浮沉条件及应用方法

合集下载

物体的浮沉条件及应用

物体的浮沉条件及应用
A.把密度大于水的钢铁制成空心的轮船,使它 排开更多的水而浮在水面上。 B.排水量: 轮船满载时排开水的质量,单位是吨。
轮船的大部分体积是由空气占据着,在河里和海里都 漂浮在上面;因而所受浮力相同,都等于轮船自身的 重力(即F浮=G轮船)。根据阿基米德原理则它在海水 里比在河水里浸入的体积小。
河水
海水
物体浮沉的条件及其应用
1、物体的浮沉条件是什么?
浸没在液体中的物体,它受到的浮力大于物 重时,物体就下沉,它受到的浮力小于物重 时,物体就上浮,它爱到的浮力等于物重时, 物体就悬浮。
2、阿基米德原理的内容是什么?
浸入液体里的物体受到向上的浮力浮力的大小等 于它排开的液体受到的重力这就是2000多年前古希 腊学者阿基米德发现的著名的阿基米德原理。
提供的器材有: 弹簧测力计、天平、量筒、溢水杯、玻璃 瓶配重物、水……
物体的重力测量: ①可以直接用弹簧测力计测出重力; ②可以用天平称出物体的质量,根据 G = mg 求出物体的重力。
浮力的大小测量: 一、用弹簧测力计测出物体在空气中的重力G, 然后将物体浸入水中,测出拉力F拉,F浮=G-F 拉; 二、用溢水杯,将物体放进盛满水的溢水 杯中,再测出溢出水的重力。然后根据阿 基米德原理F浮=G排求出浮力; 三、在量筒中倒入适量的水V1,在将重 物放入水中,记下此时液面到达的刻度 V2,V2–V1=V排,然后根据阿基米德原理 F浮= r液 gV排求出浮力;
结论: 重力小于浮力,物体上浮; 物体漂浮时重力等于浮力,
悬浮情况的研究
G=F浮
一、物体的浮沉条件
当物体浸没时:
如G>F浮,则物体下沉。 如G<F浮,则物体上浮。 如G=F浮,则物体悬浮。 当物体部分浸没时: 如G=F浮,则物体漂浮。

物体浮沉条件及应用的教案

物体浮沉条件及应用的教案

物体浮沉条件及应用的教案物体浮沉是力学中的一个重要概念,在日常生活中也经常会涉及到。

物体浮沉的条件及应用十分广泛,接下来我们来详细解析。

一、物体浮沉的条件1. 浮力大于重力。

在液体中,物体受到的浮力与它所排开的液体的重量相等,也就是说,当物体密度小于液体时,其体积将会增大以排开与其体积相等的液体,从而所受的浮力将大于物体的重力,物体才能浮起来。

