第一章晶体学基础2

合集下载

《结晶学基础》

《结晶学基础》
在离子晶体结构中,每个正离子周围都形成 一个负离子配位多面体;正负离子间距离取决 于离子半径之和,正离子配位数取决于正负离 子半径之比,与离子电价无关。
.
2.鲍林第二规则---静电价规则
在一个稳定的晶体结构中,从所有相邻接的阳离 子到达一个阴离子的静电键的总强度,等于阴离子 的电荷数。
静电键强度
S= Z+ CN+
• 在离子晶体中,配位数指的是最紧邻的异号离子数,所以正、 负离子的配位数不一定是相等的。阳离子一般处于阴离子紧密堆 积阳的离空子隙还中可,能其出配现位其数 它一 的般 配为 位数4或。6. 。如果阴离子不作紧密堆积,
配位数
阴离子作正八 面体堆积,正、 负离子彼此都能 相互接触的必要
条件为r+/r=0.414。
凸几何多面体倾向。
❖ 4.对称性--晶体的物理化学性质能够在不同方
向或位置上有规律地出现,也称周期性 .
晶体的性质
❖ 5.均匀性(均一性)--一个晶体的各个部分性
质都是一样的。 这里注意:均匀性与各向异性不同,前者是指晶
体的位置,后者是指观察晶体的方向。
❖ 6. 固定熔点 ❖ 7.晶面角守恒定律--晶面(或晶棱)间的夹角
宏观晶体中对称性只有32种,根据对称型中是否存在 高次轴及数目对晶体分类
❖ 存在高次轴(n>2)且多于一个―――高级晶族 ――包括:等轴(立方)晶系
❖ 存在高次轴(n>2)且只有一个―――中级晶族 ――包括:三方、四方、六方晶系
❖ 不存在高次轴(n>2)―――低级晶族――包括: 三斜、单斜、正交晶系
第一章 结晶学基础
.
1-1 晶体的基本概念与性质
一、晶体的基本概念
➢ 人们对晶体的认识,是从石英开始的。 ➢ 人们把外形上具有规则的几何多面体形态的

(完整版)1《材料科学基础》第一章晶体学基础

(完整版)1《材料科学基础》第一章晶体学基础
一、晶向指数 二、晶面指数 三、六方晶系的晶向指数和晶面指数 四、晶带 五、晶面间距
晶向、晶
钯的PDF卡片-----Pd 89-4897
crystal system,space
图 2 CdS纳米棒的TEM照片(左)和 HRTEM照片(右)
图2 选区电子衍射图
图1. La(Sr)3SrMnO7的低 温电子衍射图
晶向、晶面、晶面间距
晶向:空间点阵中行列的方向代表晶体中原子排 列的方向,称为晶向。
晶面:通过空间点阵中任意一组结点的平面代表 晶体中的原子平面,称为晶面。
L M
P点坐标?
(2,2,2)或222
N
一、晶向指数
1、晶向指数:表示晶体中点阵方向的指数,由晶向上结点的 坐标值决定。
2、求法 1)建立坐标系。 以晶胞中待定晶向上的某一阵点O为原点,
联系:一般情况下,晶胞的几何形状、大小与对应的单胞是 一致的,可由同一组晶格常数来表示。
不区分 图示
晶 胞
空间点阵


•NaCl晶体的晶胞,对应的是立方面心格子 •晶格常数a=b=c=0.5628nm,α=β=γ=90°
大晶胞
大晶胞:是相对 于单位晶胞而言 的
例:六方原始格子形式的晶胞就是常见的大晶胞
① 所选取的平行六面体应能反映整个空间点阵的对称性; ② 在上述前提下,平行六面体棱与棱之间的直角应最多; ③ 在遵循上两个条件的前提下,平行六面体的体积应最小。
具有L44P的平面点阵
单胞表
3、单胞的表征
原点:单胞角上的某一阵点 坐标轴:单胞上过原点的三个棱边 x,y,z 点阵参数:a,b,c,α,β,γ
准晶
是一种介于晶体和非晶体之间的固体。准晶具有长程定向有 序,然而又不具有晶体所应有的平移对称性,因而可以具有 晶体所不允许的宏观对称性。

