等比数列的概念-教学设计
高中数学《等比数列的概念和通项公式》教案

一、教学目标1. 让学生理解等比数列的概念,掌握等比数列的通项公式。
2. 培养学生运用等比数列知识解决实际问题的能力。
3. 提高学生对数列这一数学思想的认知,培养学生的逻辑思维能力。
二、教学内容1. 等比数列的概念2. 等比数列的通项公式3. 等比数列的性质三、教学重点与难点1. 教学重点:等比数列的概念,等比数列的通项公式。
2. 教学难点:等比数列通项公式的推导和应用。
四、教学方法1. 采用问题驱动法,引导学生主动探索等比数列的概念和性质。
2. 运用案例分析法,让学生通过具体例子理解等比数列的通项公式。
3. 采用小组讨论法,培养学生的合作意识和团队精神。
五、教学过程1. 导入新课:通过回顾数列的概念,引导学生思考等比数列的特点。
2. 讲解等比数列的概念:借助具体例子,讲解等比数列的定义和性质。
3. 推导等比数列的通项公式:引导学生运用已知知识,推导出等比数列的通项公式。
4. 应用等比数列通项公式:通过实例,展示等比数列通项公式的应用。
5. 课堂练习:布置相关练习题,巩固所学知识。
6. 总结与拓展:对本节课内容进行总结,提出拓展问题,激发学生课后思考。
7. 课后作业:布置适量作业,巩固所学知识。
六、教学评价1. 通过课堂表现、作业和练习,评价学生对等比数列概念和通项公式的掌握程度。
2. 结合课后作业和课堂讨论,评估学生运用等比数列知识解决实际问题的能力。
3. 通过小组讨论和课堂提问,了解学生对数列思想的认知和逻辑思维能力的提升。
七、教学资源1. PPT课件:制作包含等比数列概念、性质和通项公式的PPT课件,以便于学生理解和记忆。
2. 练习题库:准备一定数量的等比数列练习题,包括基础题、应用题和拓展题,以供课堂练习和课后作业使用。
3. 教学视频:搜集相关的教学视频,如等比数列的动画演示、讲解等,以辅助教学。
八、教学进度安排1. 第一课时:介绍等比数列的概念和性质。
2. 第二课时:推导等比数列的通项公式,讲解应用实例。
3.1 等比数列的概念 一等奖创新教学设计

3.1 等比数列的概念一等奖创新教学设计4.3.1 等比数列的概念一、内容与内容解析1.内容:等比数列的定义、等比数列的通项公式、等比中项,等比数列与函数的关系,学习等比数列的必要性2.内容解析:研究等比数列的必要性:数列是高中数学的重要内容之一,它不仅有着广泛的实际应用,而且起着承上启下的作用。
一方面数列作为一种特殊的函数与函数思想密不可分;另一方面学习数列也为大学内容学习数列的极限做好铺垫。
《等比数列》是两类特殊数列中的一种,对于等比数列的研究源于现实生产,生活的需要。
探索它的取值规律,建立它的通项公式和前n项和公式,并应用它们解决实际问题。
例如:生物学上的细胞分裂个数问题、生物体死亡后碳14的衰退问题、日常生活中的银行存款、贷款问题等。
通过数学抽象将实际问题转化为等比数列的知识,并运用等比数列的相关知识进行数学运算、逻辑推理等,最终达到解决实际问题的目的,从中感受数学模型的现实意义与应用。
(2)等比数列的概念:《等比数列的概念》是《等比数列》在教学中的第一节。
通过类比等差数列的研究思路和方法,从运算学的角度出发引出我们要研究的内容。
通过分析教材中给出的生物、语文、生活、历史等方面的问题,提取出6组数列,让学生从“运算”上发现取值规律,之后类比等差数列的定义得出等比数列的定义。
通过对定义的巩固练习得出等比数列的注意事项。
类比等差数列通项公式的推导方法、等差中项的定义让学生独立推导出等比数列的通项和等比中项。
本节课的难点分析等比数列的通项公式与函数的关系。
为了突出重点突破难点,我将等比数列的通项公式变形为(),不妨设,由此总结得到等比数列的第n项就是指数函数当时的函数值,即。
