工程材料及热加工—钢的热处理工艺
钢的热处理(原理及四把火)

钢的热处理钢的热处理:是将固态钢材采用适当的方式进行加热、保温和冷却以获得所需组织结构与性能的工艺。
热处理不仅可用于强化钢材,提高机械零件的使用性能,而且还可以用于改善钢材的工艺性能。
其共同点是:只改变内部组织结构,不改变表面形状与尺寸。
第一节钢的热处理原理热处理的目的是改变钢的内部组织结构,以改善钢的性能,通过适当的热处理可以显著提高钢的机械性能,延长机器零件的使用寿命。
热处理工艺不但可以强化金属材料、充分挖掘材料性能潜力、降低结构重量、节省和能源,而且能够提高机械产品质量、大幅度延长机器零件的使用寿命。
热处理工艺分类:(根据热处理的目的、要求和工艺方法的不同分类如下)1、整体热处理:包括退火、正火、淬火、回火和调质;2、表面热处理:包括表面淬火、物理和化学气相沉积等;3、化学热处理:渗碳、渗氮、碳氮共渗等。
热处理的三阶段:加热、保温、冷却一、钢在加热时的转变加热的目的:使钢奥氏体化(一)奥氏体( A)的形成奥氏体晶核的形成以共析钢为例A1点则W c =0.0218%(体心立方晶格F)W c =6.69%(复杂斜方渗碳体)当T 上升到A c1 后W c =0.77%(面心立方的A)由此可见转变过程中必须经过C和Fe原子的扩散,必须进行铁原子的晶格改组,即发生相变,A的形成过程。
在铁素体和渗碳体的相界面上形成。
有两个有利条件①此相界面上成分介于铁素体和渗碳体之间②原子排列不规则,空位和位错密度高。
1、奥氏体长大由于铁素体的晶格改组和渗碳体的不断溶解,A晶核一方面不断向铁素体和渗碳体方向长大,同时自身也不断形成长大。
2、残余 Fe 3 C的溶解 A长大同时由于有部分渗碳体没有完全溶解,还需一段时间才能全溶。
(F比Fe 3 C先消失)3、奥氏体成分的均匀化残余Fe 3 C全溶后,经一段时间保温,通过碳原子的扩散,使A成分逐步均匀化。
(二)奥氏体晶粒的长大奥氏体大小用奥氏体晶粒度来表示。
分为 00,0,1,2…10等十二个等级,其中常用的1~10级,4级以下为粗晶粒,5-8级为细晶粒,8级以上为超细晶粒。
工程材料及热加工工艺

材料及热加工复习资料2工程材料及热加工工艺绪论一.课程的任务及内容工艺方法工程材料———加工工艺———产品件装配试车工艺过程基本知识热加工冷加工成分.组织.性能铸.锻.焊.热(切削加工)关系.应用性质:机械类各专业必修的一门综合的技术基础课。
任务:使学生获得有关金属学.钢的热处理.常用的金属材料及加工的基础知识,培养学生合理选材.确定热处理方法及安排工件加工工艺路线的初步能力。
先修课:物理.化学.机械制图.金工实习等,与材料力学. 机械设计等关系密切。
作用:打基础为后续课为专业课为工作实践二.材料及发展趋势钢:碳钢. 合金钢. 铸钢….黑色金属金属材料铁: HT. QT. 合金铸铁… Cu及Cu合金有色金属 AI及AI合金工程材料其它:轴承…普通无机非金属材料陶瓷材料例特种非金属热塑性材工程塑料料工程塑料通用塑料热固性有机高特种塑料分子材料橡胶金属材料 + 非金属材料 = 复合材料结构材料机性. 物性. 化性工程材料(应用)功能材料特异物化性能. 超导.激光材料……三.金属材料的应用.特点.陶瓷. 高分子材料发展速度很快,但还不能全面代替传统的金属材料。
金属材料各行各业应用广泛。
原因:金属材料可满足各种各样的性能。
具体: 1. 一般均具有优良的机械性能;2. 具有优良的物理性能;3. 具有优良的工艺性能;热处理较大范围改变金属材料的性能。
四.影响金属材料性能的因素1. 化学成分决定组织. 性能2. 处理工艺内部组织变化性能与微观组织有关。