材料科学基础-第1章

材料科学基础-第1章

晶面指数及晶面间距
现在广泛使用的用来表示晶面指数的密勒指数是由 英国晶体学家ler于1939年提出的。
z
确定晶面指数的具体步骤如下: 1.以各晶轴点阵常数为度量单位,求 出晶面与三晶轴的截距m,n,p; 2.取上述截距的倒数1/m,1/n,1/p; 3. 将以上三数值简为比值相同的三 个最小简单整数,即 1 1 1 h k l (553) : : : : h:k :l x m n p e e e 其中e为m,n,p三数的最小公倍数,h,k,l为简单整数; 4.将所得指数括以圆括号, (hkl)即为密勒指数。
13 体心立方点阵
a=b=c,α=β=γ =90°
14 面心立方点阵
a=b=c,α=β=γ =90°
§ 1.5 晶体结构的对称性
一、对称:对称是指物体相同部分作有规律的 重复。对称操作所依据的几何元素,亦即在对 称操作中保持不动的点、线、面等几何元素称 为对称元素。 二、对称性
1.晶体的宏观对称性 2. 晶体的32种点群 3. 晶体的微观对称性 4.230种空间群
晶体结构=空间点阵+基元
注意:上式并不是一个数学关系式,而只是用来表示这三者之间的 关系。
二、晶体的点阵理论
1 、点阵(Lattice):
将晶体中重复出现的最小单元作为结构基元,用一个数 学上的点来代表 , 称为点阵点,整个晶体就被抽象成一组 点,称为点阵。 1 点阵点必须无穷多; 点阵必须具备的三个条件 2 每个点阵点必须处于相同的环境; 3 点阵在平移方向的周期必须相同。
c
b
a
空间点阵及晶胞的不同取法
选取晶胞的原则: 1.要能充分反映整个空间点阵的周期性和对称性; 2.在满足1的基础上,单胞要具有尽可能多的直角; 3.在满足上条件,晶胞应具有最小的体积。

材料化学 (第一章 晶体的特性与点阵结构)

材料化学 (第一章 晶体的特性与点阵结构)

m, n, p = 0, ±1, ±2, ...
3.点阵及其基本性质
(1). 点阵: 连结任意两点所得向量进行平移后能够复原 的一组点称为点阵.
X X
不是点阵
不是点阵
点阵
(2). 点阵的二个必要条件: (a)点数无限多 (b)各点所处环境完全相同
(3). 点阵与平移群的关系:
(a)连结任意两点阵点所得向量必属于平移群. (b)属于平移群的任一向量的一端落在任一点阵点时, 其另一端必落在此 点阵中另一点阵点上.
第一章 晶体的特性与点阵结构
第一部分 晶体学基础
一 晶体学发展的历史
二 晶体的特性
三 晶体结构 (一)晶体结构的周期性 (二)点阵结构与点阵 (三)晶体结构参数
第二部分 晶体中的对称
一 晶体的宏观对称性 二 晶体的微观对称性
第一部分 晶体学基础
一、晶体学发展的历史
西汉,《韩诗外传》“凡草木花多五出,雪花独六出”
六方素格子、正方素格子、矩形素格子、矩形带心格子和平行四边形格子。
空间点阵的七种类型、十四种型式
(1) 七种类型 — 7种对称类型对应7个晶系


一维平移群表示为:Tm ma
m = 0, ±1, ±2, ……
2.二维点阵结构与平面点阵 1)实例 (a) NaCl晶体中平行于某一晶面的一层离子 结构:
结构基元: 点阵:
(b)石墨晶体中一层C原子
结构: x
结构基元: 点阵:
2)平面格子 连结平面点阵中各点阵点所得平面网格.
2)平面格子 连结平面点阵中各点阵点所得平面网格.
4.晶胞参数与原子坐标参数
(1).晶胞(Unit cell)
空间格子将晶体结构截成的一个个大小、形状相等,包含等同 内容的基本单位。

晶体学基础

晶体学基础

2020/3/3
3
1.1 晶体及其基本性质
晶体结构 = 点阵 + 结构基元
2020/3/3
4
空间点阵的四要素
1. 阵点: 空间点阵中的点; 2. 阵列: 结点在直线上的排列; 3. 阵面: 阵点在平面上的分布。
2020/3/3
5
空间点阵的四要素
4. 阵胞: 结点在三维空间形成的平行六面体。
原胞:最小的平行六面体,只考虑周期性,不考虑对称性; 晶胞:通常满足对称性的前提下,选取体积最小的平行六面体。
ur b/k
P
a/h A
v
a
2020/3/3
25
倒易点阵的应用
uur dhkl 1/ r *hkl
1、计算面间距
1
d2 hkl