2. 密度相同的液体,重力相同的物体在液体中等体积时所受的浮力相同,而密度不同的液体中,物体的相对密度越小,所受的浮力越大,从而物体浮起来的几率就会增大。

3.物体的形状对浮力大小的影响。

物体的形状将改变液体所反向作用的垂直面形状,在液体中受到的浮力随着物体形状的改变而发生变化。

例如,球体在液体中的浮力与所受重力相等,因为液体在球体上施加的浮力垂直于施力面,是恒定的。

而如果物体的形状不规则,例如艇船,因为其底部承托液体更多,所以受到的浮力会更大。

4.液体中的密度与温度。

液体的密度会随温度的变化而改变,同样物体在液体中浮沉的几率也会随着液体密度和温度的变化而发生改变。

例如,在水中,冰的相对密度比液态水的相对密度小,因此它浮在水中。

二、物体浮沉的应用1. 船舶和潜艇的浮沉原理。

船舶的船体首尾高低不同,以船底为圆弧形,体积较大,重心较低,从而使船体产生浮力,船才可以在水上行驶。

潜艇通过控制内部的水的加入和排出,达到增加或减少浮力的目的,从而使其在水中浮起或沉下。

2. 气球和飞艇的浮沉原理。

气球和飞艇的浮力是由于气球内部的气体向外施加压力,从而排开空气承受来自重力的力量,实现相对轻松的飞行。

3. 人类潜水浮沉。

当潜入水中时,人体感受到渐增的水压,并且受到来自水力方向的总浮力(浮力是由于呼吸时所吸入的空气产生的肺部体积增大而引起的)较小,从而身体将变得更加沉重。

人潜水时可以通过控制排气或吸气的方法达到浮沉的目的。

4. 多孔材料浮沉原理。

多孔材料通常有较大的浮力,可以被用来制作救生衣和救生圈等救生用品。

物体的浮沉条件及其应用

物体的浮沉条件及其应用

物体的浮沉条件及其应用一、浮沉条件的基本原理物体的浮沉是指物体在液体或气体中的上浮或下沉现象。

根据阿基米德原理,当物体浸泡在液体或气体中时,受到的浮力等于所排开的液体或气体的重力,从而决定了物体的浮沉状态。

浮沉条件可以通过比较物体所受的浮力与重力的大小来判断。

二、浮沉条件的判断1. 原理当物体所受的浮力大于其重力时,物体会浮起;当物体所受的浮力小于其重力时,物体会下沉。

2. 浮沉条件的判断标准浮沉条件的判断标准是比较物体所受的浮力和重力的大小关系:- 若浮力>Fg(物体的重力),则物体浮起;- 若浮力=Fg,则物体悬浮;- 若浮力<Fg,则物体下沉。

三、浮沉条件的应用1. 船舶浮沉原理及应用船舶的浮力是通过船体的形状和空气或水的压力产生的。

船舶的浮力要大于其重力,才能保持浮起的状态。

根据浮沉原理,船舶设计时需要考虑船体的形状和重心位置,以保证船体具有足够的浮力,避免下沉事故的发生。

2. 水下潜艇的浮沉原理及应用潜艇在水下航行时,需要通过调整潜艇内外的水的重力和浮力的平衡来控制潜艇的浮沉状态。

通过控制潜艇内部的水的排放和注入,可以改变潜艇的浮力,从而实现浮起或下沉。

3. 石油钻井平台的浮沉原理及应用石油钻井平台需要在海洋中进行钻井作业,而钻井平台本身的重量较大。

为了保证钻井平台的浮起,可以在平台底部设置空腔,通过控制空腔内的水的排放和注入来调整平台的浮力,从而实现浮起或下沉。

4. 飞机的升降原理及应用飞机在空中飞行时,需要通过调整机翼的升力和重力的平衡来控制飞机的升降状态。

通过改变飞机机翼的角度和速度,可以改变机翼所受的气流压力,从而调整飞机的浮力,实现升降。

5. 气球的浮沉原理及应用气球的浮力是由于气球内部的气体比外部气体轻而产生的。

通过控制气球内部气体的体积和压力,可以调整气球的浮力,实现上升或下降。

四、总结物体的浮沉条件是根据阿基米德原理进行判断的,通过比较物体所受的浮力和重力的大小关系来判断物体的浮沉状态。

4物体浮沉条件及其应用

4物体浮沉条件及其应用

一、物体的浮沉条件1、浸没在液体中的物体,受到两个力:一个是竖直向下的重力,一个是竖直向上的浮力。

其浮沉取决于它受到的重力和浮力的大小关系。

2、物体的浮沉条件(1)物体的浮沉与重力和浮力大小的关系(物体可静止于液面下方任一处)将物体浸没在液体中后物体的运动情况(2)物体的浮沉与密度的关系(3)物体的浮沉情况归纳
理解:对ρ物的理解ρ物是物体的密度(平均密度),而不是构成该物体的物质的密度,因此对于实心物体,可以直接根据密度关系判断物体的浮沉情况;对于空心物体,应该用物体的平均密度与液体的密度比较来判断,不能直接用构成物体的物质的密度与液体密度比较。

【温馨提示】浸没在液体中的物体,当ρ液>ρ物时,物体会上浮,直至漂浮;当ρ液<ρ物时,物体会下沉,直至沉底;当ρ液=ρ物时,物体处于悬浮状态,可以悬浮在液体内。

二、浮力的应用1、增大或减小浮力的方法由阿基米德原理F浮=G排=ρ液gV排可知,浸在液体中的物体受到的浮力由液体密度和物体排开液体的体积两个因素决定。

因此,改变浮力大小也可以从这两个因素出发。

(1)增大浮力的方法:∶增大液体(或气体)的密度,如往水中加入盐;∶增大物体排开液体(或气体)的体积,如将物体做成空心或船形等。

(2)减小浮力的方法:∶减小液体(或气体)的密度,如在盐水中加清水;∶减小物体排开液体(或气体)的体积,如飞艇降落时,通过将辅助气囊中的气体放出,使飞艇排开空气的体积减小。