第一章金属材料的力学性能物理性能导电.热.磁.密度.熔点化学性能耐蚀.热.酸.抗氧化使用性能其它性能耐磨性.承受磨损耐久程度.综合性机械性能外力作用下表现的性能,变形.失效性能(力学性能)铸造性能流动性.收缩性.吸气性…工艺性能塑性成形性可锻性.冲压性(加工性能)焊接性热处理工艺性切削加工性根据使用性选择材料用途选材.选工艺性能是基础根据加工性选择加工方法机械性能(力学性能)是设计零件选材的依据,控制材料质量的重要参考。
10钢的热处理工艺

形变热处理
高温形变热处理是把钢加热至奥氏体化,保温一段时间,在该温度下进行塑性变形,随后淬火处理,获得马氏体组织。
高温形变热处理的应用??碳钢、低合金结构钢及机械加工量不大的锻件或轧材。
根据性能要求,高温形变热处理在淬火后,还需要进行回火。高温形变热处理的塑性变形是在奥氏体再结晶温度以上的范围内进行的,因而强化程度(一般在10%~30%之间)不如低温形变热处理大。
1.过热
2.过烧
3.氧化
4.脱碳
由于加热温度过高或时间过长造成奥氏体晶粒粗大的缺陷
淬火加热温度太高造成奥氏体晶界出现局部熔化或发生氧化的现象
淬火加热时工件与周围的氧等发生的化学反应
淬火加热时,钢中的碳与空气中的氧等发生反应生成含碳气体逸出
第三节 其他类型热处理
钢的表面热处理
化学热处理
形变热处理
(2)渗碳后的组织 常用于渗碳的钢为低碳钢和低碳合金钢,如20、20Cr、20CrMnTi、12CrNi3等。渗碳后缓冷组织自表面至心部依次为:过共析组织(珠光体+碳化物)、共析组织(珠光体)、亚共析组织(珠光体+铁素体)的过渡区,直至心部的原始组织。
(3)渗碳后的热处理 渗碳后的热处理方法有:直接淬火法、一次淬火法和二次淬火法。
从经济性原则考虑,正火的生产周期短,操作简单,工艺成本低,在满足使用和工艺性能的前提下,应尽可能用正火代替退火。
第二节 钢的淬火与回火
一、淬火 将钢加热到Ac1或Ac3以上,保温一定时间,然后快速(大于临界冷却速度)冷却以获得马氏体(下贝氏体)组织的热处理工艺称为淬火。
1.淬火应力
与渗碳相比,渗氮温度低且渗氮后不再进行热处理,所以工件变形小。 为了提高渗碳工件的心部强韧性,需要在渗氮前对工件进行调质处理。
工程材料及热加工—钢的热处理原理

一、概述 二、钢的热处理原理
一、概述
1、定义: 将钢在固态下通过不同的加热、保温、冷却来改变金属 整体或表层的组织,从而改善和提高其性能的一种热加工 工艺。 工艺曲线:
2、目的: • 充分发挥材料的性能潜力。 • 调整材料的工艺性能和使用性能。
3、分类: • 普通热处理:整体穿透加热 • 表面热处理:表层的成分、组织、性能 • 特殊热处理:形变热处理、真空热处理
⑶ 马氏体型转变 • 定义:是指钢从奥氏体状态快速冷却(即淬火)而发生的无扩散型相变, 转变产物称为马氏体,马氏体是碳溶于α-Fe中的过饱和间隙式固溶体, 记为M。 • 转变特点:⑴无扩散性: ⑵降温转变: 过冷奥氏体向马氏体转变的开始温度用Ms 表示。而马氏体转变的终了温度用Mf表示。马氏体转变量是在Ms~Mf 温度范围内,通过不断降温来增加的。由于多数钢的Mf在室温以下, 因此钢快冷到室温时仍有部分未转变的奥氏体存在,称之为残余奥氏 体,记为Ar。 • 组织形态:钢中马氏体的形态很多,其中板条马氏体和片状马氏体最 为常见。 ⑴板条马氏体: 低碳钢<0.2﹪中的马氏体组织是由许多成群的、相互平 行排列的板条所组成,故称为板条马氏体。板条马氏体的亚结构主要 为高密度的位错,故又称为位错马氏体。
二、钢的热处理原理
