(采用BP神经网络完成非线性函数的逼近)神经网络
BP网络的优缺点介绍1-1

BP神经网络的优缺点介绍人工神经网络(Artificial Neural Network)又称连接机模型,是在现代神经学、生物学、心理学等学科研究的基础上产生的,它反映了生物神经系统处理外界事物的基本过程,是在模拟人脑神经组织的基础上发展起来的计算系统,是由大量处理单元通过广泛互联而构成的网络体系,它具有生物神经系统的基本特征,在一定程度上反映了人脑功能的若干反映,是对生物系统的某种模拟,具有大规模并行、分布式处理、自组织、自学习等优点,被广泛应用于语音分析、图像识别、数字水印、计算机视觉等很多领域,取得了许多突出的成果。
最近由于人工神经网络的快速发展,它已经成为模式识别的强有力的工具。
神经网络的运用展开了新的领域,解决其它模式识别不能解决的问题,其分类功能特别适合于模式识别与分类的应用。
多层前向BP网络是目前应用最多的一种神经网络形式, 它具备神经网络的普遍优点,但它也不是非常完美的, 为了更好的理解应用神经网络进行问题求解, 这里对它的优缺点展开一些讨论。
首先BP神经网络具有以下优点:1) 非线性映射能力:BP神经网络实质上实现了一个从输入到输出的映射功能,数学理论证明三层的神经网络就能够以任意精度逼近任何非线性连续函数。
这使得其特别适合于求解内部机制复杂的问题,即BP神经网络具有较强的非线性映射能力。
2) 自学习和自适应能力:BP神经网络在训练时,能够通过学习自动提取输出、输出数据间的“合理规则”,并自适应的将学习内容记忆于网络的权值中。
即BP神经网络具有高度自学习和自适应的能力。
3) 泛化能力:所谓泛化能力是指在设计模式分类器时,即要考虑网络在保证对所需分类对象进行正确分类,还要关心网络在经过训练后,能否对未见过的模式或有噪声污染的模式,进行正确的分类。
也即BP神经网络具有将学习成果应用于新知识的能力。
4) 容错能力:BP神经网络在其局部的或者部分的神经元受到破坏后对全局的训练结果不会造成很大的影响,也就是说即使系统在受到局部损伤时还是可以正常工作的。
BP神经网络及深度学习研究-综述(最新整理)

BP神经网络及深度学习研究摘要:人工神经网络是一门交叉性学科,已广泛于医学、生物学、生理学、哲学、信息学、计算机科学、认知学等多学科交叉技术领域,并取得了重要成果。
BP(Back Propagation)神经网络是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。
本文将主要介绍神经网络结构,重点研究BP神经网络原理、BP神经网络算法分析及改进和深度学习的研究。
关键词:BP神经网络、算法分析、应用1 引言人工神经网络(Artificial Neural Network,即ANN ),作为对人脑最简单的一种抽象和模拟,是人们模仿人的大脑神经系统信息处理功能的一个智能化系统,是20世纪80 年代以来人工智能领域兴起的研究热点。
人工神经网络以数学和物理方法以及信息处理的角度对人脑神经网络进行抽象,并建立某种简化模型,旨在模仿人脑结构及其功能的信息处理系统。
人工神经网络最有吸引力的特点就是它的学习能力。
因此从20世纪40年代人工神经网络萌芽开始,历经两个高潮期及一个反思期至1991年后进入再认识与应用研究期,涌现出无数的相关研究理论及成果,包括理论研究及应用研究。
最富有成果的研究工作是多层网络BP算法,Hopfield网络模型,自适应共振理论,自组织特征映射理论等。
因为其应用价值,该研究呈愈演愈烈的趋势,学者们在多领域中应用[1]人工神经网络模型对问题进行研究优化解决。
人工神经网络是由多个神经元连接构成,因此欲建立人工神经网络模型必先建立人工神经元模型,再根据神经元的连接方式及控制方式不同建立不同类型的人工神经网络模型。
现在分别介绍人工神经元模型及人工神经网络模型。
1.1 人工神经元模型仿生学在科技发展中起着重要作用,人工神经元模型的建立来源于生物神经元结构的仿生模拟,用来模拟人工神经网络[2]。
人们提出的神经元模型有很多,其中最早提出并且影响较大的是1943年心理学家McCulloch和数学家W. Pitts在分析总结神经元基本特性的基础上首先提出的MP模型。
神经网络在函数逼近中的应用

