拉菲点阵
根据6个点阵参数间的相互关系,可将全部空间点阵归属 于7种类型,即7个晶系。按照“每个阵点的周围环境相 同“的要求,布拉菲(Bravais A.)用数学方法推导出 能够反映空间点阵全部特征的单位平行六面体只有14种, 这14种空间点阵也称布拉菲点阵。
晶胞选取的原则
同一空间点阵可因选取方式不同而得到不相同的晶胞
晶胞选取的原则

选取的平行六面体应反映出点阵的最高对称性;
平行六面体内的棱和角相等的数目应最多; 当平行六面体的棱边夹角存在直角时,直角数目应最多; 当满足上述条件的情况下,晶胞应具有最小的体积。



晶胞、晶轴和点阵矢量
点阵常数:a, b, c
倒易点阵与正点阵的关系
4、对于面心型,指数同为偶数或奇数的晶面才出现; (111) (220)
(200)
倒易点阵小结
1、均为无限的周期点阵, 2、正点阵的晶面对应于倒易点阵的阵点(除有公因子指数外); 3、晶系不变,为11种中心对称的劳厄点群; 4、P->P*, C->C*, I->F*, F->I*,即对复合单胞出现倒易点阵系统消光.
a h k l
2 2 2
六方晶系
1 4 h hk k l 2 3 a c
2 2 2 2
☆ 晶带和晶带定律
空间点阵中同时平行于某一轴向[uvw]的所有晶面构 成一个晶带,这些晶面叫晶带面,而这个轴向[uvw] 称为这一晶带的晶带轴。
[001]
凡属于[uvw]晶带的晶面,它的晶面指 数(hkl)都必然符合关系式:
1、简单正交点阵
010 r*110 b a 000 a* b* 110

材料化学 (第一章 晶体的特性与点阵结构)

材料化学 (第一章 晶体的特性与点阵结构)

m, n, p = 0, ±1, ±2, ...
3.点阵及其基本性质
(1). 点阵: 连结任意两点所得向量进行平移后能够复原 的一组点称为点阵.
X X
不是点阵
不是点阵
点阵
(2). 点阵的二个必要条件: (a)点数无限多 (b)各点所处环境完全相同
(3). 点阵与平移群的关系:
(a)连结任意两点阵点所得向量必属于平移群. (b)属于平移群的任一向量的一端落在任一点阵点时, 其另一端必落在此 点阵中另一点阵点上.
第一章 晶体的特性与点阵结构
第一部分 晶体学基础
一 晶体学发展的历史
二 晶体的特性
三 晶体结构 (一)晶体结构的周期性 (二)点阵结构与点阵 (三)晶体结构参数
第二部分 晶体中的对称
一 晶体的宏观对称性 二 晶体的微观对称性
第一部分 晶体学基础
一、晶体学发展的历史
西汉,《韩诗外传》“凡草木花多五出,雪花独六出”
六方素格子、正方素格子、矩形素格子、矩形带心格子和平行四边形格子。
空间点阵的七种类型、十四种型式
(1) 七种类型 — 7种对称类型对应7个晶系


一维平移群表示为:Tm ma
m = 0, ±1, ±2, ……
2.二维点阵结构与平面点阵 1)实例 (a) NaCl晶体中平行于某一晶面的一层离子 结构:
结构基元: 点阵:
(b)石墨晶体中一层C原子
结构: x
结构基元: 点阵:
2)平面格子 连结平面点阵中各点阵点所得平面网格.
2)平面格子 连结平面点阵中各点阵点所得平面网格.
4.晶胞参数与原子坐标参数
(1).晶胞(Unit cell)
空间格子将晶体结构截成的一个个大小、形状相等,包含等同 内容的基本单位。

晶体学基础

晶体学基础

2020/3/3
3
1.1 晶体及其基本性质
晶体结构 = 点阵 + 结构基元
2020/3/3
4
空间点阵的四要素
1. 阵点: 空间点阵中的点; 2. 阵列: 结点在直线上的排列; 3. 阵面: 阵点在平面上的分布。
2020/3/3
5
空间点阵的四要素
4. 阵胞: 结点在三维空间形成的平行六面体。
原胞:最小的平行六面体,只考虑周期性,不考虑对称性; 晶胞:通常满足对称性的前提下,选取体积最小的平行六面体。
ur b/k
P
a/h A
v
a
2020/3/3
25
倒易点阵的应用
uur dhkl 1/ r *hkl
1、计算面间距
1
d2 hkl

r rhkl
r .rhkl

h
k
av*
l

r bcv**
av*
r b*
h
cv*
k

l
h
h
k
l

G
*
k
2020/3/3
3
c
28
倒易点阵的应用
2、计算晶面夹角
• 两晶面之间的夹角,可以用各自法线之间的夹角来表示, 或用它们的倒易矢量的夹角来表示:
c((ohhs21kk12ll12)c)osrvrv(hh2rv1kk2h1l1l21k1l1 ,hhrv21hav2avk*2*l+2+)kk21bvbv*rvv*+h+1kl12ll11cvcv*vrv*h2k2l2
4. 若已知两个晶带面,则晶带轴;
5. 已知两个不平行的晶向,可以求出过这两个晶向的晶面;

