通信电子电路高频实验报告

合集下载

高频电子线路实验报告

高频电子线路实验报告

实验一高频小信号放大器1.1 实验目的1、掌握高频小信号谐振电压放大器的电路组成与基本工作原理。

2、熟悉谐振回路的调谐方法及测试方法。

3、掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。

1.2、实验容1.2.1 单调谐高频小信号放大器仿真1、根据电路中选频网络参数值,计算该电路的谐振频率ωp 。

MHz CLw p 936.2105801020011612=⨯⨯⨯==--2、通过仿真,观察示波器中的输入输出波形,计算电压增益A v0。

,708.356uV V I = ,544.1mV V O = 电压增益===357.0544.10I O v V V A 4.3253、利用软件中的波特图仪观察通频带,并计算矩形系数。

波特图如下:4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~A v相应的图,根据图粗略计算出通频带。

f0(KHz)65 75 165 265 365 465106516652265286534654065 U0(mv) 0.9771.0641.3921.4831.5281.5481.4571.2821.0950.4790.840.747A V 2.7362.9743.8994.1544.284.3364.0813.5913.0671.3412.3522.092BW0.7=6.372MHz-33.401kHz5、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。

1.2.2 双调谐高频小信号放大器1、通过示波器观察输入输出波形,并计算出电压增益A v0。

,285.28mV V I =,160.5V V O =33.1820283.0160.50===I O v V V A 输入端波形:输出端波形1、利用软件中的波特图仪观察通频带,并计算矩形系数。

BW0.7=11.411MHz-6.695MHz BW0.1=9.578MHz-7.544MHz 矩形系数K=0.431实验二高频功率放大器2.1 实验目的1、掌握高频功率放大器的电路组成与基本工作原理。

高频仿真实验报告

高频仿真实验报告

实验报告实验课程:通信电子线路实验(软件部分)学生姓名:周倩文学号:6301712010专业班级:通信121班指导教师:雷向东老师、卢金平老师目录实验一仪器的操作使用实验二高频小信号调谐放大器实验三非线性丙类功率放大器实验实验四三点式正弦波振荡器实验五晶体振荡器设计实验六模拟乘法混频实验七二极管的双平衡混频器设计实验八集电极调幅实验实验九基极调幅电路设计实验十模拟乘法器调幅南昌大学实验报告学生姓名:周倩文学号:6301712010 专业班级:通信121班实验类型:□验证□综合□设计□创新实验日期: 2014-10-24 实验成绩:、实验三非线性丙类功放仿真设计(软件)一、实验目的1.了解丙类功率放大器的基本工作原理.掌握丙类放大器的调谐特性以及负载改变时的动态特性。

2.了解高频功率放大器丙类工作的物理过程以及当激励信号变化对功率放大器工作状态的影响。

3. 掌握丙类放大器的计算与设计方法。

二、实验内容1. 观察高频功率放大器丙类工作状态的现象.并分析其特点2. 测试丙类功放的调谐特性3. 测试丙类功放的负载特性4. 观察激励信号变化、负载变化对工作状态的影响三、实验基本原理放大器按照电流导通角θ的范围可分为甲类、乙类、丙类及丁类等不同类型。

功率放大器电流导通角越小.放大器的效率越高。

非线性丙类功率放大器的电流导通角小于90°.效率可达到80%.通常作为发射机末级功放以获得较大的输出功率和较高的效率。

特点:非线性丙类功率放大器通常用来放大窄带高频信号(信号的通带宽度只有其中心频率的1%或更小).基极偏置为负值.电流导通角小于90°.为了不失真地放大信号.它的负载必须是LC谐振回路。

在丙类谐振功放中.若将输入谐振回路调谐在输出信号频率n次谐波上.则可近似的认为.输出信号回路上仅有ic中的n次谐波分量产生的高频电压.而它的分量产生的电压均可忽略。