二 基于BP神经网络逼近函数 基于BP神经网络逼近函数
步骤1:假设频率参数k=1,绘制要逼近的非线性 步骤1:假设频率参数k=1,绘制要逼近的非线性 函数的曲线。函数的曲线如图1 函数的曲线。函数的曲线如图1所示 k=1; p=[p=[-1:.05:8]; t=1+sin(k*pi/4*p); plot( plot(p,t,'-'); '); title('要逼近的非线性函数'); title('要逼近的非线性函数'); xlabel('时间'); xlabel('时间'); ylabel('非线性函数'); ylabel('非线性函数');
图3 训练过程 从以上结果可以看出,网络训练速度很快,很 快就达到了要求的精度0.001。 快就达到了要求的精度0.001。
步骤4 步骤4: 网络测试 对于训练好的网络进行仿真: y2=sim(net,p); figure; plot(p,t,'plot(p,t,'-',p,y1,':',p,y2, '--') '--') title('训练后网络的输出结果'); title('训练后网络的输出结果'); xlabel('时间'); xlabel('时间'); ylabel('仿真输出'); ylabel('仿真输出'); 绘制网络输出曲线,并与原始非线性函数曲线以 及未训练网络的输出结果曲线相比较,比较出来 的结果如图4 的结果如图4所示。
BP网络在函数逼近中的应用 BP网络在函数逼近中的应用
BP神经网络实验报告

BP神经网络实验报告一、引言BP神经网络是一种常见的人工神经网络模型,其基本原理是通过将输入数据通过多层神经元进行加权计算并经过非线性激活函数的作用,输出结果达到预测或分类的目标。
本实验旨在探究BP神经网络的基本原理和应用,以及对其进行实验验证。
二、实验方法1.数据集准备本次实验选取了一个包含1000个样本的分类数据集,每个样本有12个特征。
将数据集进行标准化处理,以提高神经网络的收敛速度和精度。
2.神经网络的搭建3.参数的初始化对神经网络的权重和偏置进行初始化,常用的初始化方法有随机初始化和Xavier初始化。
本实验采用Xavier初始化方法。
4.前向传播将标准化后的数据输入到神经网络中,在神经网络的每一层进行加权计算和激活函数的作用,传递给下一层进行计算。
5.反向传播根据预测结果与实际结果的差异,通过计算损失函数对神经网络的权重和偏置进行调整。
使用梯度下降算法对参数进行优化,减小损失函数的值。
6.模型评估与验证将训练好的模型应用于测试集,计算准确率、精确率、召回率和F1-score等指标进行模型评估。
三、实验结果与分析将数据集按照7:3的比例划分为训练集和测试集,分别进行模型训练和验证。
经过10次训练迭代后,模型在测试集上的准确率稳定在90%以上,证明了BP神经网络在本实验中的有效性和鲁棒性。
通过调整隐藏层结点个数和迭代次数进行模型性能优化实验,可以发现隐藏层结点个数对模型性能的影响较大。
随着隐藏层结点个数的增加,模型在训练集上的拟合效果逐渐提升,但过多的结点数会导致模型的复杂度过高,容易出现过拟合现象。
因此,选择合适的隐藏层结点个数是模型性能优化的关键。
此外,迭代次数对模型性能也有影响。
随着迭代次数的增加,模型在训练集上的拟合效果逐渐提高,但过多的迭代次数也会导致模型过度拟合。
因此,需要选择合适的迭代次数,使模型在训练集上有好的拟合效果的同时,避免过度拟合。
四、实验总结本实验通过搭建BP神经网络模型,对分类数据集进行预测和分类。
人工神经网络原理、分类及应用

学 术 论 坛240科技资讯 SCIENCE & TECHNOLOGY INFORMATION神经网络是一门发展十分迅速的交叉学科,它是由大量的处理单元组成非线性的大规模自适应动力系统。
神经网络具有分布式存储、并行处理、高容错能力以及良好的自学习、自适应、联想等特点。
该模型对于拟合现实复杂世界有着重要的实用价值。
1 神经网络简介人工神经网络(Artificial Neural Network,ANN),亦称神经网络(Neural Network,NN),是一种应用类似于大脑神经突触连接结构进行信息处理的数学模型,它是在人类对自身大脑组织结合和思维机制的认识理解基础之上模拟出来的,它是根植于神经科学、数学、统计学、物理学、计算机科学以及工程科学的一门技术。
