等比数列的定义(教案)
高中数学《等比数列的概念和通项公式》教案

一、教学目标1. 让学生理解等比数列的概念,掌握等比数列的通项公式。
2. 培养学生运用等比数列知识解决实际问题的能力。
3. 提高学生对数列这一数学思想的认知,培养学生的逻辑思维能力。
二、教学内容1. 等比数列的概念2. 等比数列的通项公式3. 等比数列的性质三、教学重点与难点1. 教学重点:等比数列的概念,等比数列的通项公式。
2. 教学难点:等比数列通项公式的推导和应用。
四、教学方法1. 采用问题驱动法,引导学生主动探索等比数列的概念和性质。
2. 运用案例分析法,让学生通过具体例子理解等比数列的通项公式。
3. 采用小组讨论法,培养学生的合作意识和团队精神。
五、教学过程1. 导入新课:通过回顾数列的概念,引导学生思考等比数列的特点。
2. 讲解等比数列的概念:借助具体例子,讲解等比数列的定义和性质。
3. 推导等比数列的通项公式:引导学生运用已知知识,推导出等比数列的通项公式。
4. 应用等比数列通项公式:通过实例,展示等比数列通项公式的应用。
5. 课堂练习:布置相关练习题,巩固所学知识。
6. 总结与拓展:对本节课内容进行总结,提出拓展问题,激发学生课后思考。
7. 课后作业:布置适量作业,巩固所学知识。
六、教学评价1. 通过课堂表现、作业和练习,评价学生对等比数列概念和通项公式的掌握程度。
2. 结合课后作业和课堂讨论,评估学生运用等比数列知识解决实际问题的能力。
3. 通过小组讨论和课堂提问,了解学生对数列思想的认知和逻辑思维能力的提升。
七、教学资源1. PPT课件:制作包含等比数列概念、性质和通项公式的PPT课件,以便于学生理解和记忆。
2. 练习题库:准备一定数量的等比数列练习题,包括基础题、应用题和拓展题,以供课堂练习和课后作业使用。
3. 教学视频:搜集相关的教学视频,如等比数列的动画演示、讲解等,以辅助教学。
八、教学进度安排1. 第一课时:介绍等比数列的概念和性质。
2. 第二课时:推导等比数列的通项公式,讲解应用实例。
等比数列的概念教案

等比数列的概念教案一、教学目标1. 掌握等比数列的概念;2. 能够判断一个数列是否为等比数列;3. 理解等比数列的特点和性质。
二、教学准备教师准备:黑板、白板、彩色粉笔、示意图、图片等;学生准备:课本、笔、作业本等。
三、教学过程1. 导入教师可以适当引入一些与数列相关的内容,如递增数列、递减数列等,让学生复习一下已学内容,并激发学生对等比数列的兴趣。
2. 概念讲解(教师在黑板上写下等比数列的定义)等比数列是指一个数列中,从第二项开始,每一项都是前一项乘以同一个常数r得到的。
(教师通过示意图或实际例子,如1、2、4、8、16等,展示等比数列的特点)- 前一项与后一项的比值相等;- 从第二项开始,每一项都是前一项乘以同一个常数r得到。
(教师提示学生观察并总结等比数列的通项公式)设等比数列的首项为a,公比为r,第n项为an,则通项公式为an= a * r^(n-1)。
3. 案例分析(教师给出一些具体的等比数列,让学生判断其是否为等比数列,并求出公比和第n项等。
可以通过黑板、白板或提供作业题的形式进行)案例1:2,4,8,16,32,...案例2:3,6,12,24,48,...4. 练习与巩固(教师提供一些练习题,让学生巩固所学知识)练习1:判断以下数列是否为等比数列,并求出它的公比和第n项。
a) 1,3,9,27,...b) 2,5,10,20,...c) 4,12,36,108,...练习2:求以下等比数列的第n项。
a) 2,6,18,54,...,n=5b) 3,9,27,...,n=6c) 5,25,125,...,n=45. 拓展与应用(教师让学生在生活中找到一些实际应用等比数列的例子,并与同学分享)例如,银行定期存款的利率、细菌的繁殖等。
6. 总结与思考(教师进行小结,回顾本节课的学习内容,并进行思考指导,如如何判断一个数列是否为等比数列,如何求解等比数列的公比和第n项等)四、作业布置1. 完成课堂练习题;2. 预习下一课时的内容。
等比数列的概念的教案

等比数列的概念的教案【教学目标】1. 理解等比数列的定义及概念。
2. 理解等比数列的公比及其特点。
3. 掌握等比数列的通项公式及部分和公式。
4. 能够解决有关等比数列的相关问题。