从等比数列角度,等比数列每一项就是指数函数取相应正整数时的函数值,即等比数列的通项公式就是指数函数时的离散函数。
反之,已知指数函数,,…构成一个等比数列,其首项为,公比为,最终阐明等比数列通项公式与指数函数之间的关系,进一步为等比数列的判断指明了方向。
等比数列教学设计方案

一、教学目标1. 知识与技能:理解等比数列的概念,掌握等比数列的通项公式、求和公式及其性质。
2. 过程与方法:通过观察、归纳、类比等方法,培养学生分析问题和解决问题的能力。
3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的逻辑思维能力和创新精神。
二、教学重难点1. 教学重点:等比数列的概念、通项公式、求和公式及其性质。
2. 教学难点:等比数列的性质及应用。
三、教学过程(一)导入1. 展示生活中的实例,如银行存款利息、股票收益等,引导学生关注数列问题。
2. 提问:如何描述这个数列的变化规律?引导学生思考并总结。
(二)新课讲解1. 等比数列的概念:介绍等比数列的定义,通过实例让学生理解等比数列的规律。
2. 等比数列的通项公式:推导等比数列的通项公式,让学生掌握通项公式的推导过程。
3. 等比数列的求和公式:介绍等比数列的求和公式,并讲解公式的推导过程。
4. 等比数列的性质:列举等比数列的性质,如首项、公比、项数等之间的关系,让学生了解等比数列的性质。
(三)课堂练习1. 基本练习:巩固学生对等比数列概念、通项公式、求和公式及性质的掌握。
2. 应用练习:结合实际问题,让学生运用等比数列知识解决问题。
(四)课堂小结1. 总结本节课所学内容,强调等比数列的概念、通项公式、求和公式及性质。
2. 引导学生思考等比数列在实际生活中的应用。
(五)课后作业1. 完成课后练习题,巩固所学知识。
2. 查阅资料,了解等比数列在科技、经济、社会等领域的应用。
四、教学评价1. 课堂表现:观察学生在课堂上的学习态度、参与程度和回答问题的准确性。
2. 作业完成情况:检查学生对等比数列知识的掌握程度。
3. 实际应用:关注学生在实际生活中运用等比数列知识解决问题的能力。
五、教学反思1. 教学过程中,注重启发学生思考,引导学生自主探究等比数列的性质。
2. 适当增加课堂练习,提高学生对等比数列知识的掌握程度。
3. 关注学生在实际生活中的应用,提高学生的数学素养。
等比数列的概念教案

等比数列的概念教案一、教学目标1. 掌握等比数列的概念;2. 能够判断一个数列是否为等比数列;3. 理解等比数列的特点和性质。
二、教学准备教师准备:黑板、白板、彩色粉笔、示意图、图片等;学生准备:课本、笔、作业本等。
三、教学过程1. 导入教师可以适当引入一些与数列相关的内容,如递增数列、递减数列等,让学生复习一下已学内容,并激发学生对等比数列的兴趣。
2. 概念讲解(教师在黑板上写下等比数列的定义)等比数列是指一个数列中,从第二项开始,每一项都是前一项乘以同一个常数r得到的。
(教师通过示意图或实际例子,如1、2、4、8、16等,展示等比数列的特点)- 前一项与后一项的比值相等;- 从第二项开始,每一项都是前一项乘以同一个常数r得到。
(教师提示学生观察并总结等比数列的通项公式)设等比数列的首项为a,公比为r,第n项为an,则通项公式为an= a * r^(n-1)。
3. 案例分析(教师给出一些具体的等比数列,让学生判断其是否为等比数列,并求出公比和第n项等。
可以通过黑板、白板或提供作业题的形式进行)案例1:2,4,8,16,32,...案例2:3,6,12,24,48,...4. 练习与巩固(教师提供一些练习题,让学生巩固所学知识)练习1:判断以下数列是否为等比数列,并求出它的公比和第n项。