1、钢的临界温度 铁碳合金相图中组织转变的临界温度A1、A3、Acm 是在极其缓慢的加热和冷却条件下测定的。而在热处理中, 加热和冷却并不是极其缓慢的,和相图的临界温度相比发 生一定的滞后现象,也就是通常所说的需要有一定的过热 和过冷,组织转变才能充分进行。与相图上A1、A3、Acm 相对应,通常把实际加热时的临界温度用Ac1、Ac3、 Accm 表示,把实际冷却时的临界温度用Ar1、Ar3、Arcm 表示。
钢的热处理工艺

钢的热处理第一章钢的热处理热处理工艺包括:将钢材或钢制件加热到预定温度,在此温度下保温一定时间。
然后一定的冷却速度冷却下来,达到热处理所预定的对钢材及钢制件的组织与性能的要求。
1□□钢的加热1.1□制定钢的加热制度加热温度、加热速度、保温时间。
1.1.1加热温度的选择加热温度取决于热处理的目的。
热处理分为:淬火、退火、正火、和回火等。
淬火的目的是为了得到细小的马氏体组织,使钢具有高的硬度;退火及正火的目的是获得均匀的珠光体组织,因此其加热温度不同。
在具体制定加热温度时应按以下原则:热处理工艺种类及目的要求;被加热钢材及钢制件的化学成分和原始状态;钢材及钢制件的尺寸和形状以及加热条件来制定。
对于碳钢及低合金钢的加热温度:亚共析钢淬火温度:A C3以上30~50℃;过共析钢淬火温度:A C3以上30~50℃;亚共析钢完全退火:A C3以上20~30℃;过共析钢不完全退火:A C3以上20~30℃;正火A C3或A CM以上30~50℃;1.1.2加热速度的选择必须根据钢的化学成分及导热性能;钢的原始状态及应力状态;钢的尺寸及形状来确定加热速度。
如钢的原始状态存在着铸造应力或轧煅热变形残余应力时,在加热是应特别注意。
对这类钢要特别控制低温阶段的加热速度。
钢的变形与热裂倾向是以钢的化学成分及原始状态不同而不同,主要有以下几点:a) 低碳钢比高碳钢热烈倾向小;b) 碳钢比合金钢变形开裂倾向小;c) 钢坯和成品件比钢锭变形和开裂倾向小;d) 小截面比大截面的钢变形和开裂倾向小。
1.1.3钢在加热时的缺陷a) 过热:过热就是由于加热温度过高,加热时间过长使奥氏体晶粒过分长大。
粗大的奥氏体晶粒在冷却时产生粗大的组织,并往往出现魏氏组织,结果是钢的冲击韧性、塑性明显下降。
已过火的钢可以在次正火或退火加以纠正。
b) 强烈过热:加热温度过高或加热保温时间过长,使氧或硫沿晶界渗入钢中或者钢中的硫与氧在高温下溶解于奥氏体中,在冷却过程中硫或氧以化合物形态沿粗大的奥氏体晶界析出。
gc05-1钢的热处理

1. 奥氏体是同时消耗两相来长大; 2. 实际上总是铁素体先消失,随后残余渗碳体 的溶解; 3. 奥氏体的均匀化,各处的碳浓度都达到平均 成分,随后所含其它合金元素经扩散达到成 分均匀; 4. 在铁素体和渗碳体的交界处形成奥氏体的核 心; 5. 亚(过)共析钢中过剩相的溶解(温度达到AC3或 Accm以上)。
奥氏体碳质量分数 与MS、Mf的位臵关系
碳质量分数 与残余A量的关系
②马氏体的形态 马氏体的形态有两类,主要取决于含碳量
●碳质量分数大于1.0%时,为片状马氏体 (高碳马氏体)。在光学显微镜中呈凸透镜状, ●碳质量分数在0.25%以下时,为板条马氏体 马氏体针之间形成一定角度(60°)。透射电镜分 (低碳马氏体)。 ●碳质量分数在0.25~1.0%之间时,为板条 析,片状马氏体内有大量孪晶,也称孪晶马氏体 在显微镜下为一束束平行排列的细板条。在 马氏体和针状马氏体的混和组织。 或针状马氏体。 高倍透射电镜下可看到板条马氏体内有大量位错 缠结的亚结构,所以也称位错马氏体。
加热、冷却时材料内部的微观结构如 何变化(热处理原理)?
问题2: 热处理工艺有哪些?工程实际中有何 应用?