【教学重难点】等比数列的定义及公比的特点。
等比数列通项公式和部分和公式的掌握和应用。
【教学过程】一、导入新知识通过比较算式(2,4,6,8,10)和(2,4,8,16,32),让学生对这两个数字有一个基本认识。
二、概念的讲解等比数列,也叫做等比数列,是指从第二项开始,每一项与它前面一项的比值都是相等的数列。
这个比值叫做公比q。
比如(2,4,8,16,32)就是一个等比数列,“2”是首项,而“4、8、16、32”都是前一项的“2”倍,“2”就是它们之间的公比。
三、概念的解释1.等比数列的公比:等比数列中,任意两项的比都相等,这个公比叫做q2.等比数列的通项公式:an = a1 ×q^(n-1)3.等比数列的前n项和公式:Sn = a1(1-q^n) / (1-q)四、问题解决1. 若等比数列的公比为q,首项为a1,它的第n项为an,求这n 项的和Sn。
(1)特殊情况:当q=1时,等比数列就是等差数列。
(2)特殊情况:当a1=1,q=2时,等比数列就是二次幂数列。
(3)特殊情况:当a1=-1,q=2时,等比数列就是多项式(1-x)^n的展开式中x=2 的项,即(1-2)^n的展开式中系数为单数的项的和也是符号相间的等比数列。
2.在等比数列(2,4,8,16,32)中,第10项是多少?五、作业1.每组同学互换通项公式和部分和公式的求法,并互相进行验证和解答。
2.请同学们在下堂课之前,从课本或网络中查找并阅读有关等比数列相关的题目和资料,以便于下节课的讨论和交流。
高中数学《等比数列的概念和通项公式》教案

高中数学《等比数列的概念和通项公式》教案一、教学目标1. 让学生理解等比数列的概念,掌握等比数列的定义及其特点。
2. 引导学生推导等比数列的通项公式,并能运用通项公式解决实际问题。
3. 培养学生的逻辑思维能力、运算能力和解决问题的能力。
二、教学内容1. 等比数列的概念:介绍等比数列的定义、性质和判定方法。
2. 等比数列的通项公式:引导学生推导通项公式,并进行证明。
3. 等比数列的求和公式:介绍等比数列前n项和的公式。
三、教学重点与难点1. 教学重点:等比数列的概念、性质、通项公式和求和公式。
2. 教学难点:等比数列通项公式的推导和证明。
四、教学方法1. 采用问题驱动法,引导学生通过观察、分析和归纳等比数列的性质。
2. 运用类比法,让学生理解等比数列与等差数列的异同。
3. 利用多媒体辅助教学,展示等比数列的动态变化过程。
4. 开展小组讨论,培养学生的合作意识和解决问题的能力。
五、教学过程1. 导入新课:通过引入日常生活中的实例,如银行存款利息问题,引导学生思考等比数列的概念。
2. 讲解等比数列的定义和性质:让学生通过观察、分析和归纳等比数列的性质,得出等比数列的定义。
3. 推导等比数列的通项公式:引导学生利用已知条件,通过变换和代数运算,推导出等比数列的通项公式。
4. 证明等比数列的通项公式:让学生理解并证明等比数列通项公式的正确性。
5. 介绍等比数列的求和公式:引导学生运用通项公式,推导出等比数列前n项和的公式。
6. 课堂练习:布置一些有关等比数列的题目,让学生巩固所学知识。
7. 总结与反思:对本节课的内容进行总结,让学生反思自己的学习过程,提高学习效果。
8. 课后作业:布置一些有关等比数列的练习题,巩固所学知识。
六、教学策略1. 案例分析:通过分析具体的等比数列案例,让学生更好地理解等比数列的概念和性质。
2. 互动提问:在教学过程中,教师应引导学生积极参与课堂讨论,提问等方式来巩固学生对等比数列的理解。
等比数列教学案

等比数列教学案篇一:等比数列第一课时教案等比数列的定义教案内容:等比数列教学目标:1.理解和掌握等比数列的定义;2.理解和掌握等比数列的通项公式及其推导过程和方法;3.运用等比数列的通项公式解决一些简单的问题。
授课类型:课时安排:1教学重点:等比数列定义、通项公式的探求及运用。
教学难点:等比数列通项公式的探求。