因而.在负载RL上得到了频率为输入信号频率n倍的输出信号功率。

通信电子电路高频谐振功率放大器实验报告

通信电子电路高频谐振功率放大器实验报告

实验室时间段座位号实验报告实验课程实验名称班级姓名学号指导老师高频谐振功率放大器预习报告实验目的1.通过实验,加深对丙类功率放大器基本工作原理的理解,掌握丙类功率放大器的调谐特性。

2.掌握输入激励电压,集电极电源电压及负载变化对放大器工作状态的影响。

3.通过实验进一步了解调幅的工作原理。

实验内容1.实验准备在实验箱主板上装上幅度调制与无线发射模块,接通电源即可开始实验。

2.测试前置放大级输入、输出波形高频信号源频率设置为6.3MHZ,幅度峰-峰值300mV左右,用铆孔线连接到1P05,用示波器测试1P05和1TP07的波形的幅度,并计算其放大倍数。

由于该级集电极负载是电阻,没有选频作用。

3. 激励电压、电源电压及负载变化对丙类功放工作状态的影响U对放大器工作状态的影响(1)激励电压bE=5V左右(用万用表测1TP08直流电压, 1W05 1K03置“右侧”。

保持集电极电源电压cR=10KΩ左右(1K04置“右侧”,用万用表测1TP11电阻, 1W6逆时针调到底),负载电阻L顺时针调到底,然后1K04置“左侧”)不变。

高频信号源频率1.9MHZ左右,幅度200mv(峰—峰值),连接至功放模块输入端(1P05)。

示波器CH1接1P08,CH2接1TP09。

调整高频信号源频率,使功放谐振即输出幅度(1TP08)U,观察1TP09电压波形。

信号源幅度变化最大。

改变信号源幅度,即改变激励信号电压b时,应观察到欠压、临界、过压脉冲波形。

其波形如图7-7所示(如果波形不对称,应微调高频信号源频率,如果高频信号源是DDS信号源,注意选择合适的频率步长档位)。

实验报告1.认真整理实验数据,对实验参数和波形进行分析,说明输入激励电压、集电极电源电压,负载电阻对工作状态的影响。

2.用实测参数分析丙类功率放大器的特点。

3.总结由本实验所获得的体会。

高频电子线路课程设计实验报告

高频电子线路课程设计实验报告

高频电子线路课程设计报告班级姓名指导教师日期前言:课程设计是电子技术课程的实践性教学环节,是对学生学习电子技术的综合性训练,该训练通过学生独立进行某一课题的设计、安装和调试来完成。

学生通过动脑、动手解决若干个实际问题,巩固和运用在高频电子线路课程中所学的理论知识和实验技能,基本掌握常用电子电路的一般设计方法,提高设计能力和实验技能,为以后从事电子电路设计、研制电子产品打下基础。

本文设计了包括选频网络的设计、超外差技术的应用和三点式振荡器在内的基础设计以及振幅调制与解调电路的设计。

选频网络应用非常广泛,可以用作放大器的负载,具有阻抗变换、频率选择和滤波的功能;超外差技术是指利用本地产生的振荡波与输入信号混频,将输入信号频率变换为某个预定的频率的电路,主要指混频电路;三点式振荡器用于产生稳定的高频振荡波,在通信领域应用广泛;振幅调制解调都属于频谱的线性搬移电路,是通信系统及其它电子线路的重要部件。

在设计过程中查阅了大量相关资料,对所要设计的内容进行了初步系统的了解,并与老师和同学进行了充分的讨论与交流,最终通过独立思考,完成了对题目的设计。

实验过程及报告的完成中存在的不足,希望老师给予纠正。

目录摘要 (4)设计内容 (5)设计要求 (5)一、基础设计 (6)1、选频网络的设计 (6)2、超外差技术的设计 (9)3、三点式振荡器的设计 (11)二、综合设计:调幅解调电路的设计 (15)1、调幅电路的设计: (15)2、解调电路的设计 (20)结束语 (26)参考文献: (26)心得体会 (27)高频电子线路课程设计摘要本次课程设计主要任务是完成选频网络的设计、超外差技术的应用、三点式振荡器的设计这三个基础设计以及调幅解调电路的综合设计。

其中采用LC并联谐振回路实现谐振频率为8.2MHz,通频带为600KHZ的选频网络;对超外差技术原理进行了学习并针对其主要应用收音机进行详细的说明;对三点式振荡器的构造原则和主要类型进行简明扼要地介绍,采用电容串联改进型电容三点式振荡电路完成一定振荡频率的振荡器的设计;充分了解了调幅解调的原理并进行详细说明,在此基础上设计幅度调制和解调电路。

高频电子电路实验报告一

高频电子电路实验报告一

调频接收机设计与调试一设计目的通过本课程设计与调试,提高动手能力,巩固已学的理论知识,能建立无线电调频接收机的整机概念,了解调频接收机整机各单元电路之间的关系及相互影响,从而能正确设计、计算调频接收机的单各元电路:输入回路、高频放大、混频、中频放大、鉴频及低频功放级。

初步掌握调频接收机的调整及测试方法。

二调频接收机的主要技术指标1.选择性接收机从各种信号和干扰中选出所需信号(或衰减不需要的信号)的能力称为选择性,单位用dB(分贝)表示dB数越高,选择性越好。

调频收音机的中频干扰应大于50dB。

2.灵敏度接收机接收微弱信号的能力称为灵敏度,通常用输入信号电压的大小来表示,接收的输入信号越小,灵敏度越高。

调频广播收音机的灵敏度一般为5~30uV。

3.工作频率范围接收机可以接受到的无线电波的频率范围称为接收机的工作频率范围或波段覆盖。

接收机的工作频率必须与发射机的工作频率相对应。

如调频广播收音机的频率范围为88~108MH,是因为调频广播收音机的工作范围也为88~108MHz4.频率特性接收机的频率响应范围称为频率特性或通频带。

调频机的通频带一般为200KHz。

5.输出功率接收机的负载输出的最大不失真(或非线性失真系数为给定值时)功率称为输出功率。

三基本设计原理调频接收机的组成一般调频接收机的组成框图如图所示。

其工作原理是:天线接受到的高频信号,经输入调谐回路选频为f1,再经高频放大级放大进入混频级。

本机振荡器输出的另一高频 f2亦进入混频级,则混频级的输出为含有f1、f2、(f1+f2)、(f2-f1)等频率分量的信号。

混频级的输出接调频回路选出中频信号(f2-f1),再经中频放大器放大,获得足够高增益,然后鉴频器解调出低频调制信号,由低频功放级放大。

由于天线接收到的高频信号经过混频成为固定的中频,再加以放大,因此接收机的灵敏度较高,选择性较好,性能也比较稳定。

中放的任务,是把变频器输出的中频信号放大后,输入到检波器。

通信电子电路高频实验报告

通信电子电路高频实验报告

实验一高频小信号谐振放大器一、实验目的1.高频小信号谐振放大器的工作原理及电路构成和电路元器件的作用。

2.了解高频小信号的质量指标和谐振放大器的性能。

3.掌握L,C参数对谐振频率的影响。

4.分析单调谐回路放大器的质量指标,测量电压增益,测量功率增益;测量放大器的频率。

二、预习要求1.复习高频小信号放大器的功用。

答:高频小信号放大器主要用于放大高频小信号, 属于窄带放大器。

由于采用谐振回路作负载,解决了放大倍数、通频带宽、阻抗匹配等问题,高频小信号放大器又称为小信号放谐振放大器。

就放大过程而言,电路中的晶体管工作在小信号放大区域中,非线性失真很小。

一方面可以对窄带信号实现不失真放大,另一方面又对带外信号滤除, 有选频作用。

2.高频小信号放大器,按有源器件分可分为:_以分立元件为主的集中选频放大器__,_以集成元件为主的集中选频放大器_;按频带宽度可分为:_窄带放大器_,宽带放大器。

三、实验内容1.参照电路原理图1-1连线。

,计算回路电容和回路2.图1-1为一单调谐回路中频放大器,已知工作频率f电感。

图1-1 小信号谐振放大器1.在选用三极管时要查晶体管手册,使参数合理。

2.观察瞬态分析的波形输出及频谱分析是否合理。

3.在pspice中设定:参数,AC=100mV、V OFF =0V,Vampl=300mV,freq=10MegHz。

V2参数CD=12V。

V1在AC Sweep中设定参数:①在AC Sweep Type中选 Decade。

②在Sweep Parameters 中选pts/Decade为20、Stort Fred为10k、End Fred为500MEG。

、Lntervat为10。

③AC Sweep Type中选 Output Voltoge为V(A)、1/V为V1四、实验报告1.根据输入信号的幅度和频率,测出输出信号的幅度和频率,完成表1-12.画出输入信号和输出信号的波形;(根据图形输出)仿真图如下:3.分析单调谐回路谐振放大器的质量指标:(1)测量电压增益;=60Au=UoUi(2)测量放大器的通频带;谐振回路的通频带:BW=fH-fL =0.02MHz实验二三点式振荡器一、实验目的1.熟悉三点式振荡器的工作原理及电路构成。

高频单级两级小信号单双调谐放大器通信电子电路硬件实验报告

高频单级两级小信号单双调谐放大器通信电子电路硬件实验报告

实验一高频(单级、两级)小信号(单、双)调谐放大器一、实验目的1、掌握高频小信号调谐放大器的工作原理;2、掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算方法。

二、实验内容1、测量各放大器的电压增益;三、实验仪器BT-3扫频仪(选做)一台、20MHz 示波器一台、数字式万用表一块、调试工具一套四、实验基本原理1、单级单调谐放大器图1-1单级单调谐放大器实验原理图实验原理图如图1 —1所示,本实验的输入信号(10.7MHz )由正弦波振荡器模块的石英晶体振荡器或高频信号源提供。

信号从TP5处输入,从TP10处输出。

调节电位器W3可改变三极管Q2的静态工作点,调节可调电容CC2和中周T2可改变谐振回路的幅频特性。

2、单级双调谐放大器图1-2单级双调谐放大器实验原理图实验原理图如图1-2所示,单级双调谐放大器和单级单调谐放大器共用了一部分元器件。

两个谐振回路通过电容C20 (1nF)或C21 (10 nF)耦合,若选择C20为耦合电容,则TP7接TP11;若选择 C21为耦合电容,则 TP7接TP12。

3、双级单调谐放大器+ 12 V图1-3双级单调谐放大器实验原理图实验原理图如图1-3所示,若TP5处输入信号的峰峰值为几百毫伏,经过第一级放大 器后可达几伏,此信号幅度远远超过了第二级放大器的动态范围, 从而使第二级放大器无法发挥放大的作用。

同时由于输入信号不可避免地存在谐波成分,经过第一级谐振放大器后, 由于谐振回路频率特性的非理想性,放大器也会对残留的谐波成分进行放大。

所以在第一级与第二级放大器之间又加了一个陶瓷滤波器( FL3), 一方面滤除放大的谐波成分,另一方面使第二级放大器输入信号的幅度满足要求。

实验时若采用外置专用函数信号发生器,调节第一级放大器输入信号的幅度,使第一级 放大器输出信号的幅度满足第二级放大器的输入要求, 则第一级与第二级放大器之间可不用再经过FL3。

4、双级双调谐放大器实验原理图如图1-4所示,第一级放大器两谐振回路的耦合电容( C20、C21)可选,第二级放大器两谐振回路的耦合电容不可选(固定为 C26, 1 nF ),两级放大器之间是否接FL3及相应原因与两级单调谐放大器相同。

高频电子线路实验报告

高频电子线路实验报告

高频电子线路实验报告起止日期:年至年第学期学生姓名班级学号成绩指导教师电气与信息工程学院实验一高频小信号调谐放大器(3课时)一、实验目的1.掌握小信号调谐放大器的基本工作原理。