2、浮力的应用(1)轮船——"空心法"增大浮力∶原理:把密度大于水的铁片制成空心的轮船,使它排开的水变多,增大可利用的浮力,从而使其漂浮在水面上。

∶排水量:轮船的大小通常用排水量来表示,排水量就是轮船装满货物时排开水的质量。

满载时有F浮=G排=m排g,其中
m排=m船+m货。

知识拓展:轮船吃水线的变化同一轮船无论是在海里还是在河里行驶,都处于漂浮状态,所以F浮=G,轮船的重力不变,所以轮船所受的浮力不变。

《初中物理》物体的浮沉条件及应用

《初中物理》物体的浮沉条件及应用

物体的浮沉条件及应用知识集结知识元物体的浮沉条件及其应用知识讲解物体在液体中的浮沉条件上浮:F浮>G 悬浮:F浮=G 漂浮:F浮=G下沉:F浮<G 沉底:F浮+N=G理解:研究物体的浮沉时,物体应浸没于液体中(V排=V物),然后比较此时物体受到的浮力与重力的关系。

如果被研究的物体的平均密度可以知道,则物体的浮沉条件可变成以下形式:①ρ物<ρ液,上浮②ρ物=ρ液,悬浮③ρ物>ρ液,下沉浮沉条件的应用潜水艇是通过改变自身的重来实现浮沉的;热气球是通过改变空气的密度来实现浮沉的;密度计的工作原理是物体的漂浮条件,其刻度特点是上小下大,上疏下密;用硫酸铜溶液测血液的密度的原理是悬浮条件。

此外,轮船、气球、飞艇等都是利用了沉浮条件的原理而设计的。

例题精讲物体的浮沉条件及其应用例1.(2019∙安丘市二模)如图所示,在两个完全相同的容器中装有甲、乙两种不同的液体,将体积相等的实心小球A、B、C分别放入两个容器中,放入小球后两个容器中的液体深度相同,且A、C两球排开液体体积相同,B球在甲液体中悬浮,在乙液体中下沉。

则下列选项错误的是()A.甲液体比乙液体对容器底的压强大B.三个小球中密度最小的是C球C.如果把A、C两球对调,A球在乙液体中可能下沉D.A、C两球所受的浮力相等例2.(2019∙商丘二模)如图所示,A、B、C体积相同。

将它们放入水中静止后,A漂浮,B悬浮,C沉底。

则下列说法正确的是()A.A所受的浮力大于B、C所受浮力B.B下表面所受的压力小于A下表面所受水的压力C.C所受的浮力一定等于B所受的浮力D.A、B所受的浮力相等且大于C例3.(2019∙开封一模)如图所示,在水平桌面上有甲乙两个相同的烧杯,烧杯内分别装有不同的液体,把同一个鸡蛋分别放入甲、乙两杯液体中,鸡蛋在甲杯中漂浮,在乙杯中沉底,两液面相平。

关于这一现象,下列说法中正确的是()A.甲杯中的液体密度小于乙杯中的液体密度B.甲杯中的鸡蛋排开液体的重力大于乙杯中的鸡蛋排开液体的重力C.甲杯中的液体对杯底的压强等于乙杯中的液体对杯底的压强D.甲乙两个烧杯对水平桌面的压强相等例4.(2019春∙利辛县期末)小明同学利用饮料瓶和薄壁小圆柱形玻璃瓶制作了“浮沉子”,玻璃瓶在饮料瓶中的情况如图所示(玻璃瓶口开着并倒置),玻璃瓶的横截面积为S=1.5cm2,此时玻璃瓶内外水面高度差h1=2cm,饮料瓶内水面到玻璃瓶底部高度差h2=8cm,下列说法中正确的是()(不计饮料瓶和小玻璃瓶中气体的重力,g=10N/kg,ρ水=1×103kg/m3)①用力挤压饮料瓶,发现玻璃瓶仍然漂浮在水面,此过程中h1减小、h2不变;②用力挤压饮料瓶,发现玻璃瓶仍然漂浮在水面,此过程中h1不变、h2增大;③空玻璃瓶的质量为3g;④空玻璃瓶的质量为13g。

初中物理浮沉条件

初中物理浮沉条件

初中物理浮沉条件
1.上浮:
-当物体在液体中受到的浮力`F_浮`大于物体的重力`G`时(即`F_浮>G`),物体将会加速上升直至浮出水面或达到平衡状态(比如部分浸没的物体上浮至漂浮状态)。