心理学家Mcculloch,数学家Pitts在20世纪40年代第一次提出了神经网络模型,从此开创了神经科学理论的研究时代,此后半个世纪神经网络技术蓬勃发展。
神经网络是一种计算模型,由大量的神经元个体节点和其间相互连接的加权值共同组成,每个节点都代表一种运算,称为激励函数(activation function)。
每两个相互连接的节点间都代表一个通过该连接信号加权值,称值为权重(weight),神经网络就是通过这种方式来模拟人类的记忆,网络的输出则取决于网络的结构、网络的连接方式、权重和激励函数。
而网络本身通常是对自然界或者人类社会某种算法或函数的逼近,也可能是一种逻辑策略的表达。
神经网络的构筑理念是受到生物的神经网络运作启发而产生的。
人工神经网络则是把对生物神经网络的认识与数学统计模型向结合,借助数学统计工具来实现。
另一方面在人工智能学的人工感知领域,我们通过数学统计学的方法,使神经网络能够具备类似于人的决定能力和简单的判断能力,这种方法是对传统逻辑学演算的进一步延伸。
2 神经网络模型及训练2.1生物神经元模型人脑是自然界所造就的高级动物,人的思维是由人脑来完成的,而思维则是人类智能的集中体现。
MATLAB神经网络(2)BP神经网络的非线性系统建模——非线性函数拟合

MATLAB神经⽹络(2)BP神经⽹络的⾮线性系统建模——⾮线性函数拟合2.1 案例背景在⼯程应⽤中经常会遇到⼀些复杂的⾮线性系统,这些系统状态⽅程复杂,难以⽤数学⽅法准确建模。
在这种情况下,可以建⽴BP神经⽹络表达这些⾮线性系统。
该⽅法把未知系统看成是⼀个⿊箱,⾸先⽤系统输⼊输出数据训练BP神经⽹络,使⽹络能够表达该未知函数,然后⽤训练好的BP神经⽹络预测系统输出。
本章拟合的⾮线性函数为y=x12+x22该函数的图形如下图所⽰。
t=-5:0.1:5;[x1,x2] =meshgrid(t);y=x1.^2+x2.^2;surfc(x1,x2,y);shading interpxlabel('x1');ylabel('x2');zlabel('y');title('⾮线性函数');2.2 模型建⽴神经⽹络结构:2-5-1从⾮线性函数中随机得到2000组输⼊输出数据,从中随机选择1900 组作为训练数据,⽤于⽹络训练,100组作为测试数据,⽤于测试⽹络的拟合性能。
2.3 MATLAB实现2.3.1 BP神经⽹络⼯具箱函数newffBP神经⽹络参数设置函数。
net=newff(P, T, S, TF, BTF, BLF, PF, IPF, OPF, DDF)P:输⼊数据矩阵;T:输出数据矩阵;S:隐含层节点数;TF:结点传递函数。
包括硬限幅传递函数hardlim、对称硬限幅传递函数hardlims、线性传递函数purelin、正切型传递函数tansig、对数型传递函数logsig;x=-5:0.1:5;subplot(2,6,[2,3]);y=hardlim(x);plot(x,y,'LineWidth',1.5);title('hardlim');subplot(2,6,[4,5]);y=hardlims(x);plot(x,y,'LineWidth',1.5);title('hardlims');subplot(2,6,[7,8]);y=purelin(x);plot(x,y,'LineWidth',1.5);title('purelin');subplot(2,6,[9,10]);y=tansig(x);plot(x,y,'LineWidth',1.5);title('tansig');subplot(2,6,[11,12]);y=logsig(x);plot(x,y,'LineWidth',1.5);title('logsig');BTF:训练函数。
BP神经网络的基本原理_一看就懂

BP神经网络的基本原理_一看就懂BP神经网络(Back Propagation Neural Network)是一种常用的人工神经网络模型,用于解决分类、回归和模式识别问题。
它的基本原理是通过反向传播算法来训练和调整网络中的权重和偏置,以使网络能够逐渐逼近目标输出。
1.前向传播:在训练之前,需要对网络进行初始化,包括随机初始化权重和偏置。