根据加热和冷却及应用特点的不同,常用的热处理方法的大致 分类有:
第一节 钢在加热时的转变
一、奥氏体的形成
1.钢在加热时的临界温度 大多数热处理工艺将钢加热到临界温度以上, 获得全部或部分奥氏体组织,进行奥氏体化。
本质细晶粒钢:晶粒细小。 本质粗晶粒钢:晶粒粗大。
2. 影响奥氏体晶粒度的因素 (1)加热温度、加热速度和保温时间 加热温度越高或保温时间越长,奥氏体晶粒 长大越明显;而高温、快速、短时加热可获得细 小晶粒。 (2)钢的成分 ●奥氏体中碳含量增高,晶粒长大倾向增 大。未溶碳化物则阻碍晶粒长大。 ●钛、钒、铌、锆、铝有利于得到本质细 晶粒钢。碳化物、氧化物和氮化物弥散分布在 晶界上,能阻碍晶粒长大。 ●锰、磷促进晶粒长大。
钢的热处理工艺

3)分级淬火 ) 概念 将奥氏体状态的工 件首先淬入略高于钢的 Ms点的盐浴或碱浴炉中 保温,当工件内外温度 均匀后,再从浴炉中取 出空冷至室温,完成马 氏体转变。
4)等温淬火 ) 将奥氏体化后的工 件在稍高于Ms温度的盐 浴或碱浴中冷却并保温 足够时间,从而获得下 贝氏体组织的淬火方法。
(5)钢的淬透性 ) 1)淬透性的概念 ) 指奥氏体化后的钢在淬火时获得马氏体的能力, 指奥氏体化后的钢在淬火时获得马氏体的能力, 钢的淬透性大小用钢在一定条件下淬火获得的淬透层深 度来表示。 度来表示。 通常采用从淬火工件表面到半马氏体区距离作为淬透层 深度。 深度。 2)影响淬透性的因素 ) 主要因素是化学成分 以外, 除Co以外,所有溶于奥氏体中的合金元素都提高淬透性。 以外 所有溶于奥氏体中的合金元素都提高淬透性。 奥氏体的均匀性、 奥氏体的均匀性、晶粒大小及是否存在第二相等因素都 会影响淬透性。 会影响淬透性。
感应加热表面淬火的分类 据电流频率的不同,可将感应加热表面淬火分为三类: 第一类 高频感应加热淬火 常用电流频率:80~1000kHz 淬硬层深度: 0.5~2.0mm 应用:适用于中小模数的齿轮及中小尺寸的轴类零件等。 第二类 中频感应加热淬火 常用电流频率:2500~8000Hz 淬硬层深度: 2~10mm 应用:适用于较大尺寸的轴和大中模数的齿轮等。 第三类 工频感应加热淬火 电流频率:50赫兹 淬硬层深度:可达10~15mm 应用:适用于较大直径零件的穿透加热及大直径零件如轧辊、 火车车轮等的表面淬火。
二、正火
概念 将钢材或钢件加热到临界温度以上,保温后空冷的热 将钢材或钢件加热到临界温度以上,保温后空冷的热 临界温度以上 空冷 处理工艺。 处理工艺。 亚共析钢的加热温度为Ac3+30℃~50℃ 过共析钢的加热温度为Accm+30℃~50℃。
铸钢件常见热处理工艺

按加热和冷却条件不同,铸钢件的主要热处理方式有:退火、正火、均匀化处理、淬火、回火、固溶处理、沉淀硬化、消除应力处理及除氢处理。
1.退火:退火是将铸钢件加热到Ac3以上20~30℃,保温一定时间,冷却的热处理工艺。
退火的目的是为消除铸造组织中的柱状晶、粗等轴晶、魏氏组织和树枝状偏析,以改善铸钢力学性能。
碳钢退火后的组织:亚共析铸钢为铁素体和珠光体,共析铸钢为珠光体,过共析铸钢为珠光体和碳化物。
适用于所有牌号的铸钢件。
2.正火:正火是将铸钢件加热到Ac3温度以上30~50℃保温,使之完全奥氏体化,然后在静止空气中冷却的热处理工艺。
正火的目的是细化钢的组织,使其具有所需的力学性能,也是作为以后热处理的预备处理。
正火与退火工艺的区别有两个:其一是正火加热温度要偏高些;其二是正火冷却较快些。
经正火的铸钢强度稍高于退火铸钢,其珠光体组织较细。
一般工程用碳钢及部分厚大、形状复杂的合金钢铸件多采用正火处理。