a) 1,3,9,27,...b) 2,5,10,20,...c) 4,12,36,108,...练习2:求以下等比数列的第n项。
a) 2,6,18,54,...,n=5b) 3,9,27,...,n=6c) 5,25,125,...,n=45. 拓展与应用(教师让学生在生活中找到一些实际应用等比数列的例子,并与同学分享)例如,银行定期存款的利率、细菌的繁殖等。
6. 总结与思考(教师进行小结,回顾本节课的学习内容,并进行思考指导,如如何判断一个数列是否为等比数列,如何求解等比数列的公比和第n项等)四、作业布置1. 完成课堂练习题;2. 预习下一课时的内容。
等比数列的教学设计方案

1. 知识与技能目标:(1)理解等比数列的概念,掌握等比数列的通项公式及前n项和公式;(2)能熟练运用等比数列的性质解决实际问题。
2. 过程与方法目标:(1)通过观察、归纳、总结等方法,引导学生自主探究等比数列的性质;(2)通过实际问题,培养学生的数学应用能力。
3. 情感态度与价值观目标:(1)激发学生对数学的兴趣,培养他们热爱数学、追求真理的精神;(2)培养学生严谨、求实的科学态度。
二、教学重难点1. 教学重点:(1)等比数列的概念及通项公式;(2)等比数列的前n项和公式。
2. 教学难点:(1)等比数列性质的运用;(2)等比数列在解决实际问题中的应用。
三、教学过程1. 导入新课(1)通过回顾等差数列的概念和性质,引导学生思考等差数列的局限性,引出等比数列的概念;(2)举例说明等比数列在生活中的应用,激发学生的学习兴趣。
2. 新课讲授(1)等比数列的概念:通过观察实例,引导学生理解等比数列的概念,并掌握通项公式;(2)等比数列的性质:通过归纳、总结,让学生自主发现等比数列的性质,并举例说明;(3)等比数列的前n项和公式:通过类比等差数列的前n项和公式,引导学生推导出等比数列的前n项和公式。
3. 巩固练习(1)完成课本上的练习题,巩固所学知识;(2)针对重点难点,设计一些变式练习,提高学生的解题能力。
4. 应用拓展(1)通过实际问题,引导学生运用等比数列的性质解决实际问题;(2)鼓励学生结合所学知识,自主设计等比数列在生活中的应用实例。
5. 总结归纳(1)引导学生回顾本节课所学内容,总结等比数列的概念、性质及前n项和公式;(2)强调等比数列在解决实际问题中的重要性。
6. 布置作业(1)完成课本上的作业题;(2)结合所学知识,设计一个等比数列在生活中的应用实例。
四、教学反思本节课通过观察、归纳、总结等方法,引导学生自主探究等比数列的性质,培养学生的数学应用能力。
在教学过程中,要注意以下几点:1. 注重学生的主体地位,引导学生积极参与课堂活动;2. 联系生活实际,让学生体会到数学的应用价值;3. 注重对学生进行思想教育,培养学生的数学素养。
等比数列的概念的教案

等比数列的概念的教案【教学目标】1. 理解等比数列的定义及概念。
2. 理解等比数列的公比及其特点。
3. 掌握等比数列的通项公式及部分和公式。
4. 能够解决有关等比数列的相关问题。
【教学重难点】等比数列的定义及公比的特点。
等比数列通项公式和部分和公式的掌握和应用。
【教学过程】一、导入新知识通过比较算式(2,4,6,8,10)和(2,4,8,16,32),让学生对这两个数字有一个基本认识。
二、概念的讲解等比数列,也叫做等比数列,是指从第二项开始,每一项与它前面一项的比值都是相等的数列。
这个比值叫做公比q。
比如(2,4,8,16,32)就是一个等比数列,“2”是首项,而“4、8、16、32”都是前一项的“2”倍,“2”就是它们之间的公比。