2.谐振放大器电压增益、通频带、选择性的定义、测试及计算。

二、实验仪器、器材1.THCGP-1 型高频电子线路综合实验箱 1 台2.双踪示波器 DS-5042M 1台万用表 MF-47 型 1 块3.器材:单调谐小信号放大模块 1 块三、实验原理单调谐小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。

其实验单元电路如图 2-1 所示(模块②上)。

图 2-1 实验电路该电路由三极管 Q1 及其集电极选频回路 T1 组成。

它对输入的高频小信号进行放大,并具有一定的选频作用。

基极偏置电阻 W3、R22、R4 和射极电阻 R5 决定三极管的静态工作点。

可变电阻 W3 改变基极偏置电阻将改变三极管的静态工作点,从而可改变放大器的增益。

四、实验步骤(一)单调谐小信号放大器单元电路实验1.根据图 2-1 实验电路熟悉实验板电路,并在电路板上找出与原理图对应的各测试点。

2.按图 2-2 所示图连接好实验电路。

3.打开实验箱电源,按下信号源和频率计的电源开关,此时开关下方的工作指示灯点亮。

4.打开小信号调谐放大器的电源开关,并观察工作指示灯是否点亮。

5.调节信号源“RF 幅度”和“频率调节”旋钮,使输出端口“RF1”“RF2”输出。

频率为 10.5MHz 左右的高频信号。

将信号输入到 2 号板的 J4 口。

先用示波器在 TH1 处观察信号峰-峰值约为 50mV。

(先调频率再调幅度)图 2-2 测试连接图6.调节高频信号发生器的输出信号频率,使单调谐放大器谐振:操作方法:将示波器探头接在调谐放大器的输出端 TH2,调节示波器直至能观察到输出信号的波形,先调节 W3 使输出信号幅度最大,再调节高频信号发生器的输出信号频率使示波器上的信号幅度最大(先用 500KHz 档调节,再用 20 KHz 档调节,直到示波器上的信号幅度最大),此时放大器即被调谐到输入信号的频率点上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一高频小信号谐振放大器
一、实验目的
1.高频小信号谐振放大器的工作原理及电路构成和电路元器件的作用。

2.了解高频小信号的质量指标和谐振放大器的性能。

3.掌握L,C参数对谐振频率的影响。

4.分析单调谐回路放大器的质量指标,测量电压增益,测量功率增益;测量放
大器的频率。

二、预习要求
1.复习高频小信号放大器的功用。

答:高频小信号放大器主要用于放大高频小信号, 属于窄带放大器。

由于采用谐振回路作负载,解决了放大倍数、通频带宽、阻抗匹配等问题,高频小信号放大器又称为小信号放谐振放大器。

就放大过程而言,电路中的晶体管工作在小信号放大区域中,非线性失真很小。

一方面可以对窄带信号实现不失真放大,另一方面又对带外信号滤除, 有选频作用。

2.高频小信号放大器,按有源器件分可分为:_以分立元件为主的集中选频放大
器__,_以集成元件为主的集中选频放大器_;按频带宽度可分为:_窄带放大器_,
宽带放大器。

三、实验内容
1.参照电路原理图1-1连线。

,计算回路电容和回路2.图1-1为一单调谐回路中频放大器,已知工作频率f
电感。

图1-1 小信号谐振放大器
1.在选用三极管时要查晶体管手册,使参数合理。

2.观察瞬态分析的波形输出及频谱分析是否合理。

3.在pspice中设定:
参数,AC=100mV、V OFF =0V,Vampl=300mV,freq=10MegHz。

V2参数CD=12V。

V
1
在AC Sweep中设定参数:①在AC Sweep Type中选 Decade。

②在Sweep Parameters 中选pts/Decade为20、Stort Fred为10k、End Fred为500MEG。

、Lntervat为10。

③AC Sweep Type中选 Output Voltoge为V(A)、1/V为V
1
四、实验报告
1.根据输入信号的幅度和频率,测出输出信号的幅度和频率,完成
表1-1
2.画出输入信号和输出信号的波形;(根据图形输出)
仿真图如下:
3.分析单调谐回路谐振放大器的质量指标:(1)测量电压增益;
=60
Au=Uo
Ui
(2)测量放大器的通频带;
谐振回路的通频带:BW=fH-fL =0.02MHz
实验二三点式振荡器
一、实验目的
1.熟悉三点式振荡器的工作原理及电路构成。

2.掌握L,C参数对振荡频率的影响。

3.了解不同静态工作点对振荡器起振、振荡幅度和振荡波形的影响。

4.知道振荡器工作的起振条件,了解加速技术在起振中的作用。

二、预习要求
1.复习三点式振荡器的工作原理。

答:三点式振荡电路放大器可由分立元件构成单级或多级放大电路,也可用集成运放组成同相或反相比例放大电路。

Z1、Z2、Z3表示纯电抗元件或电抗网络。

如果要使电路振荡,要求AF=1,由此得:X1 + X2 + X3=0,即X1、X2为同类电抗,X3为与X1、X2相反种类的电抗。

三点式振荡电路工作原理特性:(1)在LC振荡电路中,如果Z1、Z2为电感,则Z3为电容,成为电感三点式振荡器;如果Z1、Z2为电容,则Z3为电感,成为电容三点式振荡器。

(2)两个相同性质电抗的连接点必须接放大器的同相端,(三极管为发射极);另一端接反相端(三极管为基极)即所谓的射同基反的原则。

2.复习正弦波振荡电路的基本组成。

答:为了产生稳定的正弦振荡,正弦波振荡器除应该满足起振条件、平衡条件和稳定条件外,还应有选频网络以得到单一的频率输出。

因此正弦波振荡器必须具有以下四个基本部分:
1)放大电路:是能量转换装置,振荡过程是将直流能量转换为交流能量的过程。

2)正反馈网络:正反馈网络与放大器一起构成了自激振荡的必要条件。

3)选频网络:是获得单一正弦波的必要条件。

无选频网络的自激振荡器输出含有许多谐波成份,故称多谐振荡器。

4)稳幅环节:它是振荡器能够迸人振幅平衡状态并维持幅度稳定的条件。

三、实验内容
1.参照图2-1连线。

2-1 三点式振荡器电路原理图
2.进入‘Probe’观察输出波形,测量出振荡频率。

3.改变频率(通过改变L,C的参数)。

4.思考:电源‘V2’是什么源及在电路中的作用?
(V的设定:在元器件库中调出脉冲源VPVLSE,在原理图中双击VPVLSE。

填入AC=100m V V1=0、V2=1、TD=2ns、TR=2ns、TF=2ns、PW=2us)
四、实验报告
1.电路中的哪些元件参数与频率有关?将振荡频率的实测值与理论估算值比较,分析产生误差的原因。

答:电源的稳定性;电感L2与电容C2的稳定性;都会影响频率的变化。

振荡频率的实测值与理论估算值比较有误差,可能是由于计算过程中的计算误差和实验仿真过程中的仿真误差造成的,对此我们可以提高计算和仿真精度,在满足工程要求上尽量提高精度。

2.观察波形输出是否为等幅的正弦振荡?如果不是等幅振荡,则不满足振荡器的相位平衡条件,找出原因并且解决之。

答:不是等幅振荡,不满足振荡器的相位平衡条件,静态工作点调节之后正弦波有所改善。

3.根据L、C参数的不同得到不同频率,完成表2-1。

表2-1
L1(uH) L2(uH) C1(pF) C2(pF) 频率(KHz)理论值
1 0.01 0.03 0.11 13.
2 2381.52
2 0.0
3 0.03 0.18 13.2 2483.85
3 0.06 0.07 0.18 13.8 1666.11
4.测出振荡频率与理论值相比较?如果数值相差很大,找出原因并且解决。

答:振荡频率理论值如表2-1所示,振荡频率的实测值与理论估算值比较有误差,可能是由于计算过程中的计算误差和实验仿真过程中的仿真误差造成的。

对此我们可以提高计算和仿真精度,在满足工程要求上尽量提高精度。

5.画出输出波形(仿真结果)。

相关文档
最新文档