2.漂浮:
-当物体完全或部分地浸没在液体中,若其所受浮力`F_浮`等于物体的重力`G`(即`F_浮=G`),物体将保持在液体表面上不动,形成稳定的漂浮状态。

3.悬浮:
-物体在液体内部,如果它受到的浮力仍然等于其重力`F_浮=G`,那么物体将在液体中保持静止,既不上升也不下降,处于任意深度的稳定悬浮状态。

4.下沉:
-当物体受到的浮力`F_浮`小于其重力`G`时(即`F_浮<G`),物体将会加速下沉,直到完全沉入液体底部或者由于其它因素(如容器底的阻挡)而停止。

浮力来源于阿基米德原理,即浸没在流体中的物体受到的浮力大小等于它所排开的流体重量。

物体的密度和流体的密度之间的关系也决定了物体的浮沉行为:
-若物体的密度小于流体的密度,则物体会上浮。

-若物体的密度等于流体的密度,则物体可以悬浮在流体中任意位置。

-若物体的密度大于流体的密度,则物体将会下沉。

4.1物体沉浮条件及其应用(解析版)

4.1物体沉浮条件及其应用(解析版)

一、物体浮沉的条件(1)从密度的角度。

浸没在液体中的物体,上浮、下沉时物体的运动状态在改变,物体受到非平衡力作用;悬浮、漂浮、沉底时,物体可以处于静止状态,物体受到平衡力作用。

漂浮:物体一部分浸在液体中,另一部分在液面上方,此时浮力等于重力。

悬浮:物体可以停留在液体的任何深度处,物体全部浸没在液体中,此时浮力也等于重力。

沉底:物体下沉过程的最终状态,物体受到三个力(重力、浮力、支持力)而处于平衡状态。

当ρ物<ρ液时,物体上浮后漂浮;当ρ物=ρ液时,物体悬浮;当ρ物>ρ液时,物体下沉后沉底。

(2)从力的角度。

当F浮>G物时,物体上浮后漂浮(此时F浮=G物);当F浮=G物时,物体悬浮;当F浮<G物时,物体下沉后沉底。

【温馨提示】①密度均匀的物体悬浮(或漂浮)在某液体中,若把物体切成大小不等的两规律三:同一物体在不同液体里漂浮,在密度大的液体里浸入的体积小;规律四:漂浮物体浸入液体的体积是它总体积的几分之几,物体密度就是液体密度的几分之几;规律五:将漂浮物体全部浸入液体里,需加的竖直向下的外力,外力等于液体对物体增大的浮力。

【微点拨】如何调节浮力的大小:木头漂浮于水面是因为木材的密度小于水的密度。

把树木挖成“空心”就成了独木舟,自身重力变小,可承载较多人,独木舟排开水的体积变大,增大了可利用的浮力。

牙膏卷成一团,沉于水底,而“空心”的牙膏皮可浮在水面上,说明“空心”可调节浮力与重力的关系。

采用“空心”增大体积,从而增大浮力,使物体能漂浮在液面上。

二、浮力的应用(1)轮船①因为漂浮时,F浮=G,所以同一艘轮船从大海行驶到江河或从江河行驶到大海,其受到的浮力不变。

②根据F浮=ρ液gV排,同一艘轮船从大海行驶到江河,因为F浮不变,ρ液减小,所以V排必增大,即船身稍下沉。

③排水量:船满载货物时排开水的质量。

(2)潜水艇因浸没在水中的潜水艇排开水的体积始终不变,所以,潜水艇受到的浮力不变。

它的上浮和下沉是通过对水舱的排水和充水来改变自身的重力而实现的。

物体浮沉应用及条件

物体浮沉应用及条件

物体浮沉应用及条件物体浮沉是指物体在液体中的浮力与物体的重力之间的平衡状态。

根据阿基米德原理,当一个物体浸泡在液体中时,所受浮力等于物体排开的液体的重量,即F 浮= ρ液体V物体g,其中F浮为浮力,ρ液体为液体的密度,V物体为物体的体积,g为重力加速度。

