信号与系统第3章'

合集下载

信号与系统-第三章习题讲解

信号与系统-第三章习题讲解

Fn

1 T
T f (t)e jntdt 1
0
T
T E(1 t )e jntdt
0
T
E T e jnt dt 1 T te jnt dt]
T0
T0

E { 1 [t TT
1 e jnt
jn
|T0

T e jnt
0 jn
dt]}
E { 1 [T 1 0]} j E ; n 1, 2,....
E cos( )
2




2E cos( ) 2E cos( )

2
2 2 2

2
[1 ( )2 ]

3 32已知阶跃函数和正弦、余弦函数的傅立叶变换:
FT[u(t)] 1 (); j
FT[cos(0t)] [ ( 0 ) ( 0 )]; FT[sin(0t)] j[ ( 0 ) ( 0 )];
E
n

e
j

2
,
n为奇数
0,
n为偶数
故:f (t ) jE e jt jE e jt jE e j3t jE e j3t ....


3
3
4、求题图3-4所示周期三角信号的傅里叶级 数并画出幅度谱。
解:将该信号表示为三角形式的傅里叶级数,有
1T
2
频谱图如下所示:
3 7利用信号f (t)的对称性,定性判断题图3-7中各 周期信号的傅里叶级数中所含有的频率分量。
解:(1)图(a)中f (t)为偶函数,同时也是奇谐函数,故其 傅氏级数中只含奇次余弦分量。 (2)图(b)中f (t)为奇函数,同时也是奇谐函数,故其傅 氏级数中只含奇次正弦分量。 (3)图(c)中f (t)为奇谐函数,故其傅氏级数只含奇次谐 波分量。 (4)图(d )中f (t)为奇函数,故其傅氏级数中只含正弦分量。 (5)图(e)中f (t)既为偶函数又为偶谐函数,故其傅氏级数 中仅含直流和偶次谐波的余弦分量。

信号与系统第三章PPT课件

信号与系统第三章PPT课件
③ 在任何单个周期内,只有有限个第一类间断点, 且在间断点上的函数值为有限值。
.
它们都是傅里叶级数收敛的充分条件。相当广泛的 信号都能满足Dirichlet条件,因而用傅里叶级数表 示周期信号具有相当的普遍适用性。
几个不满足Dirichlet条件的信号
.
三.Gibbs现象 满足 Dirichlet 条件的信号,其傅里叶级数是如
• “非周期信号都可以用正弦信号的加权积分来 表示”——傅里叶的第二个主要论点
.
傅立叶分析方法的历史
古巴比伦人 “三角函数和” 描述周期性过程、预测天体运

1748年 欧拉 振动弦的形状是振荡模的线性组合
1753年 D·伯努利 弦的实际运动可用标准振荡模的线性组合来表示
1759年 拉格朗日 不能用三角级数来表示具有间断点的函数
x[k]h[nk]
x[k]h[n k]
k
.
对时域的任何一个信号 x ( t ) 或者 x ( n ) ,若能将其
表示为下列形式: x(t) a 1 es1 t a 2 es2 t a 3 es3 t
由于 es1t H(s1)es1t
es2t H(s2)es2t
es3t H(s3)es3t
利用齐次性与可加性,有
k
例: y(t)x(t3) ❖ 系统输入为 x(t) ej2t
系统 H(s) ? y(t) ?
H(s) h(t)estdt
❖ 系统输入为 x(t)cos(4t)cos(7t)
系统 y(t) ?
.
*问题:究竟有多大范围的信号可以用复指数信号的 线性组合来表示?
.
3.3 连续时间周期信号的傅里叶级数表示
第k次谐波 e jk 0t 的周期为

信号与系统第三章

信号与系统第三章

a0 ∞ fT ( t ) = + ∑ 2 n=1
Fne jnΩt + F− ne − jnΩt ) (
jnΩt
=
n =−∞


Fn e
F0
a0 2
an + jbn = 2 ∗ = Fn

指数形式的傅立叶级数(2) 指数形式的傅立叶级数(2)
1. 傅里叶系数
a − jbn 1 Fn = n = 2 T T
ε =0
2

t2 t1
f (t ) d t = ∑ C 2 K j j
2 j =1

(Parseval 公式 公式)

§3.2
周期信号的频谱分析
-----傅里叶级数 傅里叶级数
5 页
一、三角形式的傅立叶级数 二、周期信号的频谱 三、指数形式的傅立叶级数 周期信号的功率——Parseval等式 Parseval等式 四、周期信号的功率 Parseval 五、函数对称性与频谱特性
bn ϕn = −arctg an an = An cos (ϕn ) , bn = − An sin (ϕn )
A0 a0 = 2 2
An = an 2 + bn 2