输入数据通过输入层传递到隐藏层,在隐藏层中进行线性加权和非线性激活运算,然后传递给输出层。
线性加权运算指的是将输入数据与对应的权重相乘,然后将结果进行求和。
非线性激活指的是对线性加权和的结果应用一个激活函数,常见的激活函数有sigmoid函数、ReLU函数等。
激活函数的作用是将线性运算的结果映射到一个非线性的范围内,增加模型的非线性表达能力。
2.计算损失:将网络输出的结果与真实值进行比较,计算损失函数。
常用的损失函数有均方误差(Mean Squared Error)和交叉熵(Cross Entropy)等,用于衡量模型的输出与真实值之间的差异程度。
3.反向传播:通过反向传播算法,将损失函数的梯度从输出层传播回隐藏层和输入层,以便调整网络的权重和偏置。
反向传播算法的核心思想是使用链式法则。
首先计算输出层的梯度,即损失函数对输出层输出的导数。
然后将该梯度传递回隐藏层,更新隐藏层的权重和偏置。
接着继续向输入层传播,直到更新输入层的权重和偏置。
在传播过程中,需要选择一个优化算法来更新网络参数,常用的优化算法有梯度下降(Gradient Descent)和随机梯度下降(Stochastic Gradient Descent)等。
4.权重和偏置更新:根据反向传播计算得到的梯度,使用优化算法更新网络中的权重和偏置,逐步减小损失函数的值。
权重的更新通常按照以下公式进行:新权重=旧权重-学习率×梯度其中,学习率是一个超参数,控制更新的步长大小。
梯度是损失函数对权重的导数,表示了损失函数关于权重的变化率。
神经网络原理及BP网络应用实例

神经网络原理及BP网络应用实例摘要:本文主要对神经网络原理进行系统地概述,再列举BP网络在曲线逼近中的应用。
神经网络是一门发展十分迅速的交叉学科,它是由大量的处理单元组成非线性的大规模自适应动力系统。
神经网络具有分布式存储、并行处理、高容错能力以及良好的自学习、自适应、联想等特点。
随着计算机的发展,目前已经提出了多种训练算法和网络模型,其中应用最广泛的是前馈型神经网络。
本文将介绍人工神经网络的基本概念、基本原理、BP神经网络、自适应竞争神经网络以及神经网络的应用改进方法。
关键字:神经网络;收敛速度;BP网络;改进方法The principle of neural network and the applicationexamples of BP networkAbstract:Neural network is a cross discipline which now developing very rapidly, it is the nonlinearity adaptive power system which made up by abundant of the processing units . The neural network has features such as distributed storage, parallel processing, high tolerance and good self-learning, adaptive, associate, etc. Currently various training algorithm and network model have been proposed , which the most widely used type is Feedforward neural network model. Feedforward neural network training type used in most of the method is back-propagation (BP) algorithm. This paper will introduces the basic concepts, basic principles, BP neural network, adaptive competitive neural network and the application of artificial neural network.Keywords:neural network,convergence speed,BP neural network,improving method1 神经网络概述1.1 生物神经元模型人脑是由大量的神经细胞组合而成的,它们之间相互连接。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