物体浮沉的应用范围非常广泛,涉及到水域工程、航海、船舶设计、水下工程、矿山开采、气候变化等领域。

下面将详细介绍几个常见的应用及其条件。

1. 船舶设计:船舶的浮力与重力的平衡是船舶能够漂浮在水面上的基本原理。

船舶的设计需要考虑到船身的浮力和稳定性,根据船舶的用途和负载量来确定船体的形状和尺寸。

船舶设计中的关键因素包括船体的几何形状、质量分布、重心位置、船舶的排水量等。

通过调整船体的设计参数,可以实现船舶在不同载荷条件下的稳定浮行。

2. 潜水艇设计:潜水艇是一种具有浮沉能力的船舶,可以在水面上浮行,也可以潜入水下。

潜水艇的设计需要考虑到浮力和重力的平衡,通过控制潜艇内外的水的流动来实现浮沉。

在潜艇设计中,浮力是通过操纵潜水厂把控制潜艇的浮沉状态。

通过调节潜水厂把的气体进出,可以改变潜艇的浮沉状态,从而实现在水下的潜行和浮出水面。

3. 水下工程:在水下进行各种工程作业,如海底油气管道的铺设、海底电缆的安装、水下隧道的建设等,都需要考虑到物体的浮沉问题。

通过控制物体的重力和浮力之间的平衡,可以实现物体在水下的稳定位置。

在水下工程中,需要进行浮力计算和物体稳定性分析,确保工程设施的安全和可靠。

4. 气象学研究:气象学研究中常用气球等测控设备进行大气探测。

气球的浮力与重力的平衡决定了气球的上升和下降。

通过调节气球内外的气压差,可以控制气球的浮沉状态,使之停留在指定的高度上进行观测。

气球的浮力和稳定性分析是气象学研究中重要的问题,可以帮助科学家更好地了解大气的变化。

需要注意的是,物体在液体中浮沉的条件取决于物体的密度和液体的密度。

当物体的密度小于液体的密度时,物体将浮在液体表面;当物体的密度大于液体的密度时,物体会沉入液体中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浮沉条件及应用方法
浮沉条件是指在某种特定的环境下,物体是否会浮起或沉没的判断条件。

这种条件可以通过简单的经验判断、观察和实验得出,具有很高的实用性和广泛的应用范围。

下面将详细介绍浮沉条件及其应用方法。

浮沉条件主要涉及到物体的密度、浮力和重力三个方面。

当一个物体放置于液体或气体中时,这三者之间的相互作用会决定物体的浮沉状态。

首先考虑物体的密度。

密度是物体单位体积所占的质量,可以用公式ρ=m/V来表示,其中ρ为密度,m为质量,V为体积。

当一个物体的密度小于液体或气体的密度时,它就会浮起;而当物体密度大于液体或气体的密度时,它就会沉没。

这可以通过一个简单的实验来验证,即用水杯装满水,然后往水中投入不同密度的物体观察其浮沉状态。

其次考虑浮力。

浮力是液体或气体对浸入其中的物体产生的向上的力。

根据阿基米德原理,浮力的大小等于物体排开的液体体积乘以液体的密度乘以重力加速度,即Fb=ρ液体Vg,其中Fb为浮力,ρ液体为液体的密度,V为物体排开液体的体积,g为重力加速度。

当浮力大于或等于物体受到的重力时,物体就会浮起;当浮力小于物体受到的重力时,物体就会沉没。

这可以通过观察潜水员在水中浮沉状态来理解,潜水员通过控制肺活量的大小改变身体所受水的体积,进而控制浮沉状态。

最后考虑重力。

重力是地球对物体产生的向下的力。

当物体受到的重力大于或等于浮力时,物体就会沉没;当重力小于浮力时,物体就会浮起。

重力的大小可以用公式Fg=mg来计算,其中Fg为重力,m为物体的质量,g为重力加速度。

浮沉条件在生活中有许多应用。

其中一个常见的应用是船只的浮沉控制。

船只在水中的浮沉状态直接影响其航行安全。

为了保证船只的浮沉平衡,船只设计师会根据船只的体积、质量和所受浮力与重力的大小关系来选择合适的设计参数,确保船只能在水中浮起而不沉没。

另一个常见的应用是在游泳教学中。

教练经常会告诉学生如何通过调整姿势和呼吸来控制自己在水中的浮沉状态。

学生可以通过改变肺活量的大小和调整身体的姿势来控制自己的浮沉状态,从而在水中实现自由浮动或下沉。

此外,浮沉条件还在工程设计中有重要的应用。

例如在建筑物的设计中,需要考虑建筑材料的密度和浮力,以确保建筑物的稳定性。

在油井钻探中,也需要通过计算井口中的浮力和重力关系来控制钻管的下沉和浮起。

总结起来,浮沉条件是一个重要的物理概念,在生活和工程应用中有着广泛的应用。

它涉及到物体的密度、浮力和重力三个方面,通过观察和实验可以判断物体的浮沉状态。

通过理解浮沉条件,我们可以更好地控制物体的浮沉状态,从而实现一些重要的应用,如船只的浮沉控制、游泳教学和工程设计等。

相关文档
最新文档