二、周期信号的频谱
概念:周期信号中各次谐波分量的幅度、初相位随频率的变化关系。 概念:周期信号中各次谐波分量的幅度、初相位随频率的变化关系。 An~ω:幅度谱; :幅度谱; 例1: :
在正交函数集 满足: 满足:
1
之外, {ϕ ( t ) ,ϕ ( t ) ,L,ϕ ( t )} 之外,不存在 ϕ ( t ) ≠ 0
2 n

t2 t1

信号与系统第三章

信号与系统第三章
例3.1-2 描述一阶LTI系统的常系数微分方程如 式(3.1-3)所示
设 f (t) 2 a 2, b 1 则有
dy(t) 2 y(t) 2 dt
已知初始值 y(0) 4 求 t 0时系统的响应 y(t)
解:第一步,由方程可知系统的特征方程为 2 0
2 由此可得系统的齐次解为
2
处理教研室
第三章 连续信号与系统的时域分析
教学重点:
1、常微分方程的建立及其解的基本特点; 2、阶跃响应和冲激响应的概念; 3、卷积及其在系统分析中的应用。
2020/6/7
信号
3
处理教研室
应用实例:汽车点火系统
汽车点火系统主要由电源(蓄电池和发电机)、电阻、 点火开关、点火线圈、分压器等组成。
系数 a,b都是常量。系统的阶数就是其数学模型——
微分方程的阶数。
而 n 阶常系数线性微分方程的一般形式为
an
dn y(t) dt n
an1
dn1 y(t) dt n1
L
a1
dy(t) dt
a0
y (t )
bm
dm f (t) dt m
bm1
dm1 f (t) dt m1
L
b1
df (t) dt
b0
即yf’(0+) = yf’(0-) = 0,yf(0+) = yf(0-) = 0
对t>0时,有 yf”(t) + 3yf’(t) + 2yf(t) = 6
不难求得其齐次解为Cf1e-t + Cf2e-2t,其特解为常数3,
于是有
yf(t)=Cf1e-t + Cf2e-2t + 3
代入初始值求得

信号与系统 第3章-3

信号与系统 第3章-3

解 若直接按定义求图示信号的频谱,会遇到形如te-jωt的繁 复积分求解问题。而利用时域积分性质,则很容易求解。 将f(t)求导,得到图 3.5-5(b)所示的波形f1(t),将f1(t)再求导, 得到图 3.5-5(c)所示的f2(t), 显然有
第3章 连续信号与系统的频域分析
f 2 (t ) = f (t ) = f " (t )
ω )为各频率点
上单位频带中的信号能量,所以信号在整个频率范围的全部
W = ∫ G (ω )dω
0

式中
G (ω ) =
1
π
F ( jω )
2
第3章 连续信号与系统的频域分析 表 3.2 傅里叶变换的性质
第3章 连续信号与系统的频域分析
3.6 周期信号的傅里叶变换
设f(t)为周期信号,其周期为T,依据周期信号的傅里叶级数分 析, 可将其表示为指数形式的傅里叶级数。即
f ( −t ) ↔ F ( − jω )
也称为时间倒置定理 倒置定理。 倒置定理
第3章 连续信号与系统的频域分析
若已知f(t) ↔ F(jω ),求f(at - b)的傅立叶变换。
此题可用不同的方法来求解。 解 此题可用不同的方法来求解。
第3章 连续信号与系统的频域分析
(2) 先利用尺度变换性质,有 先利用尺度变换性质,
第3章 连续信号与系统的频域分析 2. 时移性 时移性 若f(t) ←→ F(jω), 且t0为实常数(可正可负),则有
f ( t − t0 ) ↔ F ( jω ) e
此性质可证明如下
− jω t 0
F [ f (t − t 0 )] = ∫− ∞ f (t − t 0 )e 令τ = t − t 0

信号与系统王明泉第三章习题解答

信号与系统王明泉第三章习题解答
(3)周期信号的傅里叶变换;
(4)频域分析法分析系统;
(5)系统的无失真传输;
(6)理想低通滤波器;
(7)系统的物理可实现性;
3.3本章的内容摘要
3.3.1信号的正交分解
两个矢量 和 正交的条件是这两个矢量的点乘为零,即:
如果 和 为相互正交的单位矢量,则 和 就构成了一个二维矢量集,而且是二维空间的完备正交矢量集。也就是说,再也找不到另一个矢量 能满足 。在二维矢量空间中的任一矢量 可以精确地用两个正交矢量 和 的线性组合来表示,有
条件1:在一周期内,如果有间断点存在,则间断点的数目应是有限个。
条件2:在一周期内,极大值和极小值的数目应是有限个。
条件3:在一周期内,信号绝对可积,即
(5)周期信号频谱的特点
第一:离散性,此频谱由不连续的谱线组成,每一条谱线代表一个正弦分量,所以此谱称为不连续谱或离散谱。
第二:谐波性,此频谱的每一条谱线只能出现在基波频率 的整数倍频率上。
(a)周期、连续频谱; (b)周期、离散频谱;
(c)连续、非周期频谱; (d)离散、非周期频谱。
答案:(d)
题7、 的傅里叶变换为
答案:
分析:该题为典型信号的调制形式
题8、 的傅里叶变换为
答案:
分析:根据时移和频移性质即可获得
题9、已知信号 如图所示,且其傅里叶变换为
试确定:
(1)
(2)
(3)
解:
(1)将 向左平移一个单位得到
对于奇谐函数,满足 ,当 为偶数时, , ;当 为奇数时, , ,即半波像对称函数的傅里叶级数展开式中只含奇次谐波而不含偶次谐波项。
(4)周期信号傅里叶级数的近似与傅里叶级数的收敛性
一般来说,任意周期函数表示为傅里叶级数时需要无限多项才能完全逼近原函数。但在实际应用中,经常采用有限项级数来代替无限项级数。无穷项与有限项误差平方的平均值定义为均方误差,即 。式中, , 。研究表明, 越大, 越小,当 时, 。

信号与系统 第三章 信号分析

信号与系统 第三章 信号分析
(t ) f1 (t ) C12 f 2 (t )
进一步定义均方误差(方均误差)
1 1 2 * (t ) (t ) (t )dt f 1 (t ) C12 f 2 (t ) dt t 2 t1 t1 t 2 t1 t1
2 t2 t2
与矢量的分解相似,要使均方误差最小应 取它的垂直投影,所以分量系数
t2
f1 (t ), f 2 (t ) C12 f 2 (t ), f 2 (t )
t1 t2

t2
f1 (t ) f 2* (t )dt
2

t1
f1 (t ) f 2* (t )dt
t2
f
t1
(t ) f (t )dt
* 2

t1
f 2 (t ) dt
2
这个结论也可仿照前面的做法,令均方误 差对分量系数的偏导数等于0来推出。显然也有 类似的结论当f1(t),f2(t)正交时C12=0,当f1(t)=f2(t) 时C12=1,C12也与两个函数的的相似程度有关。 但一般不直接将它作为相关系数,这是因为当 f1(t)=f2(t)+f3(t)并且f2(t),f3(t)正交时
上的分量系数,对于函数集与矢量一样有类似 的结论: 1、n维函数空间中的任一函数可分解为n个分 量; 2、如果分量小于n个则产生误差,如要均方误 差最小则应取它的垂直投影; 3、函数的分解一般也采用正交函数集,即正 交分解。
现在我们来看两个函数的情况,假定f1(t),f2(t) 是定义在区间[t1,t2]上的两个函数,取f1(t)在f2(t) 上的分量C12 f2(t)近似f1(t)。那么也将产生误差 εΔ(t)。
A1 , A2 ,, An,如它们是线性无关

信号与系统第3章,甘俊英

信号与系统第3章,甘俊英

(n) u(n) u(n 1) u(n)
u(n) (n) (n 1) (n 2) L (n m) m0
n
或 u(n) (k) k
3.矩形序列 1, 0 n N 1
RN (n) 0, n 0
RN (n) 1
0 1 2 N 1
n
N表示矩形序列的长度, RN (n) 还可以表示为
是连续正弦信号 xa (t) 的角频率,称为模拟域频率。
Ts
2 f
fs
又称为归一化频率。
3.2.4 序列的周期性
对于所有 n 值,若存在一个最小正整数 N ,满足
x(n) x(n N) 则称序列 x(n)为周期序列,最小周期为 N
下面讨论正弦序列 x(n) Asin(n ) 的周期性。
x(n N) Asin[(n N) ] Asin(n N )
RN (n) u(n) u(u N )
4.实指数序列 x(n) an , n
通常,单边实指数序列应用更广。单边实指数序列定义为
an , n 0 x(n)

0, n 0
x(n) anu(n)
a 1 ,序列是发散的。 a 0 序列的所有样值都为正值
a 1 ,序列是收敛的
a 0 序列正、负摆动
(n) 是一个确定的物理量,在 n 0时取值为1 ,在其它非零的
离散时间点上取值为零
(t) 不是一个物理量,只是一个数学抽象。
任何序列都可以用一些延迟的单位取样序列的加权和来表示,即
x(n) x(k) (n k) k
【例3-2-6】已知序列x(n) 如图所示,利用单位取样序列 (n) 写出
x(n
1)
(
1 2
)n
1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档