教具准备:多媒体课件教学过程:(一)复习导入1.等差数列的定义2.等差数列的通项公式及其推导方法3.公差的确定方法.4.问题:给出一张书写纸,你能将它对折10次吗?为什么?(二)探索新知1.引入:观察下面几个数列,看其有何共同特点?(1)-2,1,4,7,10,13,16,19,(2)8,16,32,64,128,256,(3)1,1,1,1,1,1,1,(4)1,2,4,8,16,263请学生说出数列上述数列的特性,教师指出实际生活中也有许多类似的例子,如细胞分裂问题.假设每经过一个单位时间每个细胞都分裂为两个细胞,再假设开始有一个细胞,经过一个单位时间它分裂为两个细胞,经过两个单位时间就有了四个细胞,,一直进行下去,记录下每个单位时间的细胞个数得到了一列数这个数列也具有前面的几个数列的共同特性,这就是我们将要研究的另一类数列——等比数列.2.等比数列定义:一般地,如果一个数列从第二项起,每一项与它的前一....项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列..的公比;公比通常用字母q表示(q0),3.递推公式:an1∶anq(q0)对定义再引导学生讨论并强调以下问题(1)等比数列的首项不为0;(2)等比数列的每一项都不为0;(3)公比不为0.(4)非零常数列既是等比数列也是等差数列;问题:一个数列各项均不为0是这个数列为等比数列的什么条件?3.等比数列的通项公式:【傻儿子的故事】古时候,有一个人不识字,他不希望儿子也像他这样,他就请了个教书先生来教他儿子认字,他儿子见老师第一天写“一”就是一划,第二天“二”就是二划,第三天“三”就是三划,他就跑去跟他父亲说:“爸爸,我会写字了,请你叫老师走吧!”这人听了很高兴,就给老师结算了工钱叫他走了。
高中数学《等比数列的概念和通项公式》教案

高中数学《等比数列的概念和通项公式》教案一、教学目标1. 让学生理解等比数列的概念,掌握等比数列的定义及其性质。
2. 引导学生推导等比数列的通项公式,并能灵活运用通项公式解决相关问题。
3. 培养学生的逻辑思维能力、运算能力和解决实际问题的能力。
二、教学内容1. 等比数列的概念:介绍等比数列的定义,通过实例让学生理解等比数列的特点。
2. 等比数列的性质:探讨等比数列的性质,如相邻项的比值是常数,公比等。
3. 等比数列的通项公式:引导学生推导等比数列的通项公式,并解释其意义。
4. 运用通项公式解决实际问题:通过例题,让学生学会运用通项公式求等比数列的特定项、求和等。
5. 拓展与应用:引导学生思考等比数列在实际生活中的应用,如复利、生长速率等。
三、教学重点与难点1. 教学重点:等比数列的概念、性质和通项公式的推导及应用。
2. 教学难点:等比数列通项公式的理解和运用。
四、教学方法1. 采用问题驱动法,引导学生主动探究等比数列的性质和通项公式。
2. 用实例讲解等比数列的概念,让学生在实际问题中感受等比数列的应用。
3. 通过小组讨论、合作交流,培养学生的团队协作能力。
4. 利用多媒体课件,生动展示等比数列的性质和通项公式,提高学生的学习兴趣。
五、教学准备1. 多媒体课件:制作等比数列的概念、性质和通项公式的课件。
2. 教学素材:准备一些关于等比数列的实际问题,用于课堂练习。
3. 教学反思:对以往教学等比数列的经验进行总结,以便更好地指导学生学习。
六、教学过程1. 导入新课:通过一个实际问题,如复利计算,引出等比数列的概念。
2. 探究等比数列的性质:让学生通过观察、分析实例,发现等比数列的性质。
3. 推导等比数列的通项公式:引导学生运用已学的数学知识,如代数运算,推导出等比数列的通项公式。
4. 应用通项公式解决问题:通过例题,让学生学会运用通项公式求等比数列的特定项、求和等。
5. 总结与拓展:总结等比数列的概念、性质和通项公式的要点,提出一些拓展问题,激发学生的学习兴趣。
等比数列教案

等比数列教案等比数列教案一、引言数学是一门重要的学科,它不仅培养学生的逻辑思维能力,还有助于他们解决实际问题。
数列是数学中的重要概念之一,而等比数列是数列中的一种特殊形式。
本教案将介绍等比数列的定义、性质以及解题方法,旨在帮助学生更好地理解和应用等比数列。
二、等比数列的定义与性质1. 定义等比数列是指一个数列中,从第二项开始,每一项与前一项的比都相等的数列。
这个比值称为公比,通常用字母q表示。
2. 性质(1)等比数列的通项公式:对于等比数列an,其通项公式为an = a1 * q^(n-1),其中a1为首项,q为公比,n为项数。
(2)等比数列的前n项和公式:对于等比数列an,其前n项和Sn = a1 * (1 -q^n) / (1 - q)。
(3)等比数列的性质:等比数列的任意三项可以构成一个等比比例。
三、等比数列的解题方法1. 求某一项的值给定等比数列的首项a1和公比q,如果要求第n项an的值,可以使用通项公式an = a1 * q^(n-1)进行计算。
2. 求前n项的和给定等比数列的首项a1和公比q,如果要求前n项的和Sn,可以使用前n项和公式Sn = a1 * (1 - q^n) / (1 - q)进行计算。
3. 求公比已知等比数列的前两项a1和a2,如果要求公比q,可以通过计算q = a2 / a1得到。
四、等比数列的应用等比数列在实际生活中有着广泛的应用。
以下是两个常见的应用示例:1. 货币贬值问题假设某国货币每年贬值10%,初始价值为1000元。
我们可以使用等比数列来计算每年的货币价值。
首项a1为1000元,公比q为0.9(1-10%),我们可以计算出第n年的货币价值an。
这样,我们就可以预测未来几年货币的贬值情况。
2. 生物繁殖问题某种细菌每小时繁殖一次,初始数量为10个。
我们可以使用等比数列来计算每小时的细菌数量。
首项a1为10个,公比q为2(每小时繁殖一次),我们可以计算出第n小时的细菌数量an。
必修教案等比数列的概念

§2.3 第9课时 等比数列(2)教学··目标(1)进一步熟练掌握等比数列的定义及通项公式;(2)利用等比数列通项公式寻找出等比数列的一些性质;(3)培养学生应用意识.教学··重点,难点(1)等比数列定义及通项公式的应用;(2)灵活应用等比数列定义及通项公式解·决一些相关问题.教学··过程一.问题情境1.情境:在等比数列{}n a 中,(1)2519a a a =是否成立?2537a a a =是否成立?(2)222(2)n n n a a a n -+=>是否成立?2.问题:由情境你能得到等比数列更一般的结论吗?二.学生活动对于(1)∵451a a q =,891a a q =,∴2842219115()a a a q a q a ===,2519a a a =成立.同理 :2537a a a =成立.对于(2)11n n a a q -=,321n n a a q --=,121n n a a q ++=,∴31222122221111()n n n n n n n a a a q a q a q a q a -+---+=⋅===,222(2)n n n a a a n -+=>成立.一般地:若m n p q +=+(,,,)m n q p N +∈,则q p n m a a a a ⋅=⋅.三.建构数学·1.若{}n a 为等比数列,m n p q +=+(,,,)m n q p N +∈,则q p n m a a a a ⋅=⋅. 由等比数列通项公式得:111n 1 , m n m a a q a a q --==,111q 1 ,p q p a a qa a q --==⋅, 故221m n m n a a a q+-⋅=且221p q p q a a a q +-⋅=, ∵m n p q +=+,∴q p n m a a a a ⋅=⋅.2.若{}n a 为等比数列,则m n m na q a -=. 由等比数列的通项公式知:,则m n m n a q a -= .四.数学·运用1.例题:例1.(1)在等比数列{}n a 中,是否有211n n n a a a -+=⋅(2n ≥)?(2)在数列{}n a 中,对于任意的正整数n (2n ≥),都有211n n n a a a -+=⋅,那么数列{}n a 一定是等比数列.解·:(1)∵等比数列的定义和等比数列的通项公式数列{}n a 是等比数列,∴11n n n n a a a a +-=,即211n n n a a a -+=⋅(2n ≥)成立.(2)不一定.例如对于数列0,0,0,,总有211n n n a a a -+=⋅,但这个数列不是等比数列.例2. 已知{}n a 为GP ,且578,2a a ==,该数列的各项都为正数,求{}n a 的通项公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.3.1 等比数列的定义
教学目的:
1.正确理解等比数列的定义;明确1n n
a q a +=(不为零的常数)的意义; 2.培养学生的观察能力、归纳能力和解决问题的能力.