三、概念的解释1.等比数列的公比:等比数列中,任意两项的比都相等,这个公比叫做q2.等比数列的通项公式:an = a1 ×q^(n-1)3.等比数列的前n项和公式:Sn = a1(1-q^n) / (1-q)四、问题解决1. 若等比数列的公比为q,首项为a1,它的第n项为an,求这n 项的和Sn。
(1)特殊情况:当q=1时,等比数列就是等差数列。
(2)特殊情况:当a1=1,q=2时,等比数列就是二次幂数列。
(3)特殊情况:当a1=-1,q=2时,等比数列就是多项式(1-x)^n的展开式中x=2 的项,即(1-2)^n的展开式中系数为单数的项的和也是符号相间的等比数列。
2.在等比数列(2,4,8,16,32)中,第10项是多少?五、作业1.每组同学互换通项公式和部分和公式的求法,并互相进行验证和解答。
2.请同学们在下堂课之前,从课本或网络中查找并阅读有关等比数列相关的题目和资料,以便于下节课的讨论和交流。
等比数列性质教学教案

等比数列性质教学教案第一章:等比数列的定义与性质1.1 等比数列的定义引导学生回顾数列的概念,引入等比数列的定义。
通过示例,让学生理解等比数列的特点,即相邻两项的比值相等。
1.2 等比数列的性质探讨等比数列的通项公式,引导学生理解通项公式的推导过程。
引导学生理解等比数列的求和公式,并通过示例进行解释。
第二章:等比数列的求和2.1 等比数列的前n项和公式引导学生推导等比数列的前n项和公式。
通过示例,让学生理解前n项和公式的应用,并能够熟练运用。
2.2 等比数列的求和性质引导学生探讨等比数列的求和性质,例如:等比数列的求和与项数的关系,等比数列的求和与首项和公比的关系等。
第三章:等比数列的图像与性质3.1 等比数列的图像引导学生绘制等比数列的图像,并理解图像的特点。
引导学生通过图像分析等比数列的性质,例如:增长速度,收敛性等。
3.2 等比数列的性质与应用引导学生探讨等比数列的性质,例如:等比数列的单调性,有界性等。
引导学生运用等比数列的性质解决实际问题,例如:人口增长模型,利息计算等。
第四章:等比数列的扩展4.1 等比数列的推广引导学生思考等比数列的推广,例如:等比数列的变体,广义等比数列等。
引导学生理解广义等比数列的性质与应用。
4.2 等比数列与其他数列的关系引导学生探讨等比数列与其他数列的关系,例如:等差数列与等比数列的关系,斐波那契数列与等比数列的关系等。
第五章:等比数列的综合应用5.1 等比数列在数学中的应用引导学生探讨等比数列在数学中的应用,例如:数论中的等比数列,图论中的等比数列等。
引导学生通过解决数学问题,加深对等比数列的理解。
5.2 等比数列在其他学科中的应用引导学生探讨等比数列在其他学科中的应用,例如:物理学中的等比数列,经济学中的等比数列等。
引导学生通过解决实际问题,理解等比数列的实际意义。
第六章:等比数列的练习题解析6.1 基础练习题解析选取一些基础的等比数列练习题,引导学生运用所学的知识进行解答。
等比数列的概念和通项公式课时教学设计-高中数学人教A版2019选择性必修第二册教案

第1课时等比数列的概念和通项公式(一)教学内容等比数列的概念、等比数列的通项公式(一)教学目标1.通过具体实例,能归纳出等比数列的概念,并形成符号化定义;能根据定义探索归纳出等比数列的通项公式,能解释公式的含义和限制条件;能根据等比中项的概念写出出对应等式,发展数学抽象素养.2.通过解析式、图象等,能说出等比数列的通项公式与指数函数之间的共性与差异;会用函数的观点解释等比数列,发展数学抽象、逻辑推理素养.3.通过解方程组求等比数列的基本量,能得出等比数列的一些性质,会利用通项公式解决一些简单问题,着重提升数学运算素养.(三)教学重点及难点1.重点:等比数列的定义及通项公式.2.难点:等比数列通项公式的推导.(四)教学过程设计问题1:在前面我们已经学习了等差数列,我们知道,等差数列的特征是“从第2项起,每一项与它的前一项的差都等于同一个常数”,类比等差数列的研究思路和方法,从运算的角度出发,你觉得还有怎样的数列是值得研究呢?师生活动:(1)独立思考后,让学生代表回答.类比等差数列的概念,从加、减、乘、除运算的角度,学生回答的可能有三种数列:等和、等积和等商(比)数列(仿照等差数列命名)。
(2)教师追问1:你能举岀相应的例子吗?(3)学生举例,如:1,4,1,4,1;0,1,0,3,0,5,…;1,2,4,8,…等数列.教师引学生了解:相对于等和与等积数列,等比数列的性质更为丰富,在生活中的应用更广泛,本节课我们将要研究等比数列.(4)教师追问2:类比差数列研究路径,你认为应该研究等比数列的哪些内容?按怎样的路径展开研究?主要的研究方法有哪些?(5)师生共研:提出本单元的研究路径:背景→概念一通项公式→性质→前n项和公式→应用.设计意图:学生利用常用的四则运算类型,可以类比等差数列得出等和、等积与等商(比)数列的名称,通过对比分析确定将要研究的对象.这样的设计可以避免先入为主,体现了研究逻辑的完整性,能提升学生发现和提出问题的能力.为了不冲淡主题,等和与等积数列可作为例1:若等比数列n 的第4项和第6项分别为48和12,求n 的第5项.例2:已知等比数列{}n a 的公比为q ,试用{}n a 的第m 项m a 表示n a .例3:数列{}n a 共有5项,前三项成等比数列,后三项成等差数列,第3项等于80,第2项与第4项的和等于136,第1项与第5项的和等于132.求这个数列.设计意图:让雪学生学会等比数列基本量的求解运算,体会等比数列的独特性,归纳出等比数列运算的方法以及策略.(五)目标检测设计当堂检测1.在等比数列{}n a 中,1336a a =,2460a a +=.求1a 和公比q .2.对数列{}n a ,若点(),*()n n a n N ∈都在函数x y cq =的图象上,其中c ,q 为常数,且0c ≠,0q ≠,1q ≠,试判断数列{}n a 是否是等比数列,并证明你的结论.课后作业1.判断下列数列是否是等比数列.如果是,写出它的公比.(1)3,9,15,21,27,33;(2)1,1.1,1.21,1.331,1.4641;(3)13,16,19,112,115,118;(4)4,8-,16,32-,64,128-.2.已知{}n a 是一个公比为q 的等比数列,在下表中填上适当的数.n 是等比数列.(1)3a ,5a ,7a 是否成等比数列?为什么?1a ,5a ,9a 呢?(2)当1n >时,1n a -,n a ,1n a +是否成等比数列?为什么?当0n k >>时,n k a -,n a ,n k a +是等比数列吗?设计意图:检测和巩固等比数列的概念和通项公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《等比数列 (第一课时)》教学设计
教学目标︰
1、通过实例,理解等比数列的概念
通过从丰富实例中抽象出等比数列的模型,使学生认识到这一类型数列也是现实世界中大量存在的数列模型;同时经历由发现几个具体数列的等比关系,归纳等比数列的定义的过程。
2、探索并掌握等比数列的通项公式及等比中项
通过等差数列的通项公式的推导过程的类比,探索等比数列的通项公式,探索等比数列的通项公式的图象特征及等比中项。
教学重点:
理解等比数列的概念,认识等比数列是反映自然规律的重要的数列模型之一,探索并掌握等比数列的通项公式。
教学难点:等比数列通项公式及其应用
教学过程:
一、复习提问
一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示.
1, 3, 5, 7, 9,…; (1)
3, 0, -3, -6, … ; (2)
(3) . , , , , 104103102101
⋅⋅⋅
二、创设情境,引入新课
在前几节课中,我们学习了等差数列的定义、等差数列的通项公式及等差中项的定义,今天我们就来学习另外一种特殊的数列,首先看实例。
● 实例分析1:1细胞分裂:1,2,4,8,…
● 实例分析2:公元前5至前3世纪,中国战国时,《庄子》一书中有“一尺之棰,日取其半,万世不竭”的关于物质无限可分的观点。
你能解释这个论述的含义吗?
【学生】思考、讨论,用现代语言叙述。
【老师】 (用现代语言叙述后)如果把“一尺之棰”看成单位“1”,那么得到的数列是什么样的呢?
【学生】发现等比关系,写出一个无穷等比数列:1,,,,,…。
【老师】大家知道计算机病毒的传播是非常快的,速度大的惊人,那么让我们看一个这样的实例。
● 实例分析3:一种计算机病毒可以查找计算机中的地址薄,通过邮件进行传播。
如果把病毒制造者发送病毒称为第一轮,邮件接收者发送病毒称为第二轮,依此类推。
假设每一轮每一台计算机都感染20台计算机,那么在不重复的情况下,这种病毒每一轮感染的计算机数构成的数列是什么?
【学生】合作讨论,得出什么为第一轮,第二轮。
从而得到种病毒每一轮感染的计算机数构成的数列是1,20,202,203,…。
实例分析4:复利问题:
10 000×1.0198 , 10 000×1.01982 , 10 000×1.01983 ,
10 000×1.01984 ,10 000×1.01985
【老师】回忆数列的等差关系和等差数列的定义,观察上面的数列1、2、3、4,说说它们有什么共同特点?引导学生类比等差关系和等差数列的概念,发现等比关系。
我们可以发现:
数列1从第2项起,每一项与它前一项的比都等于____;
数列2从第2项起,每一项与它前一项的比都等于____;
数列3从第2项起,每一项与它前一项的比都等于____;
数列4从第2项起,每一项与它前一项的比都等于____
也就是说这个数列有一个共同的特点:从第2项起,每一项与它前一项的比等于同一个常数。
我们把这样的数列称为等比数列。
这就是我们今天要研究的课题,等比数列。
【设计意图】目的是让学生明白等比数列是来源于生活中的例子,观察所给各个数列的共同特点,进一步归纳出等比数列的定义。
二、探究新课
1、等比数列的定义
探究1:类比等差数列的定义,大家能否给等比数列下个定义?
【设计意图】学会类比的思想。
【学生】独立思考,类比等差数列的定义。
给等比数列下定义。
如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。
这个常数叫做等比数列的公比。
公比通常用字母q 表示。
【老师】用数学符号语言怎样表示等比数列的定义呢?如果我们第n项用表示,那么它的前一项该怎么表示,那么比怎么表示?这里的n的取值范围呢?
【学生】讨论,交流。
或
【老师】请同学们打开课本,看看课本上是怎样给等比数列下定义的,和刚才那位同学下的定义一样吗?有什么不同?
【学生】阅读课本,仔细对比,找出不同。
学生发现课本中有q≠0这个条件.
思考:等比数列的定义中,可否去掉“q≠0”的条件?为什么?能否将“”的条件改写成“”?为什么?
【设计意图】引导学生对等比数列内涵再认识和进一步理解。
【学生】讨论,辨析,得到结论,不能去掉“q≠0”的条件,因为如果q=0,则分子为0,而每一个分子都可能出现在分母中,则分母为0无意义; 表达式说明在等比数列中的任意项都不能为0.
感悟:等比数列中q≠0,.
【老师】那么是否存在既是等差又是等比的数列呢?
【学生1】常数列。
【老师】是吗?有不同意见吗?
【学生2】非零的常数列既是等差又是等比数列。
练习1:求出下列数列的通项公式:
(1) 1,2,4,8,…
(2) 1,,,,
,…。
(3) 1,20,202,203,…。
(4)10 000×1.0198 , 10 000×1.01982 , 10 000×1.01983 , 10 000×1.01984 ,10 000×1.01985
(5)2,2,2,2,… 。
11116, , , ,.24816--.
【老师】思考:公比q 的取值范围是什么呢?
【学生】正数、负数,但是不能为零。
练习2:求下列各组数中插入怎样的数后是等比数列。
(1)1, ____ , 9
(2)-1,____ ,-4
(3)-12,____ ,-3
(4)1,_____ ,1
【学生1】根据等比数列的定义,得出插入3后,构成等比数列。
【学生2】补充插入-3后,也能构成等比数列。
学生思考,得到两个都符合题意.。
下面三个小题可根据(1),顺利得到答案。
【老师】在学习等差数列的定义后,我们也做过这样的题目,在两数中间插入一个数,使三数成等差数列,那么我们把中间这个数称为等差中项。
类比等差中项的概念,我们把刚才插入的那个数称为等比中项。
2、等比中项
探究2:前面的等差数列一节里我们有等差中项的定义,你能仿照等差中项,给出等比中项的定义吗?等差中项与等比中项有何差异?
【老师】类比等差中项的概念,大家给等比中项下个定义吧。
【学生】如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项。
学生思考得结论:任何两个数都有等差中项,有且只有一个,而只有同号的两个数才有等比中项,而且有两个,且互为相反数。
3、等比数列的通项公式
我们继续来研究一下情境中的这三个数列。
探究3:试着写出上面三个数列的通项公式,并猜想等比数列的通项公式。
【设计意图】体现由特殊到一般的思想,先写出具体实例的通项公式,使学生经历观察,归纳,猜想的过程。
①②③
【学生】通过观察,看出这三个数列的通项公式,并寻找这三个公式中共性的地方,把①改写成,②,③,观察,发现都有n-1次幂的形式,而且乘号前面的数字2,1,1都是首项,乘号后面的数字2,20都是各项的公比,所以猜想等比数列的通项公式是a n=a1q n-1。
【老师】这位同学猜想的很好,那我们就来推导一下等比数列的通项公式,看看和这位同学猜想的一致吗?
探究4:类比等差数列通项公式的推导过程,请你写出首项为a1,公比是q的等比数列的通项公式。
【老师】我们在学习等差数列的通项公式时,用过哪些方法?
【学生1】回忆了用不完全归纳法证明通项公式的方法,类比等差数列的推导过程,设等比数列{a n}首项为a1,公比为q,根据等比数列的定义,我们
有:
a2=a1q,
a3=a2q=a1q2,…
即a n=a1q n-1.
【老师】请同学们想一想,你还有其它方法吗?
【学生2】根据等比数列的定义,我们还可以写出
,
进而有,即a n=a1q n-1.
【学生3】a n=a n-1q=a n-2q2=a n-3q3=…=a1q n-1.亦得a n=a1q n-1。
【老师】等比数列的通项公式:a n=a1q n-1(n∈N﹡,q≠0)
我们知道了等比数列的通项公式后,下面我们做课本52页练习,来看一下它有哪些应用。
学生做练习,老师巡视,予以指导。
【学生】观察、动手作图,发现规律,总结规律,数列是特殊的函数,等比数列是其对应函数图象上孤立的点。
【老师】通过几何画板演示动画。
三、归纳小结提炼精华
本节课主要学习了:
一个定义:
一个公式:,a n=a1q n-1(n∈N﹡,q≠0)
【老师】通过本节课的学习,你有哪些收获?
【学生1】在本节课中,我学习了等比数列的定义,求通项公式及等比中项的公式。
【学生2】在本节课中我还学习了类比的思想。
【设计意图】让学生自己小结,不仅仅总结知识更重要地是总结数学思想方法。
这样可帮助学生自行构建知识体系,理清知识脉络,养成良好的学习习惯。
四、作业
(1)已知a1=6,q=-2,求a3
(2)已知a1=2,q=3,an=162,求n
(3)已知a1=2,a3=8,求q
(
(5)已知a4=8,a7=1,求a5
(6)已知a3-a2=6,a4-a2 =18 ,求a5。