r rhkl
r .rhkl

h
k
av*
l

r bcv**
av*
r b*
h
cv*
k

l
h
h
k
l

G
*
k
2020/3/3
3
c
28
倒易点阵的应用
2、计算晶面夹角
• 两晶面之间的夹角,可以用各自法线之间的夹角来表示, 或用它们的倒易矢量的夹角来表示:
c((ohhs21kk12ll12)c)osrvrv(hh2rv1kk2h1l1l21k1l1 ,hhrv21hav2avk*2*l+2+)kk21bvbv*rvv*+h+1kl12ll11cvcv*vrv*h2k2l2
4. 若已知两个晶带面,则晶带轴;
5. 已知两个不平行的晶向,可以求出过这两个晶向的晶面;

晶体光学一、二

晶体光学一、二

4、光性正负 、 与一轴晶光性正负的确定有所不同,二轴晶光性正负取决于: 当Ng-Nm >Nm-Np (+)。此时Nm 比较接近Np ,两个 圆切面靠近Np ,光轴则接近Ng 。所以Ng 为 Bxa 、Np 为 Bxo 。 当Ng-Nm <Nm-Np (-)。此时Ng为Bxo。Np为Bxa。
无法显示图像。计算机可能没有足够的内存以打开该图像,也可能是该图像已损坏。请重新启动计算机,然后重新打开该文件。如果仍然显示红色 “x” ,则可能需要删除该图像,然后重新将其插入。
无论光性如何, 无论光性如何, ⊥Bxa 切面的双折率总是小于 ⊥Bxo 切面上的 双折率。 双折率。 证明:(+) Ng-Nm > Nm-Np (⊥Bxo) (⊥Bxa) (-) Ng-Nm < Nm-Np Bxa Bxo (⊥Bxa) (⊥Bxo) (5)斜交切面: 即不垂直主轴,也不垂直光轴。 a、半任意斜切面(垂直于一个主轴面的斜交切面),椭圆, 有一个半径为主轴。另一个为Ng’或Np’,比较重要的是⊥NgNp 面 (AP)的切面。含Nm。 b、任意斜交切面, 椭圆,半径为Ng’、Np’,双折率介于 O 与Ng-Np 之间。
2、一轴晶光率体的主要切面
岩矿鉴定中常 应用的是晶体不 同方向上的切面 (薄片切面)。 所以必须对光率 体几种主要切面 的形状和切面半 径所表示的折射 率值十分熟悉。
(1)⊥OA切面: 不发生双折射,不改变特点。 圆,半径为Ne ,一轴晶仅有一个。(过球心,⊥Z轴) (2)∥OA切面: 分解为两种偏光,平行两个半径。 椭圆:(+)长半径为Ne,短No , (-)长半径为No,短Ne, 双折率为(Ne-No),为最大双折率。 (3)斜交光轴切面(最常见) :分解成两种偏光。 椭圆,(+)长Ne',短No , (-)长No, 短Ne', 双折率为No与Ne'之差,大小介于0与(Ne-No)之间。 小结:初步可知,应用光率体,可以确定光波在晶体中 的传播方向(波法线方向)、振动方向及相应折射率值之 间的关系。⊥OA方向的切面;圆,不发生双折射,非⊥OA 方向,双折射。椭圆,椭圆半径方向为振动方向。长度表 示n值,二者差为双折率。

晶体学复习

晶体学复习1 结晶学基础1.1概述1.2 第一章:晶体和非晶质体1.2.1 概念(格子、举例)晶体:具有格子构造的固体非晶质体:不具有格子构造的物质晶体的现代定义是:晶体是内部质点在三维空间成周期性重复排列的固体;或者说,晶体是具有格子构造的固体。

相应地,内部质点在三维空间成周期性重复排列的固体,便称为结晶质晶体的分布极为广泛,不只局限于矿物的范畴。

本质:在一切晶体中,组成它们的质点(原子、离子、离子团、分子等)在空间都是按格子构造的规律来分布的。

例如,石墨、石英、玻璃。

结论:一定化学成分的矿物,大部分都具有由原子规则排列的内部结构。

1.2.2 基本性质(6个)①最小内能:②稳定性:③对称性:④异向性:⑤均一性:⑥自限性:1.2.3 晶体的对称要素组合及规律(9个要素)对称指:物体相同部分的有规律重复.晶体的对称性也是相对的,而不对称则是绝对的。

晶体宏观对称要素:①对称中心(C):假想的一个点,相应的操作是对于这个点的反伸。

其作用相当于一个照相机.结论:晶体如具有对称中心,晶体上的所有晶面,必定全都成对地呈反向平行的关系。

其对称中心必定位于几何中心。

符号为“C”标志:晶体上的所有晶面都两两平行,同形等大,方向相反。

②对称面:为一假想的面,对称操作为对此平面的反映。

方法:P 2P 3P…… 9PP与面、棱有着的关系:(1)对称面垂直并平分晶体上的晶面晶棱;(2)垂直晶面并平分它的两个晶棱的夹角;(3)包含晶棱③对称轴(L n):为一假想的直线。

对称操作为绕此直线的旋转,可使晶体上的相同部分重复出现。

使相同部分重复出现的最小旋转角,称为基转角(α),旋转一周中,相同部分重复出现的次数,称为轴次( n )。

α、 n 之间的关系为:n = 360o/ α对称定律:晶体外形上可能出现的对称轴的轴次,不是任意的,只能是1 2 3 4 6 。

高次对称轴:轴次高于2的对称轴称(3、4、6)对称轴在晶体中可能出露的位置是:(1)两个相对晶面的连线;(2)两个相对晶棱中点的连线;(3)相对的两个角顶的连线(4)一个角顶与之相对的晶面之间的连线④旋转反身轴(L i n)旋转反伸轴是一假想直线和其上一点所构成的一种复合对称要素。

材料科学基础I 第一章(晶体学基础)

立方正方斜方cba???90??????cba??????90???cba??????90???菱方六方单斜三斜cba??????90???cba?????90????120?cba?????????90cba??????90???7大晶系包含14种空间点阵布拉布拉菲abravais点阵3
第一章 晶体学基础
1、晶面指数 、
方法和步骤与三指数时相同, 方法和步骤与三指数时相同, 只是要找出晶面 在四个坐标 轴上的截距。 轴上的截距。 例如: 例如: a3 o a1 a2
(1010) (0110) (1100)
(1010)
2、晶向指数: 、晶向指数:
四坐标晶向指数的确定方法有行走法和解析法。 四坐标晶向指数的确定方法有行走法和解析法。由于行走法 确定的晶向指数不是唯一的,所以这里仅介绍解析法 解析法。 确定的晶向指数不是唯一的,所以这里仅介绍解析法。 步骤: 步骤: 1)求出待定晶向在 1,a2,c三个坐标轴下的指数:U, V, W 求出待定晶向在a 三个坐标轴下的指数: 求出待定晶向在 三个坐标轴下的指数 2)按以下公式算出在四坐标轴下的指数:u, v, t, w 按以下公式算出在四坐标轴下的指数: 按以下公式算出在四坐标轴下的指数
多数金属和非金属材料都是晶体。因此, 多数金属和非金属材料都是晶体。因此,首先 要掌握晶体的特征及其描述方法。 要掌握晶体的特征及其描述方法。 晶体——组成晶体的质点在三维空间作周期性地、 组成晶体的质点在三维空间作周期性地、 晶体 组成晶体的质点在三维空间作周期性地 规则地排列。 规则地排列。 晶体的特点: 晶体的特点: 质点排列具有规则性、 质点排列具有规则性、周期性 有固定熔点(结晶温度) 非晶体没有固定的熔点 非晶体没有固定的熔点] 有固定熔点(结晶温度)[非晶体没有固定的熔点 各向异性(包含多种性能) 各向异性(包含多种性能)

第一章晶体学基础

2. 非晶体 非晶体在整体上是无序的 ;近程有序 。实际为一种过 冷液体。具有各向同性。
隋性气体无规则排列
表示有些材料包括水蒸气和玻璃的短程有序
表示有些材料包括水蒸气和玻璃的短程有序 金属及其他许多材料的长程有序排列
图 材料中原子的排列
二氧化硅结构示意图
a)晶态
b)非晶态
3. 晶体的特征
(1)周期性(不论沿晶体的哪个方向看去,总是相隔一定 的距离就出现相同的原子或原子集团。这个距离称为周期 ) 液体和气体都是非晶体。 (2)有固定的凝固点和熔点. (3)各向异性(沿着晶体的不同方向所测得的性能通常是 不同的 :晶体的导电性、导热性、热膨胀性、弹性、强度、 光学性质 )。
(a)
Z
βα
Xb
(b) 简单立方晶体 (a) 晶体结构 (b) 晶格 (c) 晶胞
γ (c)
c aY
2.晶胞的选取原则:
(1)晶胞几何形状能够充分反映空间点阵的对称性; (2)平行六面体内相等的棱和角的数目最多; (3)当棱间呈直角时,直角数目应最多; (4)满足上述条件,晶胞体积应最小。
图 晶胞的选取
立方晶系 ( Cubic)
Simple
Body centered
Face centered
a
a
a
a a
a a
a a
a = b = c, a = b = = 90
正方晶系 ( Tetragonal )
Simple
Body centered
c
c
a a
a a
a = b c, a = b = = 90
1.2 晶体学基础 Fundamentals of crystallogphy

第一章 晶体的基本性质

10
研究表明,数以千计的不同种类晶体 尽管各种晶体的结构各不相同,但都具有 格子状构造,这是一切晶体的共同属性。
与晶体结构相反, 内部质点不作周期 性的重复排列的固 体,即称为非晶质 体。
11
水晶
玻璃
晶体:短(或近)程有序, 长(远)程有序
非晶体:短(或近)程有序, 长(远)程无序
12
二.空间格子的概念与获得
(1)空间格子—是表示晶体内部结构中质点周 期性重复排列规律的几何图形。
(2)等同点或相当点:点的内容(或种类)相同; 点的周围环境相同。
(3)空间格子的获得: ①首先必须找出晶体结构中的相当点; ②按照一定的规则将相当点连接起来,就形 成了空间格子。
13
石盐的晶体结构
14
空间格子的获得:
一维图案
26
五.研究简史及主要分支
研究简史:
★1000多年前,认识了石英和石盐具有规则的外 形; ★ 17世纪中叶前,以外形研究为主 ; ★ 1912年,X射线晶体衍射实验成功,结晶学进入快速发展阶
段; ★ 19世纪中叶开始对晶体内部结构探索,逐渐发展成为一门
独立的学科; ★ 20世纪初, 内部结构的理论探索 。
► 最小内能性: 在相同的热力学条件下,与同种化学成分的气
体、液体及非晶质体相比,以晶体的内能为最小。
内能 = 动能 + 质点在平衡点 周围作无规则 振动的能量
势能 质点间相对 位置所产生 能量
25
► 稳定性:在相同的热力学条件下,具有相同化学 成分的晶体和非晶质体相比,晶体是稳定的, 而非晶质体是不稳定的。对于化学成分相同的 物质,以不同的物理状态存在时,其中以结晶 状态最为稳定。这一性质与晶体的内能最小是 吻合的。在没有外加能量的情况下,晶体是不 会自发地向其它物理状态转变的。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


ºx º ºx º




基本单元:º • º x
ºx º

ºx º

ºx º c

结构单元(基元) : 由质点(原子或离子)组成的基本单元 ( º• º) 。 x 等同原子: 同种原子、有相同的物理化学环境和几何环境。 结构单元应包括这个晶体中所有不等同的原子, 但不包括完全等同的原子。 点阵: 每套等同原子看成结点反映的几何图形。 周期重复性(或平移对称性) : 结构单元在空间以一定周期重复出现。
像转轴 S1(m) 2 S2(i) 1 S3 S4 S6
像转操作 σ
i
S31 、S32(C32) 、S33(m) 、 S34(C31) 、 S35 S41、 S42(C2) 、 S43 S61、 S62(C31)、 S63(i)、 S64(C32)、 S65 以上为熊夫里斯符号
6 4 3
6、 3不是独立的对称元素、 4 是独立的对称元素
→ a
如面心立方: 0 0 0;0 ½ ½ ; ½ 0 ½ ; ½ ½ 0 其他的点都可以用平移矢量平移得到。(T=ma + nb + pc )
因此, 晶体的宏观对称元素有十个,实际只有8个独立对称 元素。有十六个独立的对称操作。
1.3 Bravais(布拉维)点阵与晶系
晶体学中的三条原则: 1)能充分反映点阵的宏观对称性(对称性高) 2)直角尽量多 3)体积尽量小 按上述方法 7个晶系 14种Bravais点阵
晶系 立方 六方(六角) 四方
Bravais点阵 P、 I、 F P(H) P、I (3) (1) (2)
点阵常数
a=b=c ===90 a=b≠c ==90 =120 a=b≠c ===90 a=b=c ==≠90 a≠b≠c ===90 a≠b≠c ==90 ≠90 a≠b≠c ≠≠≠90
I63(m) 、 I 64 (C32) 、 I65
1.2
对称元素
1 2 3 4 6
宏观对称性(点对称性)
对称操作
C1 C2 C31 、 C32 C41 、 C42 (=C2) 、 C43 C61 、 C62 (=C31) 、 C63(=C2) 、 C64(=C32) 、 C65
site symmetry (point symmetry)
1(=i) 2(=m) 3 4
以上共10个对称元素
i σ I31 、I32(C32)、 I33(i)、 I34(C31)、 I35 I41 、 I42(C2) 、I43 I61 、 I62(C31) 、 I63(m) 、 I 64 (C32) 、 I65
以上共16个独立的对称操作
6
以上全部为国际符号
三方(菱形)
正交(斜方) 单斜 三斜
P(R)
P、I、F、C P、C P
(1)
(4) (2) (1) 共14种
结点数
简单立方P 体心立方I 面心立方F 1 2 4
坐标
顶角 顶角 体心 顶角 面心 (0,0,0) (0,0,0) (1/2,1/2,1/2) (0,0,0) (1/2,1/2,0) (1/2,0,1/2) (0,1/2,1/2) 顶角 (0,0,0) 侧心 (1/2,1/2,0)
(point group)
封闭性 结合律 恒等元素 逆元素 PQ=R P(QR)=(PQ)R RE=ER=R RR-1=R-1R=E
点群的符号:1)熊夫里斯符号(schoenfiles)符号 2)国际符号:用三个对称元素的符号表 示某一种晶系的三个主要晶向。 如:立方 23 六方6/m
见书中表2-3 32个点群
对称操作
C1
C2 C 31 、 C 32
4
6
C41 、 C42 (=C2) 、 C43
C61 、 C62 (=C31) 、 C63(=C2) 、 C64(=C32) 、 C65
对称元素
1 (=i) 2 (=m) 3 4 6
i
对称操作
σ
I31 、I32(C32)、 I33(i)、 I34(C31)、 I35 I41 、 I42(C2) 、I43 I61 、 I62(C31) 、
z

º
º • • º º • • º º • • º • º º • • º • º º x
• º 镁离子 氧离子
ºபைடு நூலகம்


º
• •


• • •

y

• •
• •

氧化镁的空间点阵
MgO晶体结构
1.2 宏观对称性(点对称性)
site symmetry (point symmetry)
对称元素
1
2 3
第一章 晶体学基础
1.1 晶体结构与点阵
( crystal structure and point lattice)
当我们说到某个材料的晶体结构时,首 先指的是这个材料的质点(主要是原子或 离子)在空间排列的方式。 以NaNO2为例,见下图。
NaNO2
• º x
N O Na
b
ºx º ºx º

ºx º ºx º
底心正交C(侧心)
2
C心
几点说明: 1、从简单六方点阵的单位平行六面体不容易看出点阵 中存在一个六次旋转轴,有时用六方柱体来说明。 2、十四种布拉维点阵包括了晶体的全部空间点阵。但 粗略地看似乎不全面,例如为何无四方底心点阵? 3、在底心、体心和面心点阵的平行六面体内都包含了 一个以上的结点。用只包含一个结点的平行六面体是 否也可以反映这一类空间点阵在空间排列状况呢? 按体积最小原则取出的点阵,只包含一个结点,这 样的平行六面体叫原胞(元胞)(unit cell)。
见补充讲义 32个点群的投影图
左图表示等效位置,实心点()空心点( ) 表示±z 右图表示对称元素的相互关系,用符号表示。 细线代表框架线,粗线代表反映面。
等效位置: 经过点群对称元素的作用可使其重合的点(位置)。 (或被对称操作相互联系起来的点。)
1.5 点阵元素的几何表示法
→ c
点:
点(x,y,z) → b 结点、点阵点、阵点
晶系
Bravis点阵形式
对称元素下限
晶族级别
立方 六方 四方 三方 正交 单斜 三斜
P、I、F P(H) P、I P(R) P、I、F、C P、C P
4个3 6 1个6或 4 1个4或 1个3或 3 3个2或2个m() 1个2或m 无
高级 中级 中级 中级 低级 低级 低级
1.4 点群(32种宏观对称型)
相关文档
最新文档