正火可消除共析铸钢和过共析铸钢件中的网状碳化物,以利于球化退火;可作为中碳钢以及合金结构钢淬火前的预备处理,以细化晶粒和均匀组织,从而减少铸件在淬火时产生的缺陷。
3.淬火:淬火是将铸钢件加热到奥氏体化后(Ac。
或Ac•以上),保持一定时间后以适当方式冷却,获得马氏体或贝氏体组织的热处理工艺。
常见的有水冷淬火、油冷淬火和空冷淬火等。
铸钢件淬火后应及时进行回火处理,以消除淬火应力及获得所需综合力学性能铸钢件淬火工艺的主要参数:(1)淬火温度:淬火温度取决于铸钢的化学成分和相应的临界温度点。
原则上,亚共析铸钢淬火温度为Ac。
以上20~30℃,常称之为完全淬火。
共析及过共析铸钢在Ac。
以上30~50℃淬火,即所谓亚临界淬火或两相区淬火。
这种淬火也可用于亚共析钢,所获得的组织较一般淬火的细,适用于低合金铸钢件韧化处理。
(2)淬火介质:淬火的目的是得到完全的马氏体组织。
为此,铸件淬火时的冷却速率必须大于铸钢的临界冷却速率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2.4钢的淬透性 • 定义:淬透性是指钢在淬火时获得马氏体的能力。它是 钢的固有属性,也是选材和制订热处理工艺的重要依据 之一。
• 影响因素:钢的临界冷却速度; 过冷奥氏体的稳定性。 • 评定方法:用钢在一定条件下淬火所获得的淬透层深 度或临界淬透直径(Dk)来表示。 ⑴淬透层的深度定义为由表面至半马氏体区的深度。 半马氏体区的组织是由50%马氏体和50%分解产物所组 成。 ⑵指圆柱状钢试样在规定的淬火介质中能全部淬透的 最大直径。当冷却介质一定时,Dk愈大,淬透性愈好。 • 测定方法:最常用的方法是末端淬火法,简称为端淬 法。
•
三、钢的回火
• • 定义:是将淬火后的钢加热到Ac1以下某一温度,保 温一定时间,然后冷却至室温的一种热处理工艺。 目的: 减小或消除淬火应力; 提高钢的塑性和韧性,获得良好的综合力学性能; 稳定组织和工件尺寸。 分类及应用: ⑴低温回火(150~250℃) 组织为回火马氏体。 ( 58~64HRC ) 部分降低钢中残余应力和脆性,而保持钢在淬 后所得到的高强度、硬度和耐磨性。 广泛应用于工具、量具、滚动轴承、渗碳工件 以及表面淬火工件等。
2.2.2淬火冷却介质 最常用的是水、盐水、油、熔盐。 水:形状简单、截面尺寸较大的碳钢。(高温慢,低温快) 盐水:高温快,低温快。 油:合金钢或小尺寸碳钢件。 (高温太慢,低温慢) 熔盐(盐浴):形状复杂、变形要求严格的件。最接近理 想冷却介质。
2.2.3淬火方法 • 单液淬火:在一种介质中连续冷却获得马氏体。 操作简单,易于自动化,易于产生缺陷,适 用于形状简单的小件。 • 双液淬火:先后在两种介质中冷却。 操作复杂,难以控制。 • 分级淬火:淬入稍高于Ms的介质中,待内外温差一致后 取出,缓冷得到马氏体。 减少应力和变形,适用于小件。 • 等温淬火:淬入稍高于Ms的介质中,等温转变为下B。 强度高,塑性、韧性好,应力小,变形小, 多用于形状复杂、要求高的工件。
2.1渗碳 定义:渗碳通常是指向低碳钢制造的工件表面渗入碳原子, 使工件表面达到高碳钢的含碳量。 目的:使工件在热处理后表面具有高硬度和高的耐磨性, 而心部仍保持低碳钢良好的塑、韧性。 工艺:依所用渗碳剂的不同,钢的渗碳可分为气体渗碳、 固体渗碳和液体渗碳。 最常用的是气体渗碳,其工艺方法是将工件放入密封的加 热炉中,加热到临界温度以上(通常为900~950℃)按 一定流量滴入液体渗碳剂(如煤油、甲醇和丙酮),并 使之分解, 分解产物有CnH2n和CnH2n+2, 在钢的表面发 生如下的反应 CnH2n → nH2 + n[C] CnH2n+2 →(n+1) H2 + n[C] 从而提供活性碳原子,吸附在工件表面并向钢的内部扩散而 进行渗碳。