控制系统仿真与模型处理设计报告
(采用BP神经网络完成非线性函数的逼近)
1、题目要求:
(1)确定一种神经网络、网络结构参数和学习算法。
(2)选择适当的训练样本和检验样本,给出选取方法。
(3)训练网络使学习目标误差函数达到0.01,写出学习结束后的网络各参数,并绘制学习之前、第100次学习和学习结束后各期望输出曲线、实际输出曲线。
绘制网络训练过程的目标误差函数曲线。
(4)验证网络的泛化能力,给出网络的泛化误差。
绘制网络检验样本的期望输出曲线和网络输出曲线。
(5)分别改变神经网络的中间节点个数、改变网络的层数、改变学习算法进行比较实验,讨论系统的逼近情况,给出你自己的结论和看法。
2、设计方案:
在MATLAB中建立M文件下输入如下命令:
x=[0:0.01:1];
y=2.2*power(x-0.25,2)+sin(5*pi*x);
plot(x,y)
xlabel('x');
ylabel('y');
title('非线性函数');
得到如下图形,即所给的非线性函数曲线图:
构造一个1-7-1的BP神经网络,第一层为输入层,节点个数为1;第二层为隐层,节点个数为7;变换函数选正切s型函数(tansig);第三层为输出层,节点个数为1,输出层神经元传递函数为purelin函数。
并且选Levenberg-Marquardt算法(trainlm)为BP网络的学习算法。
对于该初始网络,我们选用sim()函数观察网络输出。
继续在M函数中如下输入。
net=newff(minmax(x),[1,7,1],{'tansig','tansig','purelin'},'trainlm'); y1=sim(net,x);
figure;
plot(x,y,'b',x,y1,'r')
title('期望输出与实际输出比较');
xlabel('t');
则得到以下所示训练的BP网络期望输出与实际输出曲线比较:
应用函数train()对网络进行训练之前,需要预先设置训练参数。
将最大训练次数为100次,训练精度设置为0.01,学习速度为0.01。
net.trainParam.epochs=100;
net.trainParam.goal=0.001;
net.trainParam.lr=0.01;
net=train(net,x,y);
y2=sim(net,x);
plot(x,y,'-r',x,y2,'*g')
title('训练后的结果');
下图为网络训练过程,可以看到,当训练4次以后,就已达要求。
下图为训练后的结果曲线,“*”为学习过后的曲线,红线为期望输出,两条曲线已经很相近了。
这说明经过训练后,BP网络对非线性函数的逼近效果相当好。
接着检验网络的泛化能力,在M文件后,继续输入
err=y-y2;
plot(x,y2,'*g',x,err,'+c');
得到以下图形,由图可知,网络具有很好的泛化能力。
将神经网络的节点数为3时,相关图形如下。
从上面3个图中我们可以看出,当节点为3时,经过训练后,BP网络对非线性函数的逼近效果明显减弱,并且在经过100次训练后仍然达不到所要求的输出精度。
我由此推出,当层数一样多的时候,隐层神经元数目愈多,则BP网络逼近非线性函数的能力越强。
我把上述的层数分布:1-7-1改为1-3-5-1,得到以下的结果:
从三幅图中我们可以看到,在神经元数目一样的情况下,不同的层数对结果
是有明显影响的。
我将原训练函数trainlm改为traingd,得到以下输出结果。
从三幅图可以看出,将trainlm改为traingd之后,连所要求的精度都不能达到。
我由此推出,训练算法对非线性函数的逼近有一定影响,应当选择适合的训练算法。
3、总结:
通过这次作业,我总算对神经网络有了一定的了解,在实践中学习的确能加深对知识的理解和运用能力。
这次我特地没有用nntool工具箱,而是采用M文件编辑,也算对其有了初步的掌握,感觉M文件编写很灵活,分号的作用很明显,
和命令窗口相比也更容易修改参数。