高三第一轮复习_函数的奇偶性
2023年高考数学一轮复习讲义——函数的奇偶性、周期性与对称性

§2.3 函数的奇偶性、周期性与对称性考试要求 1.了解函数奇偶性的含义,结合三角函数,了解周期性与对称性及其几何意义. 2.会依据函数的性质进行简单的应用.知识梳理 1.函数的奇偶性奇偶性 定义图象特点 偶函数一般地,设函数f (x )的定义域为I ,如果∀x ∈I ,都有-x ∈I ,且f (-x )=f (x ),那么函数f (x )就叫做偶函数 关于y 轴对称奇函数 一般地,设函数f (x )的定义域为I ,如果∀x ∈I ,都有-x ∈I ,且f (-x )=-f (x ),那么函数f (x )就叫做奇函数关于原点对称2.周期性(1)周期函数:一般地,设函数f (x )的定义域为D ,如果存在一个非零常数T ,使得对每一个x ∈D 都有x +T ∈D ,且f (x +T )=f (x ),那么函数y =f (x )就叫做周期函数,非零常数T 叫做这个函数的周期.(2)最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期. 常用结论1.奇函数在关于原点对称的区间上具有相同的单调性;偶函数在关于原点对称的区间上具有相反的单调性. 2.函数周期性常用结论对f (x )定义域内任一自变量的值x : (1)若f (x +a )=-f (x ),则T =2a (a >0). (2)若f (x +a )=1f (x ),则T =2a (a >0). 3.函数对称性常用结论(1)f (a -x )=f (a +x )⇔f (-x )=f (2a +x )⇔f (x )=f (2a -x )⇔f (x )的图象关于直线x =a 对称. (2)f (a +x )=f (b -x )⇔f (x )的图象关于直线x =a +b2对称.f (a +x )=-f (b -x )⇔f (x )的图象关于点⎝⎛⎭⎫a +b 2,0对称.(3)f (2a -x )=-f (x )+2b ⇔f (x )的图象关于点(a ,b )对称.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)若函数f (x )为奇函数,则f (0)=0.( × )(2)若f (x )为奇函数,g (x )为偶函数,则y =f (x )g (x )为奇函数.( × ) (3)若T 是函数f (x )的一个周期,则kT (k ∈N *)也是函数的一个周期.( √ ) (4)若函数f (x )满足f (2+x )=f (2-x ),则f (x )的图象关于直线x =2对称.( √ ) 教材改编题1.下列函数中为偶函数的是( ) A .y =x 2sin x B .y =x 2cos x C .y =|ln x | D .y =2-x答案 B解析 根据偶函数的定义知偶函数满足f (-x )=f (x )且定义域关于原点对称,A 选项为奇函数;B 选项为偶函数;C 选项定义域为(0,+∞),不具有奇偶性;D 选项既不是奇函数,也不是偶函数.2.若f (x )是定义在R 上的周期为2的函数,当x ∈[0,2)时,f (x )=2-x ,则f (2 023)=________. 答案 12解析 ∵f (x )的周期为2, ∴f (2 023)=f (1)=2-1=12.3. 设奇函数f (x )的定义域为[-5,5],若当x ∈[0,5]时,f (x )的图象如图所示,则不等式f (x )<0的解集为________.答案 (-2,0)∪(2,5]解析 由图象可知,当0<x <2时,f (x )>0; 当2<x ≤5时,f (x )<0, 又f (x )是奇函数, ∴当-2<x <0时,f (x )<0,当-5≤x <-2时,f (x )>0.综上,f (x )<0的解集为(-2,0)∪(2,5].题型一 函数的奇偶性 命题点1 判断函数的奇偶性 例1 判断下列函数的奇偶性: (1)f (x )=3-x 2+x 2-3;(2)f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2+x ,x >0;(3)f (x )=log 2(x +x 2+1).解 (1)由⎩⎪⎨⎪⎧3-x 2≥0,x 2-3≥0,得x 2=3,解得x =±3,即函数f (x )的定义域为{-3,3}, 从而f (x )=3-x 2+x 2-3=0. 因此f (-x )=-f (x )且f (-x )=f (x ), 所以函数f (x )既是奇函数又是偶函数.(2)显然函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称. ∵当x <0时,-x >0, 则f (-x )=-(-x )2-x =-x 2-x =-f (x ); 当x >0时,-x <0,则f (-x )=(-x )2-x =x 2-x =-f (x );综上可知,对于定义域内的任意x ,总有f (-x )=-f (x )成立, ∴函数f (x )为奇函数.(3)显然函数f (x )的定义域为R , f (-x )=log 2[-x +(-x )2+1] =log 2(x 2+1-x ) =log 2(x 2+1+x )-1=-log 2(x 2+1+x )=-f (x ), 故f (x )为奇函数.思维升华 判断函数的奇偶性,其中包括两个必备条件(1)定义域关于原点对称,否则即为非奇非偶函数.(2)判断f (x )与f (-x )是否具有等量关系,在判断奇偶性的运算中,可以转化为判断奇偶性的等价等量关系式(f (x )+f (-x )=0(奇函数)或f (x )-f (-x )=0(偶函数))是否成立. 命题点2 函数奇偶性的应用例2 (1)(2022·哈尔滨模拟)函数f (x )=x (e x +e -x )+1在区间[-2,2]上的最大值与最小值分别为M ,N ,则M +N 的值为( ) A .-2 B .0 C .2 D .4 答案 C解析 依题意,令g (x )=x (e x +e -x ), 显然函数g (x )的定义域为R , 则g (-x )=-x (e -x +e x )=-g (x ), 即函数g (x )是奇函数,因此,函数g (x )在区间[-2,2]上的最大值与最小值的和为0,而f (x )=g (x )+1, 则有M =g (x )max +1,N =g (x )min +1, 于是得M +N =g (x )max +1+g (x )min +1=2, 所以M +N 的值为2.(2)(2021·新高考全国Ⅰ)已知函数f (x )=x 3(a ·2x -2-x )是偶函数,则a =________. 答案 1解析 方法一 (定义法)因为f (x )=x 3(a ·2x -2-x )的定义域为R ,且是偶函数,所以f (-x )=f (x )对任意的x ∈R 恒成立,所以(-x )3(a ·2-x -2x )=x 3(a ·2x -2-x )对任意的x ∈R 恒成立,所以x 3(a -1)(2x +2-x )=0对任意的x ∈R 恒成立,所以a =1.方法二 (取特殊值检验法)因为f (x )=x 3(a ·2x -2-x )的定义域为R ,且是偶函数,所以f (-1)=f (1),所以-⎝⎛⎭⎫a 2-2=2a -12,解得a =1,经检验,f (x )=x 3(2x -2-x )为偶函数,所以a =1. 方法三 (转化法)由题意知f (x )=x 3(a ·2x -2-x )的定义域为R ,且是偶函数.设g (x )=x 3,h (x )=a ·2x -2-x ,因为g (x )=x 3为奇函数,所以h (x )=a ·2x -2-x 为奇函数, 所以h (0)=a ·20-2-0=0,解得a =1,经检验,f (x )=x 3(2x -2-x )为偶函数,所以a =1. 教师备选1.已知函数f (x )=9-x 2|6-x |-6,则函数f (x )( )A .既是奇函数也是偶函数B .既不是奇函数也不是偶函数C .是奇函数,但不是偶函数D .是偶函数,但不是奇函数 答案 C解析 由9-x 2≥0且|6-x |-6≠0, 解得-3≤x ≤3且x ≠0,可得函数f (x )的定义域为{x |-3≤x ≤3且x ≠0}, 关于原点对称,所以f (x )=9-x 2|6-x |-6=9-x 26-x -6=9-x 2-x ,又f (-x )=9-(-x )2x =-9-x 2-x=-f (x ),所以f (x )是奇函数,但不是偶函数.2.若函数f (x )=⎩⎪⎨⎪⎧g (x ),x <0,2x -3,x >0为奇函数,则f (g (-1))=________.答案 -1解析 ∵f (x )为奇函数且f (-1)=g (-1), ∴f (-1)=-f (1)=-(-1)=1, ∴g (-1)=1, ∴f (g (-1))=f (1)=-1.思维升华 (1)利用函数的奇偶性可求函数值或求参数的取值,求解的关键在于借助奇偶性转化为求已知区间上的函数或得到参数的恒等式,利用方程思想求参数的值.(2)利用函数的奇偶性可画出函数在其对称区间上的图象,结合几何直观求解相关问题.跟踪训练1 (1)(2021·全国乙卷)设函数f (x )=1-x1+x ,则下列函数中为奇函数的是( )A .f (x -1)-1B .f (x -1)+1C .f (x +1)-1D .f (x +1)+1答案 B解析 f (x )=1-x 1+x =2-(x +1)1+x =21+x -1,为保证函数变换之后为奇函数,需将函数y =f (x )的图象向右平移一个单位长度,再向上平移一个单位长度,得到的图象对应的函数为y =f (x -1)+1.(2)已知函数f (x )是定义在R 上的奇函数,当x ≥0,f (x )=2x -2x +a ,则a =________;当x <0时,f (x )=________. 答案 -1 -2-x -2x +1解析 ∵f (x )是定义在R 上的奇函数, ∴f (0)=0,即1+a =0, ∴a =-1.∴当x ≥0时,f (x )=2x -2x -1, 设x <0,则-x >0,∴f (-x )=2-x -2(-x )-1=2-x +2x -1, 又f (x )为奇函数, ∴f (-x )=-f (x ), ∴-f (x )=2-x +2x -1, ∴f (x )=-2-x -2x +1. 题型二 函数的周期性例3 (1)(2022·重庆质检)已知函数f (x )是定义在R 上的奇函数,对任意的实数x ,f (x -2)=f (x +2),当x ∈(0,2)时,f (x )=x 2,则f ⎝⎛⎭⎫132等于( ) A .-94B .-14C.14D.94答案 A解析 由f (x -2)=f (x +2),知y =f (x )的周期T =4, 又f (x )是定义在R 上的奇函数, ∴f ⎝⎛⎭⎫132=f ⎝⎛⎭⎫8-32 =f ⎝⎛⎭⎫-32=-f ⎝⎛⎭⎫32=-94. (2)函数f (x )满足f (x )f (x +2)=13,且f (1)=2,则f (2 023)=________. 答案132解析 ∵f (x )f (x +2)=13, ∴f (x +2)=13f (x ),∵f (x +4)=13f (x +2)=1313f (x )=f (x ),∴f (x )的周期为4, ∴f (2 023)=f (3)=13f (1)=132.教师备选若函数f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,f (x -1)-f (x -2),x >0,则f (2 023)=________.答案 -1 解析 当x >0时, f (x )=f (x -1)-f (x -2), ① ∴f (x +1)=f (x )-f (x -1),②①+②得,f (x +1)=-f (x -2), ∴f (x )的周期为6,∴f (2 023)=f (337×6+1)=f (1) =f (0)-f (-1)=20-21=-1.思维升华 (1)求解与函数的周期有关的问题,应根据题目特征及周期定义,求出函数的周期. (2)利用函数的周期性,可将其他区间上的求值、求零点个数、求解析式等问题,转化到已知区间上,进而解决问题.跟踪训练2(1)(2022·安庆模拟)定义在R上的函数f(x)满足f(x+6)=f(x),当-3≤x<-1时,f(x)=-(x+2)2,当-1≤x<3时,f(x)=x,则f(1)+f(2)+f(3)+…+f(2 023)等于() A.336 B.338C.337 D.339答案 B解析因为f(x+6)=f(x),所以函数的周期T=6,于是f(1)=1,f(2)=2,f(3)=f(-3)=-(-3+2)2=-1,f(4)=f(-2)=-(-2+2)2=0,f(5)=f(-1)=-1,f(6)=f(0)=0,所以f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=1,而2 023=6×337+1,所以f(1)+f(2)+f(3)+…+f(2 023)=337×1+1=338.(2)函数f(x)满足f(x+1)=f(x-1),且f(x)为定义在R上的奇函数,则f(2 021)+f(2 022)=________.答案0解析∵f(x+1)=f(x-1),∴f(x)的周期为2,∴f(2 021)+f(2 022)=f(1)+f(0),又f(x)为定义在R上的奇函数,∴f(0)=0,且f(-1)=-f(1),①又f(x)的周期为2,∴f(-1)=f(1),②由①②得f(1)=0,∴f(2 021)+f(2 022)=0.题型三函数的对称性例4(1)(多选)(2022·承德模拟)已知函数f(x)的定义域为R,对任意x都有f(2+x)=f(2-x),且f (-x )=f (x ),则下列结论正确的是( ) A .f (x )的图象关于直线x =2对称 B .f (x )的图象关于点(2,0)对称 C .f (x )的周期为4 D .y =f (x +4)为偶函数 答案 ACD解析 ∵f (2+x )=f (2-x ),则f (x )的图象关于直线x =2对称,故A 正确,B 错误; ∵函数f (x )的图象关于直线x =2对称, 则f (-x )=f (x +4),又f (-x )=f (x ), ∴f (x +4)=f (x ),∴T =4,故C 正确;∵T =4且f (x )为偶函数,故y =f (x +4)为偶函数,故D 正确.(2)已知函数y =f (x )-2为奇函数,g (x )=2x +1x ,且f (x )与g (x )图象的交点分别为(x 1,y 1),(x 2,y 2),…,(x 6,y 6),则y 1+y 2+…+y 6=________. 答案 12解析 ∵函数y =f (x )-2为奇函数, ∴函数y =f (x )的图象关于点(0,2)对称,又g (x )=2x +1x =1x +2,其图象也关于(0,2)对称,∴两函数图象交点关于(0,2)对称, 则y 1+y 2+…+y 6=3×4=12.延伸探究 在本例(2)中,把函数“y =f (x )-2”改为“y =f (x +1)-2”,把“g (x )=2x +1x ”改为“g (x )=2x -1x -1”,其他不变,求x 1+x 2+…+x 6+y 1+y 2+…+y 6的值.解 ∵y =f (x +1)-2为奇函数, ∴函数f (x )的图象关于点(1,2)对称, 又g (x )=2x -1x -1=1x -1+2,∴g (x )的图象也关于点(1,2)对称,则x 1+x 2+…+x 6+y 1+y 2+…+y 6=3×2+3×4=18. 教师备选1.函数f (x )=lg|2x -1|图象的对称轴方程为________. 答案 x =12解析 内层函数t =|2x -1|的对称轴是x =12,所以函数f (x )=lg |2x -1|图象的对称轴方程是x=12. 2.已知函数f (x )=x 3-ax 2+bx +1的图象关于点(0,1)对称,且f ′(1)=4,则a -b =________. 答案 -1解析 因为f (x )关于点(0,1)对称, 所以f (x )+f (-x )=2, 故f (1)+f (-1)=2,即1-a +b +1+(-1)-a -b +1=2, 解得a =0,所以f (x )=x 3+bx +1, 又因为f ′(x )=3x 2+b ,所以f ′(1)=3+b =4,解得b =1, 所以a -b =-1.思维升华 (1)求解与函数的对称性有关的问题时,应根据题目特征和对称性的定义,求出函数的对称轴或对称中心.(2)解决函数对称性有关的问题,一般结合函数图象,利用对称性解决求值或参数问题. 跟踪训练3 (1)函数f (x )的周期为6,且f (x +2)为偶函数,当x ∈[0,2]时,f (x )=2x -1,则 f (2 025)=________. 答案 1解析 ∵f (x )的周期为6,则f (2 025)=f (3), 又f (x +2)为偶函数,∴f (x )的图象关于直线x =2对称, ∴f (3)=f (1)=1,∴f (2 025)=1.(2)(多选)关于函数f (x )=sin x +1sin x 有如下四个命题,其中正确的是( )A .f (x )的图象关于y 轴对称B .f (x )的图象关于原点对称C .f (x )的图象关于直线x =π2对称D .f (x )的图象关于点(π,0)对称 答案 BCD解析 ∵f (x )=sin x +1sin x 的定义域为{x |x ≠k π,k ∈Z },f (-x )=sin(-x )+1sin (-x )=-sin x -1sin x=-f (x ),∴f (x )为奇函数,图象关于原点对称, 故A 错误,B 正确. ∵f ⎝⎛⎭⎫π2-x =cos x +1cos x , f ⎝⎛⎭⎫π2+x =cos x +1cos x , ∴f ⎝⎛⎭⎫π2-x =f ⎝⎛⎭⎫π2+x , ∴f (x )的图象关于直线x =π2对称,故C 正确.又f (x +2π)=sin(x +2π)+1sin (x +2π)=sin x +1sin x ,f (-x )=-sin x -1sin x ,∴f (x +2π)=-f (-x ),∴f (x )的图象关于点(π,0)对称,故D 正确.课时精练1.如果奇函数f (x )在[3,7]上单调递增且最小值为5,那么f (x )在区间[-7,-3]上( ) A .单调递增且最小值为-5B .单调递减且最小值为-5C .单调递增且最大值为-5D .单调递减且最大值为-5 答案 C解析 因为奇函数f (x )在[3,7]上单调递增且最小值为5,而奇函数的图象关于原点对称, 所以f (x )在区间[-7,-3]上单调递增且最大值为-5. 2.(2022·南昌模拟)函数f (x )=9x +13x 的图象( )A .关于x 轴对称B .关于y 轴对称C .关于坐标原点对称D .关于直线y =x 对称答案 B解析 f (x )=32x +13x =3x +3-x ,f (-x )=3-x +3x ,∴f (-x )=f (x ),故f (x )为偶函数,其图象关于y 轴对称.3.已知函数f (x )的图象关于原点对称,且周期为4,f (3)=-2,则f (2 021)等于( ) A .2 B .0 C .-2 D .-4 答案 A解析 依题意,函数f (x )的图象关于原点对称,则函数f (x )是奇函数,又f (x )的周期为4,且f (3)=-2,则有f (2 021)=f (-3+506×4)=f (-3)=-f (3)=2,所以f (2 021)=2.4.(2022·宁德模拟)已知f (x )是定义在R 上的奇函数,且对任意的x ∈R 都有f (x +2)=-f (x ),当x ∈[0,2]时,f (x )=x 2+ax +b ,则a +b 等于( ) A .0 B .-1 C .-2 D .2 答案 C解析 因为f (x )是定义在R 上的奇函数, 且x ∈[0,2]时,f (x )=x 2+ax +b , 所以f (0)=b =0,f (-x )=-f (x ), 又对任意的x ∈R 都有f (x +2)=-f (x ), 所以f (x +2)=f (-x ),所以函数图象关于直线x =1对称,所以-a=1,解得a=-2,2所以a+b=-2.5.(多选)已知y=f(x)是定义在R上的奇函数,则下列函数中为奇函数的是()A.y=f(|x|) B.y=f(-x)C.y=xf(x) D.y=f(x)+x答案BD解析由奇函数的定义f(-x)=-f(x)验证,A项,f(|-x|)=f(|x|),为偶函数;B项,f[-(-x)]=f(x)=-f(-x),为奇函数;C项,-xf(-x)=-x·[-f(x)]=xf(x),为偶函数;D项,f(-x)+(-x)=-[f(x)+x],为奇函数.可知BD正确.6.(多选)(2022·湖北新高考9+N联盟模拟)已知f(x)为R上的偶函数,且f(x+2)是奇函数,则()A.f(x)的图象关于点(2,0)对称B.f(x)的图象关于直线x=2对称C.f(x)的周期为4D.f(x)的周期为8答案AD解析∵f(x)为偶函数,∴f(x)的图象关于y轴对称,f(-x)=f(x),又∵f(x+2)是奇函数,∴f(-x+2)=-f(x+2),∴f(x-2)+f(x+2)=0,∴f(x+8)=-f(x+4)=f(x),∴函数f(x)的图象关于点(2,0)对称,f(x)为周期函数且周期为8.7.(2022·湘豫名校联考)已知f(x)=ax2+bx+1是定义在[a-1,2a]上的偶函数,则a+b=________.答案 13解析 因为f (x )=ax 2+bx +1是定义在[a -1,2a ]上的偶函数, 则有(a -1)+2a =3a -1=0,则a =13,同时f (-x )=f (x ),即ax 2+bx +1=a (-x )2+b (-x )+1, 则有bx =0,必有b =0. 则a +b =13.8.已知函数f (x )满足对∀x ∈R ,有f (1-x )=f (1+x ),f (x +2)=-f (x ),当x ∈(0,1)时,f (x )=x 2+mx ,若f ⎝⎛⎭⎫352=12,则m =______. 答案 12解析 由f (1-x )=f (1+x ), f (x +2)=-f (x ),知f (x )的图象关于直线x =1对称,f (x )的周期为4, ∴f ⎝⎛⎭⎫352=f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫12=12, ∴14+12m =12, ∴m =12.9.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围. 解 (1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x . 又f (x )为奇函数,所以f (-x )=-f (x ), 于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2) 要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象(如图所示)知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].10.设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数; (2)当x ∈[2,4]时,求f (x )的解析式. (1)证明 ∵f (x +2)=-f (x ), ∴f (x +4)=-f (x +2)=f (x ). ∴f (x )是周期为4的周期函数.(2)解 ∵x ∈[2,4],∴-x ∈[-4,-2], ∴4-x ∈[0,2],∴f (4-x )=2(4-x )-(4-x )2 =-x 2+6x -8.∵f (4-x )=f (-x )=-f (x ), ∴-f (x )=-x 2+6x -8, 即当x ∈[2,4]时,f (x )=x 2-6x +8.11.(2022·重庆模拟)已知函数f (x )=ax 5+bx 3+2,若f (2)=7,则f (-2)等于( ) A .-7 B .-3 C .3 D .7 答案 B解析 设g (x )=f (x )-2=ax 5+bx 3,则g (-x )=-ax 5-bx 3=-g (x ), 即f (x )-2=-f (-x )+2, 故f (-2)=-f (2)+4=-3.12.已知定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=a 2x -a -2x+1(a >0,a ≠1),则f (1)等于( )A .-1B .0C .1D .2 答案 C解析 由已知可得f (1)+g (1)=a 2-a -2+1, f (-1)+g (-1)=a -2-a 2+1, 因为f (x )为偶函数,g (x )为奇函数, 所以f (1)-g (1)=a -2-a 2+1,联立⎩⎪⎨⎪⎧f (1)+g (1)=a 2-a -2+1,f (1)-g (1)=a -2-a 2+1,解得f (1)=1.13.(多选)(2022·本溪统考)已知定义在R 上的奇函数f (x )对∀x ∈R 都有f (x +2)=-f (x ),则下列判断正确的是( ) A .f (x )是周期函数且周期为4 B .f (x )的图象关于点(1,0)对称 C .f (x )的图象关于直线x =-1对称 D .f (x )在[-4,4]上至少有5个零点 答案 ACD解析 对于A 选项,因为f (x +2)=-f (x ), 所以f (x +4)=-f (x +2)=-[-f (x )] =f (x ),所以函数f (x )的周期为4,故A 项正确; 对于B 选项,因为f (x +2)=-f (x ), 且f (-x )=-f (x ), 所以f (x +2)=f (-x ),所以f (x )的图象关于直线x =1对称, 故B 项错误;对于C 选项,因为f (x +2)=-f (x ), 所以f (x )=-f (x -2), 又因为f (-x )=-f (x ), 所以f (x -2)=f (-x ),所以f (x )的图象关于直线x =-1对称, 故C 项正确;对于D 选项,因为f (x )为定义在R 上的奇函数, 所以f (0)=0,因为T =4, 所以f (4)=f (-4)=0, 因为f (x +2)=-f (x ), 所以f (0+2)=-f (0)=0, 所以f (2)=0,因为T =4, 所以f (-2)=0,故D 项正确.14.已知函数f (x )=4x 4x +2,则f (x )+f (1-x )=____________,f ⎝⎛⎭⎫12 023+f ⎝⎛⎭⎫22 023+f ⎝⎛⎭⎫32 023+…+f ⎝⎛⎭⎫2 0222 023=________. 答案 1 1 011解析 因为f (x )=4x4x +2,所以f (x )+f (1-x )=4x4x +2+41-x41-x +2=4x4x +2+44x44x+2 =4x4x +2+44x4+2·4x4x=4x 4x +2+44+2·4x =2·4x +44+2·4x =1,设f ⎝⎛⎭⎫12 023+f ⎝⎛⎭⎫22 023+f ⎝⎛⎭⎫32 023+…+f ⎝⎛⎭⎫2 0222 023=m , ① 则f ⎝⎛⎭⎫2 0222 023+…+f ⎝⎛⎭⎫32 023+f ⎝⎛⎭⎫22 023+f ⎝⎛⎭⎫12 023=m ,②①+②得2 022=2m ,即m =1 011,故f ⎝⎛⎭⎫12 023+f ⎝⎛⎭⎫22 023+f ⎝⎛⎭⎫32 023+…+f ⎝⎛⎭⎫2 0222 023=1 011.15.(多选)(2022·岳阳质检)设x ∈R ,用[x ]表示不超过x 的最大整数,则y =[x ]称为高斯函数,也叫取整函数.令f (x )=x -[x ],以下结论正确的有( ) A .f (-1.1)=0.9 B .函数f (x )为奇函数 C .f (x +1)=f (x )+1 D .函数f (x )的值域为[0,1) 答案 AD解析 对于A ,f (-1.1)=-1.1-[-1.1] =-1.1+2=0.9,故A 正确.对于B ,取x =-1.1,则f (-1.1)=0.9, 而f (1.1)=1.1-[1.1]=1.1-1=0.1, 故f (-1.1)≠-f (1.1),所以函数f (x )不为奇函数,故B 错误.对于C ,f (x +1)=x +1-[x +1]=x +1-[x ]-1=f (x ),故C 错误. 对于D ,由C 的判断可知,f (x )为周期函数,且周期为1, 当0≤x ≤1时,则当x =0时,f (0)=0-[0]=0,当0<x <1时,f (x )=x -[x ]=x -0=x , 当x =1时,f (x )=1-[1]=1-1=0, 故当0≤x ≤1时,则有0≤f (x )<1, 故函数f (x )的值域为[0,1),故D 正确.16.(2022·北京西城区模拟)设函数f (x )的定义域为R .若存在常数T ,A (T >0,A >0),使得对于任意x ∈R ,f (x +T )=Af (x )成立,则称函数f (x )具有性质P . (1)判断函数y =x 和y =cos x 是否具有性质P ?(结论不要求证明)(2)若函数f (x )具有性质P ,且其对应的T =π,A =2.已知当x ∈(0,π]时,f (x )=sin x ,求函数f (x )在区间[-π,0]上的最大值. 解 (1)因为函数y =x 是增函数, 所以函数y =x 不具有性质P , 当A =1,T =2π时,函数y =cos x 对于任意x ∈R , f (x +T )=Af (x )成立, 所以y =cos x 具有性质P . (2)设x ∈(-π,0], 则x +π∈(0,π],由题意得f (x +π)=2f (x )=sin(x +π), 所以f (x )=-12sin x ,x ∈(-π,0],由f (-π+π)=2f (-π),f (0+π)=2f (0), 得f (-π)=14f (π)=0,所以当x ∈[-π,0]时,f (x )=-12sin x ,所以当x =-π2时,f (x )在[-π,0]上有最大值f ⎝⎛⎭⎫-π2=12.。
年高考第一轮复习数学函数的奇偶性

函数的奇偶性●知识梳理1.奇函数:对于函数f(x)的定义域内随意一个x,都有f(- x)=-f(x)〔或f (x) + f(- x) =0〕,则称f( x)为奇函数.2.偶函数:对于函数f( x)的定义域内随意一个x,都有f(- x) =f( x)〔或f ( x)- f(- x)=0〕,则称f(x)为偶函数.3.奇、偶函数的性质(1)拥有奇偶性的函数,其定义域对于原点对称(也就是说,函数为奇函数或偶函数的必需条件是其定义域对于原点对称).(2)奇函数的图象对于原点对称,偶函数的图象对于y 轴对称 .(3)若奇函数的定义域包括数0,则 f(0)=0.(4)奇函数的反函数也为奇函数.(5)定义在(-∞, +∞)上的随意函数f(x)都能够独一表示成一个奇函数与一个偶函数之和 .●点击双基1.下边四个结论中,正确命题的个数是①偶函数的图象必定与y 轴订交②奇函数的图象必定经过原点③偶函数的图象对于 y 轴对称④既是奇函数,又是偶函数的函数必定是f( x)=0(x∈R)分析:①不对;②不对,由于奇函数的定义域可能不包括原点;③正确;④不对,既是奇函数又是偶函数的函数能够为f( x)=0〔x∈(- a, a)〕.答案: A2.已知函数 f(x)=ax2+bx+ c(a≠0)是偶函数,那么g(x) =ax3+bx2+cx 是A. 奇函数C.既奇且偶函数B.偶函数D.非奇非偶函数分析:由f(x)为偶函数,知b=0,有g(x)=ax3+cx( a≠0)为奇函数.答案: A3.若偶函数f(x)在区间[-1, 0]上是减函数,α、β是锐角三角形的两个内角,且α≠β,则以下不等式中正确的选项是(cosα)> f(cosβ)(sinα)> f( cosβ)(sinα)> f(sinβ)(cosα)>f(sinβ)分析:∵偶函数f(x)在区间[- 1, 0]上是减函数,∴ f(x)在区间[ 0, 1]上为增函数 .由α、β是锐角三角形的两个内角,∴α+β>90°,α>90°-β.1>sinα>cosβ> 0.∴f(sinα)> f( cosβ) .答案: B4.已知 f( x)= ax2+ bx+ 3a+ b 是偶函数,且其定义域为[a-1,2a],则 a=___________,b=___________.分析:定义域应对于原点对称,故有 a-1=- 2a,得 a=1 .3又对于所给分析式,要使f(- x)= f( x)恒建立,应 b=0.答案:131( x≠ 0);②y=x25.给定函数+1;③y=2x;④y=log2;⑤y=log2(x+x 2 1 ):①y=x.x在这五个函数中,奇函数是_________,偶函数是 _________,非奇非偶函数是__________.答案:①⑤② ③④●典例分析【例 1】已知函数 y=f(x)是偶函数, y=f(x- 2)在[ 0,2]上是单一减函数,则(0)< f(- 1)< f( 2)(-1)<f(0)<f(2)(- 1)< f( 2)< f( 0)(2)<f(-1)<f(0)分析:由 f(x-2)在[ 0,2]上单一递减,∴f(x)在[- 2,0]上单一递减 .∵y=f(x)是偶函数,∴f(x)在[ 0, 2]上单一递加 .又 f(- 1) =f(1),故应选 A.答案: A【例 2】判断以下函数的奇偶性:(1)f(x)=|x+1|- |x- 1|;1x(2)f(x)=(x-1)·;(3)f(x)=1x 2;| x 2 | 2(4)f(x)=x(1x)( x0),x(1x)( x0).分析:依据函数奇偶性的定义进行判断.解:(1)函数的定义域x∈(-∞, +∞),对称于原点 .∵f(- x)=|- x+1|- |- x- 1|=|x-1|- |x+1|=-( |x+1|-|x-1|) =- f( x),∴f(x)=|x+1|- |x- 1|是奇函数 .( 2)先确立函数的定义域 .由1x1 x≥0,得- 1≤x< 1,其定义域不对称于原点,所以 f(x)既不是奇函数也不是偶函数.(3)去掉绝对值符号,依据定义判断.由1x20,1 x 1,得4. | x 2 | 2 0,x 0且x故 f(x)的定义域为[- 1,0)∪(0,1],对于原点对称,且有 x+2>0.进而有 f(x)221( x)22= 1 x= 1x=-1x =-f(x),故 f(x)为奇,这时有 f(- x)=xx22x x函数 .(4)∵函数 f(x)的定义域是(-∞, 0)∪(0,+∞),而且当 x> 0 时,- x<0,∴f(- x)=(- x)[1-(- x)]=-x(1+x) =- f(x)(x> 0) .当 x< 0 时,- x>0,∴ f(- x) =- x( 1- x)=-f(x)( x< 0) .故函数 f(x)为奇函数 .评论:( 1)分段函数的奇偶性应分段证明 .(2)判断函数的奇偶性应先求定义域再化简函数分析式 .【例 3】(2005 年北京东城区模拟试题)函数f( x)的定义域为 D={ x|x≠0} ,且满足对于随意 x 、 x ∈D,有 f( x ·x )=f( x )+f(x ) .121212(1)求 f( 1)的值;(2)判断 f(x)的奇偶性并证明;(3)假如 f(4)=1, f(3x+1)+f( 2x-6)≤ 3,且 f( x)在( 0,+∞)上是增函数,求 x 的取值范围 .(1)解:令 x1 =x2=1,有 f(1×1)=f( 1) +f(1),解得 f(1)=0.(2)证明:令 x1 =x2=- 1,有 f[(- 1)×(- 1)]=f(- 1)+f(- 1) .解得 f(-1)=0.令 x1 =-1,x2=x,有 f(- x)=f(- 1)+f( x),∴ f(- x)=f( x) .∴f(x)为偶函数.(3)解: f ( 4× 4) =f (4)+f (4)=2,f ( 16×4)=f ( 16)+f (4) =3.∴ f (3x+1)+f (2x -6)≤ 3 即 f [(3x+1)( 2x -6)]≤ f (64) .(* )∵f (x )在( 0, +∞)上是增函数,∴( * )等价于不等式组或 (3x 1)( 2x 6) 0,(3x 1)(2 x 6) 64,x 3或x1 , 1 3,或3 或x 375x R.x3∴3<x ≤5 或- 7≤x <- 1或- 1<x <3.333∴x 的取值范围为 { x|- 7≤x <- 1或- 1<x <3 或 3< x ≤5}.33 3评论:解答此题易出现以下思想阻碍:(1)无从下手,不知怎样脱掉“ f ” .解决方法 :利用函数的单一性 .(2)没法获得另一个不等式 .解决方法:对于原点对称的两个区间上,奇函数的单调性同样,偶函数的单一性相反 .深入拓展已知 f ( x )、g (x )都是奇函数, f ( x )> 0 的解集是( a 2,b ), g ( x )> 0 的解集2是(a, b ), b>a 2,那么 f (x )· g ( x )> 0 的解集是 2 2 2A. ( a 2 , b)2)2 2 B.(- b ,- aC.( a 2, b)∪(- b,- a 2)222 D.(a,b )∪(- b 2,- a 2)2提示: f ( x )·g (x )> 0f (x) 0, 或 f ( x) 0,g( x) 0g ( x)0.∴x ∈( a 2, b )∪(- b,- a 2) .2 2答案: C【例 4】 (2004 年天津模拟试题)已知函数 f (x )=x+ px+m ( p ≠ 0)是奇函数 .(1)求 m 的值 .(2)(理)当 x ∈[ 1, 2]时,求 f (x )的最大值和最小值 .(文)若 p > 1,当 x ∈[ 1,2]时,求 f (x )的最大值和最小值 .解:(1)∵ f (x )是奇函数,∴ f (- x )=-f (x ).∴- x - p +m=-x - p-m.xx∴ 2m=0.∴m=0.(2)(理)(ⅰ)当 p < 0 时,据定义可证明 f (x )在[ 1, 2]上为增函数 .∴ f (x )max =f (2)=2+ p,f ( x ) min =f (1)=1+p.2(ⅱ)当 p > 0 时,据定义可证明 f (x )在( 0, p ]上是减函数,在[p ,+∞)上是增函数 .①当 p <1,即 0< p < 1 时, f (x )在[ 1,2]上为增函数,∴ f (x )max =f (2)=2+ p, f (x )min =f (1)=1+p.2②当 p ∈[ 1,2]时, f ( x )在[ 1,p ]上是减函数 .在[ p , 2]上是增函数 .f ( x ) min =f ( p )=2 p .f ( x ) max =max{ f ( 1),f (2) }=max{1+ p ,2+ p}.2当 1≤p ≤2 时,1+p ≤2+ p,f (x )max =f ( 2);当 2<p ≤4 时,1+p ≥2+ p,f (x )max =f22(1).③当p > 2,即 p > 4 时,f ( x )在[1,2]上为减函数, ∴ f ( x )max =f (1)=1+p ,f (x )min =f (2)=2+ p.2(文)解答略 .评论: f( x) =x+ p( p>0)的单一性是一重要问题,利用单一性求最值是重要方x 法.深入拓展f( x) =x+ p的单一性也可依据导函数的符号来判断,此题怎样用导数来解?x●闯关训练夯实基础1.定义在区间(-∞,+∞)上的奇函数 f ( x)为增函数,偶函数g( x)在区间[ 0, +∞)上的图象与f(x)的图象重合,设a< b< 0,给出以下不等式,此中建立的是①f(b)- f(- a)> g( a)- g(- b)②f(b)- f(- a)< g( a)- g(- b)③f(a)- f(- b)> g( b)- g(- a)④f(a)- f(- b)< g( b)- g(- a)A. ①④B.②③C.①③D. ②④分析:不如取切合题意的函数f(x)=x 及 g(x) =|x|进行比较,或一般地g(x)f ( x)x0, =x f(0)=0, f(a)< f(b)< 0.f ( x)0,答案: D2.(2003 年北京海淀区二模题)函数f(x)是定义域为 R 的偶函数,又是以 2 为周期的周期函数 .若 f(x)在[- 1,0]上是减函数,那么 f( x)在[ 2,3]上是A. 增函数B.减函数C.先增后减的函数D.先减后增的函数分析:∵偶函数f(x)在[- 1,0]上是减函数,∴ f( x)在[ 0,1]上是增函数 .由周期为 2 知该函数在[ 2,3]上为增函数 .答案: A3.已知 f( x)是奇函数,当 x∈( 0,1)时, f(x)=lg1,那么当x∈(-1,0)1 x时, f( x)的表达式是 __________.分析:当 x∈(- 1,0)时,- x∈( 0,1),∴ f(x)=-f(- x)=-lg 1=lg(1 1 x-x) .答案: lg(1-x)x2x1,4.(2003 年北京)函数 f(x)=lg( 1+x2),g(x)= 0| x | 1, h(x)=tan2x中,x2x 1.______________是偶函数 .分析:∵ f(- x)=lg[1+(- x)2]=lg(1+x2) =f(x),∴f(x)为偶函数 .又∵ 1°当- 1≤x≤1 时,- 1≤- x≤1,∴g(- x) =0.又 g( x) =0,∴ g(- x)=g( x).2°当 x<- 1 时,- x> 1,∴g(- x) =-(- x)+2=x+2.又∵ g( x) =x+2,∴ g(- x)=g( x) .3°当 x> 1 时,-x<- 1,∴g(- x) =(- x)+2=-x+2.又∵ g( x) =- x+2,∴ g(- x)=g(x).综上,对随意 x∈ R 都有 g(- x) =g(x).∴g(x)为偶函数 .h(- x)=tan(- 2x) =-tan2x=- h( x),∴h(x)为奇函数 .答案: f( x)、g(x)5.若 f(x)= a 2x a 2为奇函数,务实数 a 的值 .2 x1解:∵x∈ R,∴要使 f(x)为奇函数,一定且只需 f( x)+f(- x)=0,即 a-2+2 x1 a-2=0,得 a=1.x216.(理)定义在[- 2, 2]上的偶函数 g(x),当 x≥0 时, g(x)单一递减,若 g (1- m)< g(m),求 m 的取值范围 .解:由 g(1-m)< g(m)及 g(x)为偶函数,可得g(|1- m|)< g( |m|).又 g(x)在(0,+∞)上单一递减,∴ |1-m|>|m|,且 |1-m|≤ 2,|m|≤2,解得- 1≤m<1 . 2说明:也能够作出g(x)的表示图,联合图形进行分析.(文)( 2005 年北京西城区模拟试题)定义在R 上的奇函数 f( x)在( 0,+∞)上是增函数,又 f(- 3)=0,则不等式 xf(x)< 0 的解集为A. (- 3,0)∪( 0, 3)B.(-∞,- 3)∪( 3,+∞)C.(- 3,0)∪( 3, +∞)D.(-∞,- 3)∪( 0,3)分析:由奇偶性和单一性的关系联合图象来解.答案: A培育能力已知()=(1+1).7.f xx2 x 1 2(1)判断 f(x)的奇偶性;(2)证明 f(x)> 0.(1)解:f(x)= x·2x1,其定义域为 x≠0 的实数 .又 f(- x)=- x·22( 2x1)2( 2xx11)=-x· 1 2x=x· 2 x 1=f(x),2(1 2 x )2(2 x1)∴f(x)为偶函数 .(2)证明:由分析式易见,当x>0 时,有 f(x)> 0.又 f(x)是偶函数,且当 x< 0 时- x>0,∴当 x<0 时 f(x)= f (- x)> 0,即对于 x≠0 的任何实数 x,均有 f( x)> 0.研究创新8.设 f(x)=log 1(1ax)为奇函数,a为常数,2x1(1)求 a 的值;(2)证明 f(x)在( 1, +∞)内单一递加;对于[ 3, 4]上的每一个x 的值,不等式 f( x)>(1)x+m 恒建立,求2实数 m 的取值范围 .(1)解: f( x)是奇函数,∴ f(- x)=-f(x).∴ log 11ax=- log 12x 12 a=1(舍),∴ a=-1.1 ax1 ax=x 1> 0 1- a2x2=1- x2a=± 1.查验x 1x 1 1 ax(2)证明:任取 x1> x2>1,∴ x1- 1> x2-1>0.220< 1+ x 21< 1+ x2x11x21x11∴0<x 1<x211210<x11<x21 log 1x11>12log 1x21,即 f(x1)> f( x2).∴f(x)在( 1, +∞)内单一递加 .2x21(3)解: f( x)-(1)x>m 恒建立 . 2令 g(x) =f(x)-(1)x.只需 g(x)min> m,用定义能够证 g( x)在[ 3, 4]2上是增函数,∴ g( x)min()-9∴<-9时原式恒建立 .=g 3 =. m88●思悟小结1.函数的奇偶性是函数的整体性质,即自变量x 在整个定义域内随意取值 .2.有时可直接依据图象的对称性来判断函数的奇偶性.●教师下载中心教课点睛1.函数的奇偶性常常与函数的其余性质,如单一性、周期性、对称性联合起来考察.所以,在复习过程中应增强知识横向间的联系.2.数形联合,以形助数是解决本节问题常用的思想方法.3.在教课过程中应重申函数的奇偶性是函数的整体性质,而单一性是其局部性质 .拓展题例2【例 1】 已知函数 f (x )=ax1(a 、b 、c ∈ Z )是奇函数,又 f ( 1)=2,f (2)bx c<3,求 a 、b 、c 的值 .解:由 f (- x )=-f (x ),得- bx+c=-( bx+c ).∴ c =0.由 f (1)=2,得 a+1=2b.由 f (2)< 3,得4a 1<3,a 1解得- 1<a <2.又 a ∈ Z ,∴a=0 或 a=1.若 a=0,则 b= 1,与 b ∈Z 矛盾 .∴a=1, b=1,c=0.2【例 2】 已知函数 y=f (x )的定义域为R ,对随意 x 、 x ′∈ R 均有 f (x+x ′) =f(x ) +f (x ′),且对随意 x >0,都有 f (x )< 0,f (3)=-3.(1)试证明:函数 y=f ( x )是 R 上的单一减函数;(2)试证明:函数 y=f ( x )是奇函数;(3)试求函数 y=f (x )在[ m , n ](m 、 n ∈ Z ,且 mn <0)上的值域 .分析:(1)可依据函数单一性的定义进行论证, 考虑证明过程中怎样利用题设条件 .(2)可依据函数奇偶性的定义进行证明,应由条件先获得f ( 0)=0 后,再利用条件 f (x 12)=f ( 1 ) +f ( 2)中 x 1、 2 的随意性,可使结论得证.+xx x x(3)由( 1)的结论可知 f ( m )、f (n )分别是函数 y=f (x )在[ m 、 n ]上的最大值与最小值,故求出 f (m )与 f (n )便可得所求值域 .(1)证明:任取 x 1、 x 2∈R ,且 x 1<x 2,f (x 2) =f [x 1+(x 2-x 1)],于是由条件f(x+x′) =f(x)+f( x′)可知 f(x2) =f(x1)+f(x2-x1) .∵x2> x1,∴ x2- x1>0.∴f(x2-x1)< 0.∴f(x2)=f(x1)+f( x2-x1)< f(x1) .故函数 y=f(x)是减函数 .(2)明:∵ 随意x、x′∈ R 均有 f(x+x′) =f(x) +f(x′),∴若令 x=x′ =0, f( 0) =f(0)+f(0).∴f(0)=0.再令 x′=-x,可得 f(0) =f(x)+f(- x) .∵f(0)=0,∴ f(- x)=-f( x) .故 y=f( x)是奇函数 .(3)解:由函数 y=f(x)是 R 上的减函数,∴y=f(x)在[ m,n]上也减函数 .∴y=f(x)在[ m,n]上的最大 f(m),最小 f(n).∴f(n)=f[1+(n-1)] =f(1)+f( n- 1) =2f( 1) +f(n-2)=⋯=nf(1).同理, f( m)=mf(1).∵f(3)=-3,∴ f(3)=3f(1)=-3.∴f(1)=-1.∴f(m)=-m, f(n)=-n.所以,函数 y=f(x)在[ m, n]上的域[- n,- m].述:( 1)足条件f( x+x′) =f(x)+f( x′)的函数,只需其定域是关于原点称的,它就奇函数.(2)若将条件中的x>0,均有 f( x)< 0 改成均有 f(x)> 0,函数 f(x)就是 R 上的增函数 .(3)若条件中的m、n∈Z 去掉,我就没法求出f(m)与 f(n)的,故 m、n∈Z 不行少 .。
高考数学一轮复习-2-3函数的奇偶性与周期性课件-理

•f(x)在R上是奇函数, •∴f(x)在区间[-2,2]上是增函数, •∴f(-1)<f(0)<f(1),即f(-25)<f(80)<f(11).
基础诊断
考点突破
课堂总结
考点二 函数周期性的应用 【例 2】(1)(2014·安徽卷)若函数 f(x)(x∈R)是周期为 4 的奇函
数,且在[0,2]上的解析式为 f(x)=xsin1-πxx,,1<0≤x≤x≤2,1, 则 f 249+f 461=________. (2)已知 f(x)是定义在 R 上的偶函数,且 f(x+2)=-f(x),当 2≤x≤3 时,f(x)=x,则 f(105.5)=________.
• 第3讲 函数的奇偶性与周期性
基础诊断
考点突破
课堂总结
• 考试要求 1.函数奇偶性的含义及判断,B级 要求;2.运用函数的图象理解、研究函数的奇 偶性,A级要求;3.函数的周期性、最小正周 期的含义,周期性的判断及应用,B级要求.
基础诊断
考点突破
课堂总结
• 知识梳理 • 1.函数的奇偶性
奇偶 性
基础诊断
考点突破
课堂总结
【训练 2】 (2014·南通模拟)已知函数 f(x)是定义在 R 上的奇函数, 且是以 2 为周期的周期函数.若当 x∈[0,1)时,f(x)=2x-1,则
f(log16)的值为________.
2
解析 ∵f(x)是周期为 2 的奇函数.
∴f(log16)=f
2
log1
2
法二 易知 f(x)的定义域为 R. ∵f(-x)+f(x)=log2[-x+ -x2+1]+ log2(x+ x2+1)=log21=0,即 f(-x)=-f(x), ∴f(x)为奇函数. 对于 g(x),由|x-2|>0,得 x≠2. ∴g(x)的定义域为{x|x≠2}. ∵g(x)的定义域关于原点不对称, ∴g(x)为非奇非偶函数. 答案 (1)① (2)奇 非奇非偶
高考数第一轮复习函数的奇偶性与周期性

1.已知函数y=f(x)是奇函数,则函数y=f(x+1)的图象的对 称中心是( ) (A)(1,0) (B)(-1,0) (C)(0,1) (D)(0,-1) 【解析】选B.函数y=f(x)的图象关于点(0,0)对称,函数 y=f(x+1)的图象可由y=f(x)的图象向左平移1个单位得到, 故函数y=f(x+1)的图象的对称中心为(-1,0).
周期性求f(1)+f(2)+…+f(2 012).
(2)利用周期性可知f(-1)=f(1),
列方程
组求解.
【规范解答】(1)选B.∵f(x+6)=f(x),∴T=6. ∵当-3≤x<-1时,f(x)=-(x+2)2;当-1≤x<3时,f(x)=x, ∴f(1)=1,f(2)=2,f(3)=f(-3)=-1,f(4)=f(-2)=0, f(5)=f(-1)=-1,f(6)=f(0)=0,∴f(1)+f(2)+…+f(6)=1, ∴f(1)+f(2)+…+f(6)=f(7)+f(8)+…+f(12) =…=f(2 005)+f(2 006)+…+f(2 010)=1, ∴f(1)+f(2)+…+f(2 010)=1× =335. 而f(2 011)+f(2 012)=f(1)+f(2)=3, ∴f(1)+f(2)+…+f(2 012)=335+3=338.
(2)因为f(x)的周期为2,所以
即
又因为
所以
∴3a+2b=-2
①,
又因为f(-1)=f(1),所以
即b=-2a ②,
高三第一轮复习_函数的奇偶性

大家好
13
It's your turn now… 练习3 定义在R上的奇函数f(x)在(0, +∞)上是增函数,
且f(-3)=0,则不等式 xf(x)<0的解集为_______________.
(-3,0) ∪ (0, 3)
大家好
14
结束
大家好
15
x? 3? 3
x
Q f ( ? x ) ? ? 1 ??( x ) 2 ? ? f ( x ) ?x
故原函数为奇函数.
大家好
7
It's your turn now…
练习1 判断下列各函数的奇偶性:
(1)f(x)=|x+2|+|x-2|
解析:原函数的定义域为R.
∵f(-x)=|-x+2|+|-x-2|=|x-2|+|x+2|=f(x)
§2.2 函数奇偶性
大家好
1
要点梳理
1.函数的奇偶性
(1)如果对于函数 f(x)定义域内 任意 一个 x,都有 _f_(_-x_)_=_f_(x_)_,那么函数f(x)就叫做偶函数.
(2)如果对于函数f(x)定义域内任意一个x,都有 _f_(-_x_)_=_-f_(_x_),那么函数f(x)就叫做奇函数.
奇函数的图象关于原点对称, 反过来,如果一个函数的图象关于 原点对称,那么 这个函数是奇函数;
大家好
3
3.函数奇偶性的判定
(1)根据定义判定,首先看函数的定义域是否 关于 原点对称,若不对称则函数是非奇非偶函数.
若对称,再判定f(-x)=f(x)或f(-x)=-f(x).
(2)利用函数的图象判定.
(2)解:
8、高三数学一轮复习精品讲义----函数的奇偶性

函数的奇偶性知识回顾:1、函数的奇偶性定义:对于函数)(x f ,其定义域关于原点对称.........: 如果______________________________________,那么函数)(x f 为奇函数; 如果______________________________________,那么函数)(x f 为偶函数.2、函数奇偶性的性质:奇函数的图象关于__________对称,偶函数的图象关于_________对称。
奇函数在对称区间的增减性 ;偶函数在对称区间的增减性 。
典型例题分析:一、判断函数的奇偶性例1、判断下列函数的奇偶性:(1)()(f x x =-(2)2()f x = (3)22,(0)(),(0)x x x f x x x x ⎧+<⎪=⎨->⎪⎩ ;(4)2,(1)()0,(11)2,(1)x x f x x x x +<-⎧⎪=-≤≤⎨⎪-+>⎩; (5)2()2f x xx a =--+ ;(6)()f x =例2、函数(1)sin y x x =(2)2121x y =+-(3)22,(0)()log ,(01)x x f x x x ⎧≤=⎨<≤⎩(4)[]2()21,2,2f x x x x =-++∈-中,图象具有对称性的是 。
例3、定义在实数集上的函数()f x ,对任意,x y R ∈有()()2()()f x y f x y f x f y ++-=且(0)0f ≠,(1)求证:(0)1f =(2)求证:()y f x =是偶函数二、利用函数奇偶性的定义求参数例4、若函数)2(log )(22a x x x f n ++=是奇函数,则a =例5、已知函数22()21x x a a f x +-=+是定义在实数集上的奇函数,求a 的值。
三、函数奇偶性的应用例6、)(x f 是定义在R 上的以3为周期的奇函数,且0)2(=f 在区间(0,6)内解的个数的最小值是( ) A .2 B .3 C .4 D .5例7、已知()g x 是奇函数,2()log )()2x f x x g x =++且1(3)58f -=,求(3)f 。
高考数学第一轮考点复习课件 函数的奇偶性

(4)由1x2--x12≥≥00,, 得 x2=1, ∴x=±1,且 f(x)=0. ∴f(-x)=f(x)=-f(x). ∴f(x)既是奇函数又是偶函数.
▪
▪ 判断函数的奇偶性,首先应考察定义域是 否关于原点对称,再研究f(x)与f(-x)的关 系.
变式迁移 1 判断下列各函数的奇偶性: (1)f(x)=(x-1) 11-+xx; (2)f(x)=|xlg2-(1-2|-x2)2.
f(x-,x)=都f(有x)
,那么函数f(x)就
叫做偶函数.
▪ (2)如果对于函数f(x)奇定函义数域内任意一个 x,都有f(-x)=-f(x),那么函数f(奇x)偶就性叫 做 .如果函数f(x)是奇函数或偶函数, 那么我们就说函数f(x)具有 .
▪ 2.具有奇偶性的函数的图象特点
▪ 一般地,奇函数的图象原关点于 对称,反
过来,如果一个原点函数的图象关于 对称,
那么这个函数是奇y轴函数;偶函数的图象关
于 对称,反过来,如果一偶函个数函数的图
象关于y轴对称,那么这个函数是
.
▪ 3.函数奇偶性的判定方法
▪ (1)根据定义判定,首先看函数的定义 原域点是否关于 对称,若不非对奇称非,偶 则函数是
函数;若对称,再判定f(-x)= f(x)或f(-x)=-f(x).有时判f定(x)f=(-0 x)= ±f(x或)比±判较1定困难,可考虑判定f(-x)±
▪ 因为∀x1,x2∈R,且x1<x2,均有x<x, 从而x+x1<x+x2.
________.
▪ 解析:∵f(x-4)=-f(x), ▪ ∴f(x)=-f(x-4)=-[-f(x-8)]=f(x-
8).
3.2.2-奇偶性课件-2025届高三数学一轮复习

A)
A.单调递增,且最大值为f −2
B.单调递增,且最大值为f −3
C.单调递减,且最大值为f −2
D.单调递减,且最大值为f −3
【解析】任取−3 ≤ x1 < x2 ≤ −2,
∴ 2 ≤ −x2 < −x1 ≤ 3,
又函数f x 在区间[2,3]上单调递增,
∴ f −x2 < f −x1 .
∵ 函数f x 为奇函数,
D.若f x 是定义域为的奇函数,则f 0 = 0
)
【解析】对任意x ∈ ,满足f −x = f x ,f x x ∈ 才是偶函数,仅凭两个特殊
的函数值相等不足以判定函数的奇偶性,故A错误.
当f x x ∈ 是偶函数时,∀x ∈ ,f −x = f x ,因此f −2 = f 2 成立,故B正确.
x2
+
a
x
x ≠ 0, a ∈ ;
【解析】当a = 0时,f x = x 2 为偶函数.
当a ≠ 0时,f x =
x2
+
a
x
x ≠ 0 ,取x = ±1,
得f −1 + f 1 = 2 ≠ 0,f −1 − f 1 = −2a ≠ 0,
即f −1 ≠ −f 1 ,f −1 ≠ f 1 ,
∴ 函数f x 既不是奇函数也不是偶函数.
D.h x =
f x
2−g x
是奇函数
【解析】对于A,h x = f x + g x = 4 − x 2 + x − 2 = 4 − x 2 + 2 − x,
x ∈ [−2,2],h −x = 4 − x 2 + 2 + x,由于h −x ≠ h x ,h −x ≠ −h x ,所以h x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f(x+y)=f(x)+f(y),
(1)求证: f(x)是奇函数; (2)若f(-3)=a,用a表示f(12). (1)证明:显然原函数的定义域是R.在f(x+y)=f(x)+f(y)中, 令y=-x,得f(0)=f(x)+f (-x). 令x = y=0 ,得f(0)=f(0)+f (0),∴ f(0)=0 ∴ f(x)+f (-x) =0 ,即f (-x) = -f(x) , ∴ f(x)是奇函数. (2)解: ∵ f(-3)=a, ∴ f(12)=2f(6)=4f(3)=-4f(-3)=-4a.
题型三 奇偶性与单调性的综合
例5 已知奇函数f(x)是定义在(-1,1)上的增函数, 试求解关于a的不等式 f(a-2)+ f(a2-4)<0. 解析: 由已知得 f(a-2)<- f(a2-4) ∵ f(x)是奇函数,∴- f(a2-4)= f(4-a2), ∴ f(a-2)< f(4-a2). 又f(x)是定义在(-1,1)上的增函数,从而
3.函数奇偶性的判定
(1) 根据定义判定,首先看函数的定义域是否 关于 原点对称,若不对称则函数是非奇非偶函数.
若对称,再判定f(-x)=f(x)或f(-x)=-f(x).
(2)利用函数的图象判定.
题型一 函数奇偶性的判断
例1 判断下列各函数的奇偶性:
x x (1) f ( x) x 1
1 x2 x
2
f ( x)
It’s your turn now…
练习1 判断下列各函数的奇偶性:
(1)f(x)=|x+2|+|x-2|
解析:原函数的定义域为R.
∵f(-x)=|-x+2|+|-x-2|=|x-2|+|x+2|=f(x)
∴f(x) 是偶函数.
easy
例2 已知函数f(x)对一切实数x,y,都有
(-3,0) ∪ (0, 3)
题型二 由函数奇偶性求参数的值
例3 已知函数
a(2 1) 2 f ( x) x 2 1
x
是奇函数,求实数a的值. 解析: 显然0在原函数的定义域内,
a(2 1) 2 得 a=1. f (0) 0, 0 2 1
0
经检验,当a=1时原函数为奇函数. 注:若0在奇函数的定义域内,则必有f(0)=0.
It’s your turn now…
练习2 已知函数
f ( x) x2 m 1 x2
是奇函数,求实数m的值.
m=2
题型二 由函数奇偶性求参数的值
例4 已知函数
f(x)=ax2+bx+c (2a-3≤x≤1)
是偶函数,求实数a和b的值. 解析: 依题意得 f(-x)=f(x),即 a(-x)2-bx+c=ax2+bx+c ∴b=-b=0 而(2a-3)+1=0 ∴a=1. 故a=1,b=0. 注:《360°》P?? 为什么?
注:如果函数f(x)既是奇函数又是偶函数,那么 0 函数f(x)=_______ .
要点梳理
2.奇偶性的函数图象特点 一般地,偶函数的图象关于y轴对称, 反过来,如果一个函数的图象关于 y 轴 对称,那么 这个函数是偶函数 ;
奇函数的图象关于原点对称, 反过来,如果一个函数的图象关于原点对称,那么 这个函数是奇函数;
§2.2 函数奇偶性
要点梳理
1.函数的奇偶性 (1) 如果对于函数 f(x) 定义域内 任意 一个 x ,都有 _________ f(-x)=f(x) ,那么函数f(x)就叫做偶函数. (2)如果对于函数f(x)定义域内任意一个x,都有 f(-x)=-f(x) ,那么函数f(x)就叫做奇函数. _________ 如果函数f(x)是奇函数或偶函数,那么我们就说函 奇偶性 . 数f(x)具有_______
2
1 x (2) f ( x ) x3 3
2
题型一 函数奇偶性的判断
例1 判断下列各函数的奇偶性:
x x (1) f ( x) x 1
2
解析:原函数的定义域为{x|x≠1}
∵当x=-1时,-x=1不在定义域内,
∴f(x)不是奇函数也不是偶函数. 或者说:定义 域不关于原点 对称.
a 2 4 a2 1 a 2 1 2 1 a 4 1
解得
3a2
即不等式的解集为 ( 3, 2)
It’s your turn now…
练习3 定义在R上的奇函数f(x)在(0, +∞)上是增函数, 且f(-3)=0,则不等式 xf(x)<0的解集为_______________.
1 x (2) f ( x ) x3 3
2
解析: 依题意得
2 1 x 0 得 1 x 0 或 0 x 1 x3 3 0
ห้องสมุดไป่ตู้所以原函数的定义域为 [1, 0) (0,1]
1 x2 f ( x) x 33
1 ( x) f ( x) x 故原函数为奇函数.