热处理工艺
一、钢的退火与正火 二、钢的淬火 三、钢的回火 四、钢的表面热处理
一、钢的退火与正火
在机器零件或工模具等工件的加工制造过程中,退 火和正火经常作为预备热处理工序,即安排在铸造、锻 造之后,切削加工之前,用以消除前一工序所带来的某 些缺陷,为随后的工序作准备。 目的: • 调整硬度以便切削; • 消除内应力减少变形; • 细化晶粒,改善组织,提高力学性能; • 为最终热处理做好组织准备。
⑷扩散退火 • 是指将钢加热到Ac3或Accm以上150~300℃,长时间保 温,然后随炉缓慢冷却的热处理工艺。 • 实质是使钢中的各元素在奥氏体中进行充分扩散,达 到成分均匀化。 ⑸再结晶退火 • 是指将冷变形后的金属加热到再结晶温度以上,保温 适当时间后,使变形晶粒转变为无应变的等轴新晶粒, 从而消除加工硬化和残余内应力的热处理工艺。 ⑹去应力退火 • 又称为回复退火,其加热温度范围很宽,通常是在再 结晶温度以下。
2.1淬火温度 淬火加热温度的选择应以得到均匀细小的奥氏体 晶粒为原则,以便淬火后得到细小的马氏体组织。 • 对于亚共析钢通常加热到Ac3以上30~50℃ • 对共析钢和过共析钢为Ac1以上30~50℃。(未溶Fe3C 阻止晶粒长大;提高硬度、耐磨性)
2.2淬火冷却 2.2.1理想的冷却速度 冷却是淬火工艺的另一个重要因素,由C曲线可知, 最好是鼻尖处快冷,而在Ms点附近和鼻尖以上应尽量 慢冷。
2、化学热处理
• 定义:将钢件放入一定的化学介质中加热和保温,使 介质中的活性原子渗入工件表面,使表面化学成分发 生变化,从而改变金属表面组织和性能工艺过程。 • 目的:心部具有足够的强度和韧性,而表面具有高的 硬度和耐磨性;提高疲劳性能;提高表面抗蚀性、耐 热性等。 • 方法:渗碳、渗氮、碳氮共渗等
⑴完全退火 • 工艺:是将亚共析钢加热到Ac3以上30~ 50℃,保温,后 缓慢冷却,以获得接近平衡组织的热处理工艺。 • 应用:亚共析成分的各种碳钢和合金钢。 ⑵等温退火 • 工艺:将亚共析钢钢加热到Ac3以上30~ 50℃或将过共析 钢加热至Ac1以上30~ 50℃ ,保温后快冷到Ar1以下的某一 温度,并停留至相变结束出炉空冷。 • 应用:所有钢。 ⑶球化退火 • 是不完全退火的一种,通常的加热温度是Ac1以上20~30℃, 使二次渗碳体转变为球状或粒状,然后随炉缓冷至略低于 Ar1保温,使P中渗碳体球化,再出炉空冷。 • 主要用于过共析的碳钢及合金工具钢。近年来球化退火应 用于亚共析钢也取得成功。
•
⑵中温回火(350~500℃) 组织为回火屈氏体。( 35~45HRC ) 经中温回火后是具有极高的弹性极限和良好的韧性。 用于各种弹性元件及热锻模具的处理。 ⑶高温回火(500~650℃) 组织是回火索氏体。 ( 25~35HRC ) 通常将淬火加高温回火相结合的热处理工艺称为调 质处理。 经调质处理后钢的强度、塑性和韧性具有良好的配 合,即具有较高的综合机械性能。因而,调质处理 被广泛应用于中碳结构钢和低合金经构钢制造的各 种重要的结构零件,特别是在交变载荷下工作的连 杆、螺栓以及轴类等。
1.4火焰加热表面淬火 • 工艺方法:是利用可燃气体(如乙炔)的火焰将工件表 面快速加热到淬火温度,然后立即用水喷射冷却,通过 控制火焰喷嘴的移动速度可获得不同厚度的淬硬层。 • 此法适于单件或小批量零件的表面淬火。