第一章 晶体学基础

第一章  晶体学基础

例:
X 轴坐标 —— 1 Y 轴坐标 —— 1 Z 轴坐标 —— ∞
11∞ ( 1 1 0)
绘出( 3 3 4 ) 和 ( 1 1 2 ) 晶面
取倒数
111
化简
3
( 334 )
(-
)
( -1 1 )
334
4
(11 2)
( 1 -1 1 ) 2
请绘出下列晶向: [001] [010] [100]
[110] [1 1 0] [10 1] [112] 请绘出下列晶面: (001) (010) (100) (110) (1 1 0) (10 1) (112)
单胞
晶体结构与点阵的关系
-Fe
CsCl bcc
a a
a
a
simple cubic
a a
-Fe
Cu3Au
CuAu
fcc
a
a
c
a
a simple cubic
a a Simple tetragonal
aa
-Fe
NaCl
a a
a fcc
CaF2
ZnS
a a
a fcc
晶体结构是晶体的直接表达; 点阵是对晶体结构的数学抽象。
数学抽象
晶体法则结:构的周期性和对称性,
1. 一个或几个小球合并成一个数学点
由于2. 高各度阵对称点的的几何周关围系 环境相同, 它只结原果子能:或有原子1群4中具有类相型同的环境
得到
数学点的集合
得到
空间点阵
原子的具体排列方式
直接表达
数学抽象
晶体结构
空间点阵
提取
有代表性的、基本的单元
提取
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

扫描隧道显微镜— Scanning Tunneling Microscope (STM)
石墨层面的碳原子排列
The surface of a gold specimen, was taken with a atomic force microscope (AFM). Individual atoms for this (111) crystallographic surface plane are resolved.
注意:晶胞与单胞的区别(了解)
晶胞 :是指能够反映整个晶体结构特征的最小结构单位。
由具体的有物理、化学属性的物质点所组成。
单胞:构成空间格子的具有代表性的基本单元。 由不具有任何物理、化学特性的几何点构成
联系:一般情况下,晶胞的几何形状、大小与对应的单胞
是一致的,可由同一组晶格常数来表示。
不区分 图示
原子(或分子、离子) 在三维空间呈周期性重复排 列,即长程有序。
1.2 晶体的特点 (1)规则凸多面体外形
( 2)各向异性
3、固定的熔点 4、稳定性
5、普遍性 6、结构基元长程有序 7、不完整性
1.3 晶体学
晶体学是一门研究晶体 的自然科学。
晶体学研究内容:
① 晶体的成核与生长过程; ③ 晶体结构与其物理性质的相 互关系等。
联系:晶体结构的结构基元与相应空间点阵的结点在空 间排列的周期一致
看四种晶体
二、单胞(单位平行六面体)
定义 选取原则Leabharlann 表征晶体结构空间点阵
单胞
1、定义 构成空间格子的具有代表性的基本单元(平行六面体) 称为单胞。将单胞作三维的重复堆砌就构成了空间点阵。
2、单胞的选取原则
① 所选取的平行六面体应能反映整个空间点阵的周期性和对 称性; ② 在上述前提下,平行六面体棱与棱之间的直角应最多; ③ 在遵循上两个条件的前提下,平行六面体的体积应最小。
NaNO2
结构基元:是指晶体结构中重复
排列的基本单位。每个结构基元化 学组成相同、空间结构相同、排列 取向相同、周围环境相同。
等同点:是指晶体结构中占据相
同位置和具有相同环境的一系列几 何点。
NaCl点阵
NaCl结构空间图形
NaCl结构平面图形 (黑点为等同点)
空间点阵:
将构成晶体的原子等抽象为几何
点,得到一个由无数几何点在三维空 间规则排列而成的阵列。
金属晶体
分子晶体
原子晶体
离子晶体
空间点阵 + 结构基元
晶体结构
晶格:描述原子或原子团在晶体中 排列方式的几何空间格架。 单胞:从晶格中选取出来的一个能 够完全反映晶格特征的最小几何单元。
单胞
晶体中原子堆垛、晶格和单晶示意图
构成晶体的基元在三维 空间的具体排列方式。
晶体结构=空间点阵+基元
注意:晶体结构和空间点阵的区别
晶体结构是晶体中实际质点(原子、离子或分子)的具 体排列方式。它们能组成各种类型的排列,因此,实际 存在的晶体结构类型是无限的。 空间点阵是晶体中质点排列的几何学抽象,用以描述和 分析晶体结构的周期性和对称性。由于各阵点的周围环
境相同,它只能有14种类型。

1
2 3

晶体及其特点
晶体结构空间点阵 空间点阵
4 结构基元、晶胞、单胞
② 晶体的外部形态和内部结构;
2 晶体结构与空间点阵
(crystal structure and space lattice)
2.1 晶体结构
结构基元(分子、原子、 离子、原子团)+结合键结合 在三维空间作有规律的周期性 的重复排列方式。
晶体结构种类繁多,可以
借助X射线衍射等方法测定。
2.2 空间点阵
单胞表
原点:单胞角上的某一阵点
3、单胞的表征 坐标轴:单胞上过原点的三个棱边 x,y,z
Z
晶轴 X, Y, Z
点阵参数:a,b,c,α,β,γ
轴间夹角 α,β,γ
晶胞的几何特征
c

a
b
Y
晶格常数 a,b,c
X
单位平行六面体的三根棱长a、b、c及其夹角α、β、γ是表示
它本身的形状、大小的一组参数,称为点阵常数(或晶格常数)
第一章
1 3 4
晶体学基础
什么是晶体?晶体有何特点? 布拉菲点阵 晶向指数和晶面指数
2 晶体结构与空间点阵
5 晶面间距、夹角和晶带定理
1.1 晶体
气体 物 质 液体 晶体
固体
非晶体
单晶 多晶 微晶 液晶
金刚石
食盐
水晶
萤石
高分辨率电镜—
High Resolution Electron Microscopy (HREM)
相关文档
最新文档