教学重点:等比数列的定义.
教学难点:定义的理解.
授课类型:新授课.
课时安排:1课时.
教学设计:
本节的主要内容是等比数列的定义,等比数列的通项公式.重点是等比数列的定义、等比数列的通项公式;难点是通项公式的推导.
等比数列与等差数列在内容上相类似,要让学生利用对比的方法去理解和记忆,并弄清楚二者之间的区别和联系.等比数列的定义是推导通项公式的基础,教学中要给以足够的重视.同时要强调“等比”的特点:q a a n
n =+1(常数). 例1是基础题目,有助于学生进一步理解等比数列的定义.与等差数列一样,教材中等比数列的通项公式的归纳过程实际上也是不完全归纳法,公式的正确性也应该用数学归纳法加以证明,这一点不需要给学生讲.等比数列的通项公式中含有四个量:1a ,q ,n ,n a ,只有知道其中任意三个量,就可以求出另外的一个量.教材中例2、例3都是这类问题.注意:例3中通过两式相除求公比的方法是研究等比数列问题常用的方法.
从例4可以看到,若三个数成等比数列,则将这三个数设成是
a q
,a ,aq 比较好,因为这样设了以后,这三个数的积正好等于3a ,很容易将a 求出.
教学过程:
一、创设情境、兴趣导入:
观察
1. 将一张纸连续对折5次,列出每次对折纸的层数.
第1次对折后纸的层数为1×2=2(层);第2次对折后纸的层数为2×2=4(层); 第3次对折后纸的层数为4×2=8(层);第4次对折后纸的层数为8×2=16(层);
第5次对折后纸的层数为16×2=32(层).
各次对折后纸的层数组成数列 2,,4,8,16,32.
不难发现,从第2项开始,数列中的各项都是其前一项的2倍,即从第2项开始,每一项与它的前一项的比都等于2.
2. 某工厂今年的产值是1000万元,如果通过技术改造,在今后的5年内,每年的产值都比上一年增加10%,那么今年及以后5年的产值构成下面的一个数列(单位:万元):
1000,1000 1.1⨯,21000 1.1⨯,31000 1.1⨯,41000 1.1⨯,51000 1.1⨯,51000 1.1⨯. 不难发现,从第2项开始,数列中的各项都是其前一项的1.1倍,即从第2项开始,每一项与它的前一项的比都等于1.1.
二、动脑思考、探索新知:
新知识
如果一个数列从第2项开始,每一项与它前一项的比都等于同一个常数,那么这个数列叫做等比数列.这个常数叫做这个等比数列的公比,一般用字母q 来表示.
由定义知,若{}n a 为等比数列,q 为公比,则1a 与均不为零,且有1n n
a q a +=,即 1n n a a q +=⋅ (6.5).
上面问题1中,5年的产值组成的数列是首项11000a =,公比 1.1q =的等比数列;问题2中,对折纸的层数组成的数列是首项12a =,公比2q =的等比数列.
三、巩固知识、典型例题:
例1 在等比数列{}n a 中,15a =,3q =,求2a 、3a 、4a 、5a .
解 215315a a q =⋅=⨯=;3215345a a q =⋅=⨯=;
43453135a a q =⋅=⨯=;541353405a a q =⋅=⨯=.
试一试 你能很快地写出这个数列的第9项吗?
四、运用知识、强化练习:(教材练习6.3.1)
1.在等比数列{}n a 中,63-=a ,2q =,试写出4a 、6a .
2.写出等比数列3,-6,12,-24,…的第5项与第6项.
五、课堂小结: 正确理解等比数列的定义,明确
1n n a q a +=的意义. 六、课后作业:
1. 判断下列数列是否是等比数列,若是,写出其公比.
(1)1,3,9,27;(2)-2,2,6,10;
(3)1-,1,1-,1; (4)1,12,14,18
; (5
(5)a ,a ,a ,a .
2. 求等比数列1-,
12,14-,18,…的第6项与第7项. 七、板书设计:(略)
八、课后记:。