1.5 激光加热表面淬火 • 是将激光器产生的高功率密度(103~105W/cm2)的激 光束照射到工件表面上,使工件表面被快速加热到临 界温度以上,然后移开激光束,利用工件自身的传导 将热量从工件表面传向心部而达到自冷淬火。 1.6电子束加热表面淬火 • 当高速的电子流轰击工件表面时,电子可射入表面一 定深度,电子的动能转化为热能使工件的表层快速加 热到临界温度以上,电子束移开后工件自冷淬火的热 处理工艺。电子流射入深度取决于加速电压的高低。 例如,对钢铁材料,电子的加速电压为120KV时,其 射入深度约为40µm。
2、正火 • 工艺:将钢件加热到Ac3或Accm以上,保温一定时间 后,在空气中冷却得到细片状珠光体组织(S)的热处理 工艺。正火与退火的明显差异是正火冷却速度稍快。 • 应用:低碳钢提高硬度;中碳钢正火带退火;高碳钢 消除网状碳化物。
二、钢的淬火
• 定义:是将钢件加热到Ac1或Ac3以上保温一定时间后, 快速冷却(通常大于临界冷却速度Vc),以得到马氏 体(或下贝氏体)组织的热处理工艺。 • 目的: 获得马氏体,提高钢的硬度和耐磨性。 是强化钢材的最重要的手段。
2.2氮化 • 定义:与渗碳相似,钢的氮化是指向钢的表面层渗入 氮原子的过程。 • 原理:最常用的是气体氮化法。即利用氨气在加热时 分解出活性氮原子,2NH3 →3H2 + 2[N], 活性氮原子 被钢吸收后在其表面形成氮化层,同时向心部扩散。 Al、Cr、Mo、V、Ti等合金元素极易与氮形成颗粒细 小、分布均匀、硬度很高并且十分稳定的各种氮化物, 如AlN、CrN、MoN、TiN、VN等, 因而, 常用的氮 化用钢有35CrMo、18CrNiW和38CrMoAlA等。而对碳 钢由于渗氮后不形成特殊氮化物,通常碳钢不用作氮 化用钢。
1、退火 1.1定义:将钢加热至适当的温度,保持一定时间后缓慢 冷却至550以下空冷,以获得接近平衡组织的热处理工 艺。 1.2分类:退火的种类很多,根据加热温度可分为两大类: 一类是在临界温度(Ac1或Ac3)以上的退火,又称为 相变重结晶退火,包括完全退火、不完全退火、球化 退火和扩散退火等; 另一类是在临界温度以下的退火,包括再结晶退火及去 应力退火等。
• 意义: ⑴截面较大或形状复杂及来自力特殊的零件(各类齿轮、 轴类),希望整个截面都能被淬透,从而保证零件在 整个截面上的机械性能均匀一致。选用淬透性较高的 钢即能满足这一要求。(如果钢的淬透性低,零件整个截面
不能全部淬透,则表面到心部的组织不一样,机械性能也不相同, 心部的机械性能,特别是冲击韧性很低)
1.3感应加热表面淬火 定义:利用在交变电磁场中工件表面产生的感生电流将 工件表面快速加热,并淬火冷却的一种热处理工艺。 原理和工艺方法:是将钢件放入由紫铜管制作的与零件 外形相似的感应圈内,随后将感应圈内通入一定频率的 交变电流,这样在感应圈内外产生相同频率的交变磁场, 同时,在零件表面也产生频率相同,方向相反的感生电 流,该电流在工件表面(集肤效应)形成封闭回路,称 为“涡流”。由此产生的热效应将零件表快速加热到淬 火温度,随即喷水冷却,使工件表面获得马氏体组织。 特点: 加热速度快,温度高,晶粒细; 硬度高,变形小,不易脱碳; 易于自动化。
• 淬透性与淬硬性的区别:后者是指钢淬火后形成的淬 火态组织(由马氏体和残余奥氏体相组成)所能达到 的硬度,显然,它取决于马氏体的含碳量和残余奥氏 体的数量。
2.2.4钢的淬火变形和开裂 • 淬火变形:起因为淬火冷却过程中产生的内应力 (热应力、相变(组织)应力) a) 热应力:由温差而导致的热胀和冷缩不一致引起的。 b) 相变应力:冷速不一致而导致相变不一致引起的。 淬火开裂:内应力超过工件的强度极限。
•
回火脆性 a) 低温回火脆性:
发生在250~400℃。 不可逆回火脆性 对策:避免
b) 高温回火脆性: